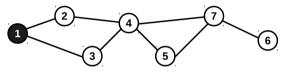
Institute of Operating Systems and Computer Networks

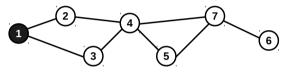

Energy Efficiency Impact of Transient Node Failures when using RPL WoWMoM 2017

<u>Ulf Kulau</u>, Silas Müller, Sebastian Schildt, Arthur Martens, Felix Büsching and Lars Wolf, 13.06.2017 Technische Universität Braunschweig, IBR

Classical WSN Applications

Distributed Sensing Application

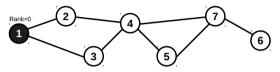
- Several wireless sensor nodes collect data in the field and forward them to a sink node


- Routing challenges:
 - Energy constraints \rightarrow limited processing capabilities
 - Unreliable nodes and links

Classical WSN Applications

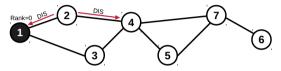
Distributed Sensing Application

• Several wireless sensor nodes collect data in the field and forward them to a sink node

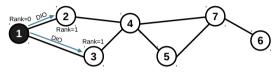

- Routing challenges:
 - Energy constraints \rightarrow limited processing capabilities
 - Unreliable nodes and links

RPL – Routing Protocol for Low Power and Lossy Networks

(De-facto standard for routing in 6LoWPAN WSNs)


Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

Control messages:


Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

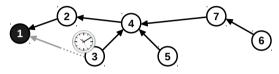
- Control messages:
 - DIS (DAG Information Solicitation)


Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

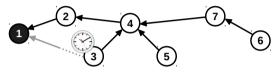
- Control messages:
 - DIS (DAG Information Solicitation)
 - DIO (DAG Information Object)

Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

- Control messages:
 - DIS (DAG Information Solicitation)
 - DIO (DAG Information Object)


Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

- Control messages:
 - DIS (DAG Information Solicitation)
 - DIO (DAG Information Object)
 - DAO (Destination Advertisement Object)


Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

- Control messages:
 - DIS (DAG Information Solicitation)
 - DIO (DAG Information Object)
 - DAO (Destination Advertisement Object)
- Adaptive routing (topology changes, link failures, ...):
 - Trickle timer with exponential backoff

Construction of a Destination Oriented Directed Acyclic Graph (DODAG)

- Control messages:
 - DIS (DAG Information Solicitation)
 - DIO (DAG Information Object)
 - DAO (Destination Advertisement Object)
- Adaptive routing (topology changes, link failures, ...):
 - Trickle timer with exponential backoff

In general: RPL well suited for WSN requirements

Real world WSN deployments

Transient node failures in WSNs

Energy constraints

SW bugs

Harsh environmental conditions

Intended attacks

Real world WSN deployments

Transient node failures in WSNs

Energy constraints

SW bugs

Harsh environmental conditions

Intended attacks

- Node failures often trigger a reset (watchdog)
- Low-power nodes and cheap hardware ightarrow RPL state is kept in RAM
- RPL state is lost and RPL reacts...
 - 1. when losing the node
 - 2. when reintegrating the node

Performance analysis of RPL

A plethora of existing studies

• Comprehensive evaluations but mainly focused on routing performance metrics [1, 2, 3]

- J. Ko et al., Evaluating the Performance of RPL and 6LoWPAN in TinyOS, IP+SN, 2011
- T. Zhang et al., Evaluating and Analyzing the Performance of RPL in Contiki, ACM MSCC, 2014
- J. Tripathi et al., Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL), RFC 6687 IETF 2012

Performance analysis of RPL

A plethora of existing studies

• Comprehensive evaluations but mainly focused on routing performance metrics [1, 2, 3]

- J. Ko et al., Evaluating the Performance of RPL and 6LoWPAN in TinyOS, IP+SN, 2011
- T. Zhang et al., Evaluating and Analyzing the Performance of RPL in Contiki, ACM MSCC, 2014
- J. Tripathi et al., Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL), RFC 6687 IETF 2012

Impact of transient node failures (lost routing state)

Self-healing character of RPL guarantees reliable routing

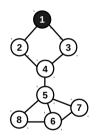
Performance analysis of RPL

A plethora of existing studies

- Comprehensive evaluations but mainly focused on routing performance metrics [1, 2, 3]
- J. Ko et al., Evaluating the Performance of RPL and 6LoWPAN in TinyOS, IP+SN, 2011
- T. Zhang et al., Evaluating and Analyzing the Performance of RPL in Contiki, ACM MSCC, 2014
- J. Tripathi et al., Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL), RFC 6687 IETF 2012

Impact of transient node failures (lost routing state)

Self-healing character of RPL guarantees reliable routing


Disregarded issue: Impact of node failures on the energy efficiency of the WSN

Test setup for the investigation

First exemplary WSN topology with 8 nodes

 \rightarrow What is the impact on the energy efficiency of a **single node reset** within t_{run}

Test setup for the investigation

Framework: Cooja (WSN Simulator) + CoojaTrace plugin (energy metering)

Settings for each experiment

Parameter	Value
Implementation	Contiki RPL standard
Simulation runs	1000
Simulation time	$t_{run}=$ 10 min
Reset	random 2 min $\leq t_{rst} \leq$ 9.5 min
Link quality	100 %

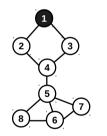
Node type: TmoteSky

Test setup for the investigation

Framework: Cooja (WSN Simulator) + CoojaTrace plugin (energy metering)

Settings for each experiment

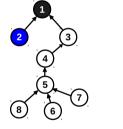
Parameter	Value
Implementation	Contiki RPL standard
Simulation runs	1000
Simulation time	$t_{run}=$ 10 min
Reset	random 2 min $\leq t_{rst} \leq$ 9.5 min
Link quality	100 %


Node type: TmoteSky

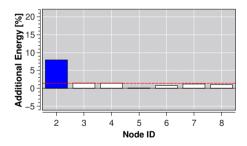
• Each experiment was compared against a reference simulation (2000 runs)

Exemplary WSN topology with 8 nodes

ightarrow Results: Impact of a single node reset within t_{run}

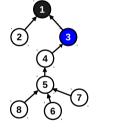


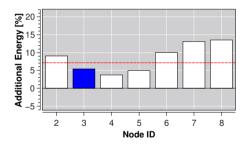
DODAG for the majority of sim runs



Exemplary WSN topology with 8 nodes

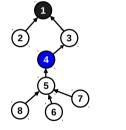
ightarrow Results: Impact of a single node reset within t_{run}

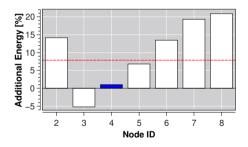

DODAG for the majority of sim runs



Exemplary WSN topology with 8 nodes

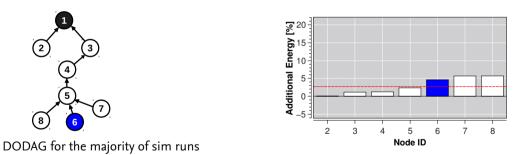
ightarrow Results: Impact of a single node reset within t_{run}


DODAG for the majority of sim runs



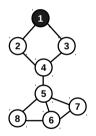
Exemplary WSN topology with 8 nodes

ightarrow Results: Impact of a single node reset within t_{run}


DODAG for the majority of sim runs

Exemplary WSN topology with 8 nodes

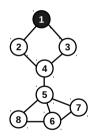
ightarrow Results: Impact of a single node reset within t_{run}



Basic Scenario – Review

Results

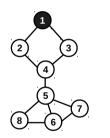
 \rightarrow Significant energy overhead due to a single (!) node reset (1.3 % to 8 %)



Basic Scenario – Review

Results

 \rightarrow Significant energy overhead due to a single (!) node reset (1.3 % to 8 %)


- Aftermath depends on the **role** and **position**
- Resetting nodes also affects the PRR

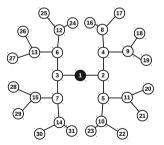
Basic Scenario – Review

Results

 \rightarrow Significant energy overhead due to a single (!) node reset (1.3 % to 8 %)

- Aftermath depends on the **role** and **position**
- Resetting nodes also affects the PRR

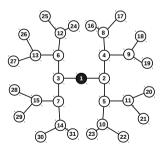
Beside the regular failures in WSNs...

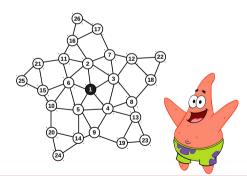

ightarrow Resetting nodes is actually a suitable attack vector for WSNs (DoE)

Mesh and Binary-tree Scenario

Further investigation with two common WSN topologies

1. Binary-tree: (1-connected graph)

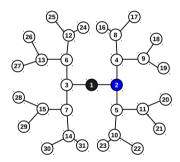


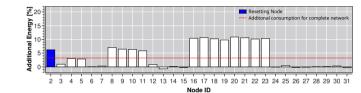


Mesh and Binary-tree Scenario

Further investigation with two common WSN topologies

- 1. Binary-tree: (1-connected graph)
- 2. Mesh: (2-connected graph)

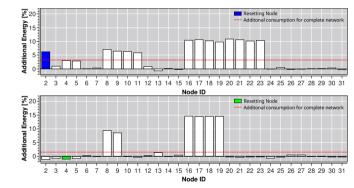




13.06.2017 | Ulf Kulau | Energy Efficiency Impact of Transient Node Failures when using RPL | Page 10

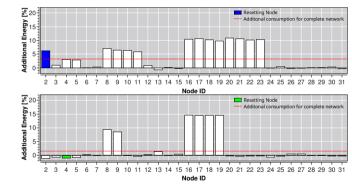
Binary-tree Scenario

Results: Single node reset (1 hop and 2 hop distance to sink)



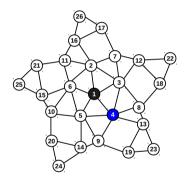
Technische Universität Braunschweig

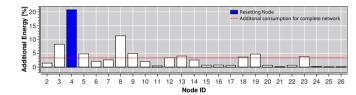
Binary-tree Scenario


Results: Single node reset (1 hop and 2 hop distance to sink)

Binary-tree Scenario

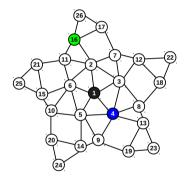
Results: Single node reset (1 hop and 2 hop distance to sink)

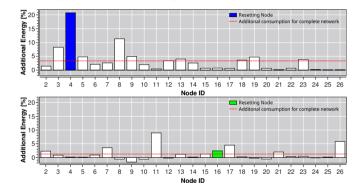



\rightarrow Subtree of bottleneck nodes is highly affected \rightarrow Overhead decreases with distance to sink

Mesh Scenario

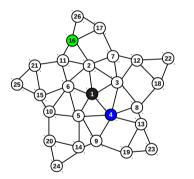
Results: Single node reset (1 hop and 2 hop distance to sink)

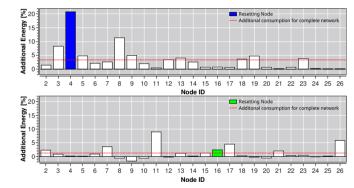




Mesh Scenario

Results: Single node reset (1 hop and 2 hop distance to sink)



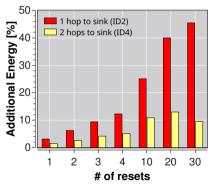


13.06.2017 | Ulf Kulau | Energy Efficiency Impact of Transient Node Failures when using RPL | Page 12

Mesh Scenario

Results: Single node reset (1 hop and 2 hop distance to sink)

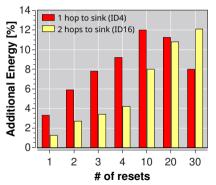
\rightarrow Neighboring nodes are affected above-average \rightarrow Overhead decreases with distance to sink



In real WSNs nodes might reset several times (Also: possible attack vector for DoE) Results: Multiple node resets within t_{run}

In real WSNs nodes might reset several times (Also: possible attack vector for DoE)

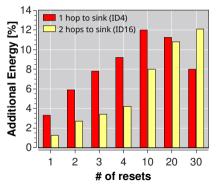
Results: Multiple node resets within trun


Binary tree scenario

- Additional resets increase overall energy consumption significantly
- Effect declines with high reset frequencies (down-time of nodes)

In real WSNs nodes might reset several times (Also: possible attack vector for DoE)

Results: Multiple node resets within trun


Mesh scenario

- Additional energy due to resets declines faster
- Objective function ETX mitigates the negative effect

In real WSNs nodes might reset several times (Also: possible attack vector for DoE)

Results: Multiple node resets within trun

Mesh scenario

- Additional energy due to resets declines faster
- Objective function ETX mitigates the negative effect

Attacker's advice: \rightarrow reset different nodes

Disregarded issue of resetting nodes on RPL

Resets are common in real WSNs (several reasons)

Disregarded issue of resetting nodes on RPL

Resets are common in real WSNs (several reasons)

Experimental Setup to investigate the impact of resets

- Extensive simulations with Cooja + Cooja Trace
 - Investigation of different topologies
 - Several variations (multiple resets, delayed resets, OFs, trickle timer, ...)

Disregarded issue of resetting nodes on RPL

Resets are common in real WSNs (several reasons)

Experimental Setup to investigate the impact of resets

- Extensive simulations with Cooja + Cooja Trace
 - Investigation of different topologies
 - Several variations (multiple resets, delayed resets, OFs, trickle timer, ...)

Results:

- Significant impact due to a single node reset (worse for multiple resets)
- Aftermath depends on the role and position of nodes
- Possible attack vector for DoE attacks

Disregarded issue of resetting nodes on RPL

Resets are common in real WSNs (several reasons)

Experimental Setup to investigate the impact of resets

- Extensive simulations with Cooja + Cooja Trace
 - Investigation of different topologies
 - Several variations (multiple resets, delayed resets, OFs, trickle timer, ...)

Results:

- Significant impact due to a single node reset (worse for multiple resets)
- Aftermath depends on the role and position of nodes
- Possible attack vector for DoE attacks

Thank you for your attention! Questions? Ulf Kulau kulau@ibr.cs.tu-bs.de

