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Abstract—In long-term sensing applications data patterns can
vary significantly over time. Often a multitude of sensors are
used to measure different types of environmental conditions.
Considering such variations it is hard to select a predefined
sample rate that guarantees both, high data quality and energy
efficiency.

Hence, this paper presents a dynamic sample rate adaptation
that strikes a balance offering optimal energy efficiency while
maintaining high data quality. Based on the general concept of
Bollinger Bands, a metric is derived that solely depends on the
trend of the measured data itself. A real world measurement in
the area of smart farming is used to show the effectiveness of
this approach.

I. INTRODUCTION

The integration of Wireless Sensor Networks (WSNs) to the
internet is more and more common and therefore a vital part of
the Internet of Things (IoT). The standard application for most
WSNs is to sense data in the field, process it and cooperatively
forward it to a sink node. For this purpose WSNs often need to
work autonomously in rough environmental conditions, away
from any infrastructure for a prolonged time.

Under these conditions, the limited capacities of e.g. batter-
ies lead to the fact that energy is one of the scarcest resources
in WSNs [1], [2]. Especially when nodes are difficult to access
or the maintainability is limited, the extension of the lifetime
of a node is one of the major challenges when designing an
application.

One example for an application area that faces these chal-
lenges is IoT smart farming. Here, nodes are deployed in
rural areas and require a lifetime of several months [3], [4].
In this work we will consider an application tackling the
distributed measurement of the crop water stress index [5] of
potato plants. As the term ’stress’ in connection with plants
might be unfamiliar, the following paragraph will provide
some background information:

Plants are stressed, when growing conditions are not optimal
such as the absence of water or inferior soil. With regard to
the climatic change this effect becomes a serious issue as
agricultural areas begin to silt and the soil water retention
decreases. Thus, with detailed information about the condition
of plants, the usage of sprinkling and fertilizers can be
optimized. In cooperation with a potato research station1 we

1http://www.vsd-dethlingen.de

deployed nodes with a dedicated sensor-set able to measure
plant stress influencing factors on a potato field. The various
parameters that have to be sensed are depicted in Figure 1.

It can be seen that the rating of the plant’s condition is based
on several parameters. Besides soil moisture, soil temperature,
air temperature and humidity, an important parameter is the
surface temperature of the plants which can be measured non-
invasively by a simple infra-red temperature sensor. Whenever
a plant is ’stressed’ it will immediately stop evaporation and
the plant heats up which can be revealed by this sensor. Of
course the goal is to detect stressful environmental conditions
before this happens. However, the actual weighting of the crop
water stress index is beyond the scope of this paper. This work
discusses a mechanism how a long lifetime of the network can
be achieved while ensuring a maximum data quality despite
the fact that multiple sensors observe different data patterns.

A simplified model of the power dissipation of a node is
given in Equation 1.

Pi =
1

T

(
Tiactive

Piactive
+ TisleepPisleep

)
⇒ Pnode =

∑
i

Pi

(1)

The node consists of i units (processing unit, transceiver
unit, sensors, ...) with two power states each: An active state
and a sleep state with a much smaller power consumption
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Figure 1: Required parameters to measure the crop water stress
index of a potato plant.
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Psleep � Pactive. Furthermore, during a time T a component
i can switch between these two states. While Tiactive

is the
total time that a component spends in active mode, Tisleep is
the total time in sleep state (T = Tiactive

+Tisleep ∀i). All in
all Pnode is the sum of the components power consumption. In
sum, to minimize the overall power dissipation we can reduce
both, the particular power consumption Piactive

and the time
that a component spends in active state Tactive. The reduction
of Piactive of the sensors is limited but an adequate adaptation
of the sample rate (↓ Tiactive

) would help to reduce the total
energy consumption significantly. Thus, in the course of this
paper we present an approach of a dynamic adaptation of the
sample rate that is solely based on the characteristics of the
sensed data itself by using the general concept of Bollinger
Bands. It will be shown that a self-adjustment of the sample
rate is possible while preserving high data quality. Moreover,
this approach is sufficiently lightweight to be applied on
wireless sensor nodes with limited computational capabilities.

II. RELATED WORK

This paper focuses on the sensing unit of a sensor node.
However, as energy efficiency is an important research topic
in the area of WSNs, there is a plethora of existing work which
aims to increase the energy efficiency of this unit.

Relating to Equation 1, [6] evaluated the impact of the
voltage level on the active power dissipation Piactive

of sensors
and memory devices. Normally each peripheral requires a
different minimum voltage level but only one fixed node-wide
voltage level is applied. Lowering the voltage level to the
actual minimum of a peripheral decreases the power dissipa-
tion significantly which has also been examined in [7]. These
mechanisms can be combined with the approach presented in
this paper to increase the energy efficiency even further.

To reduce the active usage of sensors, [8] introduced a
scheme where only a random subset of distributed sensors is
used to sense the environment. On average the total number of
samples decreases which leads to fewer data transfers within
the network and therefore less energy consumption. In the
smart farming use-case, the randomized request of data is
not suitable. For cost reasons you do not over-provision the
amount of deployed nodes. Therefore, in a smart farming
application you can not afford to lose spatial resolution by
randomly sampling nodes, as it is expected that all deployed
nodes experience different environmental conditions regarding
the monitored properties (c.f. Figure 1).

Another possibility is to control the sample rate by detecting
different but distinct activities [9]. With regard to various
applications it is hard to define such distinct events.

Using Bollinger Bands to filter data has been proposed
in [10]. The goal was to implement a deadband sampling
algorithm to optimize the polling of a client server application.
The basic idea is similar to the approach presented in this
paper. However, while this work also takes up the basic idea
of Bollinger Bands, the computation of the bands is modified
slightly to be more suitable for the characteristic of sensors
and the requirements of WSNs.
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Figure 2: Upper- and lower-band of an exemplary data-set of
a temperature sensor using different n .

III. BOLLINGER BANDS

Originally Bollinger Bands are an analysis tool from the
financial mathematics. In the 1980s John Bollinger introduced
them as a tool to analyze the trend of stock prices. Based on
the normal distribution it is assumed that it is more likely that
the current stock prices are close to the mean of previous stock
prices [11]. However, the concept can also be transferred to
the series of sampled data of a sensor node.

At a time t the Bollinger Bands are calculated by using a
fixed number of n previous data-points Ds of a sensor s. The
mid-band bbmids

(t) is calculated as a simple moving average:

bbmids
(t) =

1

n
·
n−1∑
i=0

Ds(t− i) (2)

The upper- and lower-bands (bbups(t), bblos(t)) are calcu-
lated by using the standard deviation σn(t) of the n previous
data-points which is added and subtracted from the mid-band
respectively.

bbups(t) = bbmids(t) + k · σn(t)

bblos(t) = bbmids(t)− k · σn(t)
(3)

The factor k can be used to control the width between
the upper- and the lower-band while the standard deviation
is given by:

σn(t) =

√√√√ 1

n
·
n−1∑
i=0

(Ds(t− i)− bbmids(t))
2 (4)

By way of example we consider a usual data-trace of a
temperature sensor. Figure 2 shows the upper bbups

(t) and
lower bblos(t) bands for values of n = 1000 and n = 2000.
To illustrate the characteristics of the Bollinger Bands applied
to real sensor data, a relatively large number of historical data
n is used in Figure 2. It can be seen, that growing dynamics
of the data itself lead to wider Bollinger Bands. As intuitively
increasing variation in a sensed condition demands for a higher
sample rate, this effect can be exploited for dynamic adaptation
of the sample rate as we will show in the following section.



IV. DYNAMIC SAMPLE RATE ADAPTATION

The general idea is to use the width of the upper- and lower-
band as a metric to control the sample rate of a sensor. The
goal is to have a fully self-adjusting sampling rate control
mechanism that is effective even for a priori unknown sample
data. Especially for long-term sensing in various IoT appli-
cations this approach offers several advantages: The patterns
and dynamics of environmental data changes over time, e.g.,
due to weather conditions or seasons.

To adapt the sample rate we define a maximum waiting
period tmax, which limits the minimum sample rate of a
sensor. When determining the next point in time (twait(t)) to
sample new data, we need to consider how much fluctuation
the data series exhibited during the last measurements. We
define a dynamic estimation function dyn(t) that quantifies
the expected dynamics in the data series based on previously
sampled data.

Equation 5 shows the actual calculation of the waiting time
which is estimated after every sampling.

twait(t) =
tmax

1 + dyn(t)ϕ
(5)

The exponent ϕ is used to weight the value of the dy-
namic estimation dyn(t). The effectiveness of this estimation
depends mainly on the chosen dynamic estimation function
which will be introduced in the next sections.

A. Dynamic estimation using Bollinger Bands

With regard to Section III the Bollinger Bands seem to be a
good basis for an adequate dynamic estimation. With Equation
3 it is possible to calculate the upper- and lower Bollinger
Band. The width between theses bands is given by:

∆bb(t) = |bbups
(t)− bblos(t)|

= 2k · σn(t)
(6)

With b = 2k to adjust the distance between the consid-
ered Bollinger Bands the dynamic estimation formula can be
written as:

dynbb(t) = b · σn(t) (7)

B. Dynamic estimation using vertical distances

As shown in Figure 2 the standard deviation of a moving
mean offers a feasible metric for the dynamic estimation.
However, the standard deviation is based on the arithmetic
mean which is not always an ideal reference value to calculate
the dynamics of sensor data.

In general sensor data Ds can not be described by an
echelon form (staircase function) but rather a series of linear
functions between the particular data points (cf. Figure 3).

Being based on the arithmetic mean of sample points,
the dynamic estimation function dynbb(t) increases when the
sampled data series shows a rising or falling trend. Those
trends do not necessitate a higher sampling rate, as constantly
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Figure 3: Sensor data are represented by lines between the
particular data points.

rising or falling data series contains no fluctuations that might
be missed by a lower sampling rate. In many cases the
line between two data points is sufficient to approximate the
intermediate data points. Therefore, dynbb(t) would lead to a
higher sample rate while fewer sampling would be adequate
to represent the sensed data.

Based on this insight an optimized dynamic estimation
function can be derived. Instead of using the arithmetic mean,
the vertical distances between a line from the first and the last
data point and the linear connection of the previous n data
points is considered. Figure 4 illustrates this procedure.

D
s

t

linear approximation
vertical distance

Figure 4: Vertical distance between the sampled data and the
linear approximation of the n previous data points.

Here the intention is, the more linear the characteristic of
a data series has been in the past, the lower the sample rate
can be. The dynamic estimation function based on vertical
distances dynvd(t) is given by the following Equation 8:

dynvd(t) =
k

n
·
n−1∑
i=0

|f(t− i)−Ds(t− i)| (8)

The linear function f(t− i) is therefore given by:

f(t− i) = (t− i) ·m+Ds(t− (n− 1))

with m =
Ds(t)−Ds(t− (n− 1))

n− 1

(9)

By inserting dynvd(t) in Equation 5 the next waiting time
can be estimated similar to the Bollinger approach.

V. ANALYSIS AND COMPARISON OF THE WAITING TIME
ESTIMATION

To evaluate the efficiency of the dynamic estimation func-
tions dynbb(t) and dynvd(t) as well as the impact of different
buffer sizes n and maximum waiting times tmax, we use an
exemplary dataset of a one day temperature measurement. The
exponent ϕ is set to a fixed value of 2. A temperature sensor
(located outdoors) with a resolution of 0.02 ◦C and a sample
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(a) Maximum waiting time tmax = 300 s.
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(b) Maximum waiting time tmax = 750 s
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(c) Maximum waiting time tmax = 1500 s
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(d) Maximum waiting time tmax = 3000 s

Figure 5: Evaluation of the dynamic estimation functions dynbb(t) and dynvd(t) (ϕ = 2) by using temperature measurement of
an exemplary day (reference data: sample rate ≈ 0.3 Hz=̂26500 samples, resolution 0.02 ◦C). The reference data are compared
against the results of the dynamic adaptation of the sample rate by using the online-estimation of the next waiting time.

rate of 0.3 Hz was used to generate a fine-grained temperature
profile. Figure 6 shows such a temperature profile.

By using this dataset the dynamic adaptation of the sample
rate can be emulated. As already depicted in Section IV after
each sample the next waiting time is estimated using either
dynbb(t) or dynvd(t).

We evaluated the error of measurement compared to the
fine-grained raw data and the reduction in energy usage. For
different parameters of buffer size n and maximum waiting
time tmax we compared the results against the full reference
dataset.

Figure 5 shows the results. In general it can be seen, that
the sample rate can be reduced significantly while incurring
only a relatively small sensing error. Moreover, with regard
to the error of measurement, difference between the dynamic
estimation functions dynbb(t) and dynvd(t) is small in all
scenarios. However, the dynamic estimation function based
on the vertical distances dynvd(t) shows a significant higher
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Figure 6: Exemplary temperature profile of one day measure-
ment.

reduction of sampling rate and thus energy usage.
While the variation of buffer size n has no significant impact

on the error of measurement, the reduction factor decreases
with a growing buffer size. This effect is due to the fact that
low frequency changes fade out slowly as the buffer contains
many previous sampled data. In sum it is recommended to use
a relatively small buffer size n as this will increase energy
savings while at the same allow the dynamic estimation to
react faster to changes.

Another expected observation is that the maximum waiting
time tmax, which determines the lowest allowed sample rate,
influences both, the error of measurement and the reduction
factor. It can be seen that the number of measurement errors
growth slightly with a higher tmax. Especially the minimum
and maximum deviations to the reference data increases. How-
ever, the reduction factor strongly depends on tmax. While
tmax = 300 s leads to a reduction factor of up to 56, a waiting
time of tmax = 3000 s yields a reduction factor of 378.

VI. EXPERIMENT

As mentioned in the introduction (cf. Section I), this work
was motivated by enabling long-term IoT sensing applications.
In particular the measurement of the crop water stress index
was introduced as a use case demanding the use of multiple
sensors.

To enable the measurement of the required data illustrated in
Figure 1 a simple node based on an 8-Bit micro controller unit
(MCU) was developed and integrated into our WSN testbed
PotatoNet [4].
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Figure 7: Exemplary data pattern of the soil temperature, air temperature and surface temperature of one measuring station.

The following sensors have been used to measure the
parameters:

• Melexis MLX90614 [12]: Inter-Integrated Circuit (I2C)
Infra-red temperature sensor to allow a non-invasive
measurement of the surface temperature.

• Sensiron SHT21 [13]: I2C temperature and air humidity
sensor.

• Maxim DS1631 [14]: I2C temperature sensor to measure
the soil temperature.

• Pyranometer: Analogue sensor based on a photo-diode
PDB-C139.

• Soil moisture: Analogue sensor based on an oscillating
circuit with a capacitive probe.

The sensors are connected to a ATmega328P low-power 8-
bit MCU [15] and assembled to a combined measuring station
as shown in Figure 8. All digital sensors are connected to
the I2C master of the MCU while the analog-digital converter
(ADC) of the MCU is used to integrate the analogue sensors.
The MCU implements a slave I2C which is used to connect the
measuring station to nodes of the WSN testbed PotatoNet [4].

In total four measuring stations were deployed on a potato
field for a time span of about 38 days. The sample rate
of each sensor was set to ≈ 0.3 Hz, as the gathered data

PotatoNet
(WSN testbed)

DS1631

Soil Moisture

MLX90614

Pyranometer

MCU

SHT21

Figure 8: Illustration and picture of one measuring station to
evaluate the crop water stress index of potato plants.

Table I: Sample time and current consumption of the consid-
ered temperature sensors.

Sensor Parameter Sample time [ms] Current [mA]

Datasheet In practice

SHT21 Temperature ≈ 63.0 0.2 - 0.33 0.235
DS1631 Temperature ≈ 585.1 ≤1.0 0.640
MLX90614 Temperature ≈ 150.0 1.3 - 2.5 1.354

should provide the reference for the evaluation of the presented
approach. Figure 7 shows the soil temperature, air temperature
and surface temperature of one measuring station. For the sake
of clarity we limit the evaluation to those 3 data series, which
already represent largely varying characteristics.

To evaluate the impact on the energy efficiency we firstly
measured the current consumption of each sensor with the aid
of an online-oscilloscope [16]. Table I summarizes the sensors
and gives the time they need to sample a single value and the
current consumption during this process (with a fixed voltage
supply for all components of 3.3 V).

Similar to the analysis in Section V, the results of the
dynamic sample rate are compared against the reference data
to derive the sensing errors and reduction factors. However, in
this case only the dynamic estimation based on the vertical
distances dynvd(t) was used, as the analysis revealed its
advantages. Instead of a single day, the entire temperature
profile depicted in Figure 7 has been used. The maximum
waiting time twait was set to 500 s and the exponent ϕ = 2.

Figure 9 shows the results of this experiment where the total
energy consumption is based on the values of Table I. On the
left Figure 9a we can see that for each sensor a significant re-
duction is achieved. Moreover the reduction strongly depends
on the characteristic of the sampled data itself. The reduction
factor of the DS1631 (soil temperature) is almost two times
higher than the reduction factors of the MLX90614 (surface
temperature) and SHT21 (air temperature). This is due to the
fact that the sensors measure different temperature profiles.
The thermal capacity of the ground leads to the effect that
the temperature curve of the soil is dampened compared to air
and surface temperature. Thus, higher frequency fluctuations
in air or surface temperature do not increase the dynamics of
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Figure 9: Experimental results of the reduction error, the total
energy consumption and the overall sensing error.

the data series experienced by the soil temperature sensor. The
presented approach is able to handle such individual variations
and reaches a balanced state between high data-quality and
energy efficiency for each sensor (cf. Figure 9b).

A. Practical test on low-power MCUs

Due to the energy constraints, the computational perfor-
mance of wireless sensor nodes is limited. So far in this
analysis we performed the sample rate adaptation offline in a
simulation using the complete high resolution dataset collected
in the field.

To show both, the actual online adaptation and the low
computational overhead, we implemented the dynamic adap-
tation with the dynamic estimation dynvd(t) on an 8-bit
ATmega328P MCU [15] and a single temperature sensor (ex-
emplary for a typical sensor node). A second MCU was placed
close to the node with the variable sample rate, but sampled
the temperature with a fixed rate of 1 Hz (reference node).
Both nodes were located outdoors and sampled temperatures.
In sum, the node using the dynamic adaptation of the sample
rate performed only 0.104 % of sensor readouts compared to
the reference node. Due to the computational overhead and
the non-negligible power dissipation during the sleep state, the
consumed energy was 0.319 % of the reference node. However,
the sensing error for 91.3 % of the dynamically sampled data
was below ±0.5 ◦C.

VII. CONCLUSION

Motivated by a real-world sensing application in the area of
smart farming, this work presented a dynamical adaptation of
the sample rate solely based on the sensed data itself.

The concept of Bollinger Bands, which are usually used in
financial mathematics, offers a metric to control the waiting
time till the next sample. The metric was improved with regard
to the characteristic of data gathered by a WSN. As a result
the energy efficiency of sampling can be increased with only
negligible impact on the data quality.

The mechanism was evaluated against the background of a
real world sensing application trying to measure the crop water
stress index of potato plants. The results show that the sample
rate can be reduced significantly while keeping the sensing
error small.

The presented approach is applicable to sensed data series
exhibiting a wide range of individual characteristics as the
sample rate is adapted accordingly.

An implementation of the presented approach on an low-
power 8-bit MCU illustrates the applicability of the approach
to common WSN and IoT applications.
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