Institute of Operating Systems and Computer Networks

Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications WF-IoT 2016

<u>Ulf Kulau</u>, Johannes van Balen, Sebastian Schildt, Felix Büsching and Lars Wolf Technische Universität Braunschweig, IBR Introduction and Motivation Bollinger Bands Waiting time estimation Experiment and practical test Summary

Motivated by (but not limited to) specific application

Smart farming applications

Usage of WSNs for precise and distributed sensing

Technische Universität Braunschweig

Ulf Kulau Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications Page 2

Smart farming applications

- Usage of WSNs for precise and distributed sensing
- Monitoring of crops is of major importance
 - Enhance the harvest
 - Optimization of sprinkling, utilization of fertilizers
 - Inevitable with regard to global warming

Technische Universität Braunschweig

Ulf Kulau Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications Page 2

Smart farming applications

- Usage of WSNs for precise and distributed sensing
- Monitoring of crops is of major importance
 - Enhance the harvest
 - Optimization of sprinkling, utilization of fertilizers
 - Inevitable with regard to global warming

\rightarrow Nodes are deployed in rural areas and require long lifetimes

Technische Universität Braunschweig

Ulf Kulau Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications Page 2

Exemplary: Distributed measurement of the crop water stress index

- Measurement of the *stress* of potato plants
 - Absence of water, inferior soil, ...
- Several parameters indicate the condition of crops
 - In particular the surface temperature
- Nodes have to rely on local energy sources
 - Batteries, energy harvesters

Technische Universität Braunschweig

Ulf Kulau | Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications | Page 3

Exemplary: Distributed measurement of the crop water stress index

- Measurement of the *stress* of potato plants
 - Absence of water, inferior soil, ...
- Several parameters indicate the condition of crops
 - In particular the surface temperature
- Nodes have to rely on local energy sources
 - Batteries, energy harvesters

 \rightarrow Data quality and energy efficiency are major requirements

Technische Universität Braunschweig

Ulf Kulau | Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications | Page 3

Idea: Decrease the duty cycle of sensors

General energy consumption of a sensor

$$E_s = T_{s_{active}} \cdot P_{s_{active}} + T_{s_{sleep}} \cdot P_{s_{sleep}}$$
 with $P_{active} \gg P_{sleep}$

• Adequate reduction of *T*_{sactive} reduces the energy consumption significantly

Sensor data are a priori unknown

Idea: Decrease the duty cycle of sensors

General energy consumption of a sensor

$$E_s = T_{s_{active}} \cdot P_{s_{active}} + T_{s_{sleep}} \cdot P_{s_{sleep}}$$
 with $P_{active} \gg P_{sleep}$

• Adequate reduction of $T_{s_{active}}$ reduces the energy consumption significantly

High sample rate

Idea: Decrease the duty cycle of sensors

General energy consumption of a sensor

$$E_s = T_{s_{active}} \cdot P_{s_{active}} + T_{s_{sleep}} \cdot P_{s_{sleep}}$$
 with $P_{active} \gg P_{sleep}$

• Adequate reduction of $T_{s_{active}}$ reduces the energy consumption significantly

Low sample rate

Idea: Decrease the duty cycle of sensors

General energy consumption of a sensor

$$E_s = T_{s_{active}} \cdot P_{s_{active}} + T_{s_{sleep}} \cdot P_{s_{sleep}}$$
 with $P_{active} \gg P_{sleep}$

• Adequate reduction of $T_{s_{active}}$ reduces the energy consumption significantly

Solution: Dynamic sample rate

Challenges and general approach

Goal

- Online estimation of the waiting time *t_{wait}* to the next sample
 - Highly fluctuating data \rightarrow short t_{wait}
 - Steady data ightarrow longer t_{wait}
- Lightweight solution suitable for WSN nodes

Basic Idea

Utilization of Bollinger Bands

- Introduced in the 1980s by John Bollinger
- Originally a tool to analyze the trend of stock prices
- \rightarrow Transferring the concept of Bollinger Bands to a series of sampled data

Bollinger Bands – Considering data-points instead of stock prices

Calculation of a Bollinger Band at the time t

- Mid-band $bb_{mid_s}(t)$
 - Moving average of *n* previous data-points *D*_s of sensor *s*

$$bb_{mid_s}(t) = \frac{1}{n} \cdot \sum_{i=0}^{n-1} D_s(t-i)$$

Bollinger Bands – Considering data-points instead of stock prices

Calculation of a Bollinger Band at the time t

- Mid-band $bb_{mid_s}(t)$
 - Moving average of *n* previous data-points *D*_s of sensor *s*

$$bb_{mid_s}(t) = \frac{1}{n} \cdot \sum_{i=0}^{n-1} D_s(t-i)$$

- Upper- and lower-bands bb_{ups}(t), bb_{los}(t)
 - Standard deviation $\sigma_n(t)$ of the *n* previous data-points \pm mid-band

$$bb_{up_s}(t) = bb_{mid_s}(t) + k \cdot \sigma_n(t)$$

$$bb_{lo_s}(t) = bb_{mid_s}(t) - k \cdot \sigma_n(t)$$

Waiting time estimation

 $t_{wait}(t) = rac{t_{max}}{1 + dyn(t)^{arphi}}$

Estimate the next point in time (t_{wait}) to sample new data:

- *t_{max}* maximum waiting period
- *dyn*(*t*) dynamic estimation function
- φ weighting factor (exponent)

Waiting time estimation

Estimate the next point in time (t_{wait}) to sample new data:

t_{max} maximum waiting period

 $t_{wait}(t) = rac{t_{max}}{{f 1} + dyn(t)^{arphi}}$

- *dyn*(*t*) dynamic estimation function
- φ weighting factor (exponent)

 \rightarrow Use width of the Bollinger Bands for dynamic estimation function

$$\Delta_{bb}(t) = |bb_{up_s}(t) - bb_{lo_s}(t)| = \underbrace{2k}_{b} \cdot \sigma_n(t) \quad \rightarrow \quad dyn_{bb}(t) = b \cdot \sigma_n(t)$$

Dynamic estimation function using vertical distances

Width of Bollinger Bands offer a sufficient metric, but is not ideal

- Standard deviation $\sigma_n(t)$ is based on the arithmetic mean
- However, sensor data are represented by lines between samples

Dynamic estimation function using vertical distances

Width of Bollinger Bands offer a sufficient metric, but is not ideal

- Standard deviation $\sigma_n(t)$ is based on the arithmetic mean
- However, sensor data are represented by lines between samples

- Assumption: moderate rising/falling trend of data (without fluctuation)
- ightarrow Dynamic estiation function dyn_{bb} increases and energy is wasted

Dynamic estimation function using vertical distances

Optimize dynamic estimation function by using vertical distances

- Consider linear characteristic of data
- Metric is based on the vertical distances between historical data and linear approximation

$$dyn_{\nu d}(t) = rac{k}{n} \cdot \sum_{i=0}^{n-1} |f(t-i) - D_s(t-i)|$$
 with $f(t-i)$ linear approximation

Evaluation of the dynamic estimation functions

Reference Data: Temperature measurement of a day (0.3 Hz=26500 samples)

- Dynamic sample rate adaptation by using
 - Dynamic estimation function using Bollinger Bands dyn_{bb}
 - Dynamic estimation function using vertical distances dyn_{vd}

| Ulf Kulau | Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications | Page 10

Real world measurement of the crop water stress index

Deployment of sensor stations on a potato field

- Cooperation with a potato crop research station
- 38 days of measurement
- High sample rate of about 0.3 Hz
 - Collection of reference data

Real world measurement of the crop water stress index

Exemplary data pattern of soil,air and surface temperature

Ulf Kulau | Dynamic Sample Rate Adaptation for Long-Term IoT Sensing Applications | Page 12

Real world measurement of the crop water stress index

Exemplary data pattern of soil,air and surface temperature

 \rightarrow Different characteristics of data

Results

Efficiency of dynamic sample rate adaptation (vertical distances)

- Postprocessing of reference data to evaluate the effectiveness for real applications

Results

Efficiency of dynamic sample rate adaptation (vertical distances)

Postprocessing of reference data to evaluate the effectiveness for real applications

Overall sampling error

Results

Efficiency of dynamic sample rate adaptation (vertical distances)

Postprocessing of reference data to evaluate the effectiveness for real applications

Overall reduction of samplings

Practical test on a low-power MCU

Lightweight implementation of the approach

- Temperature measurement with 2 low-power MCUs
 - 8-bit ATmega328P MCU
- Temperature measurement of a-priori unknown data pattern

Practical test on a low-power MCU

Lightweight implementation of the approach

- Temperature measurement with 2 low-power MCUs
 - 8-bit ATmega328P MCU
- Temperature measurement of a-priori unknown data pattern

Results compared to the reference node (high sample rate)

- Benefit of the dynamic sample rate adaptation
 - 1. Works online and sufficiently lightweight
 - 2. Reduces the energy consumption by 99 %
 - 3. Sensing error $<\pm0.5\,\%$ for 91.3 % of data

- Many long-term applications with tough energy demands
 - Dynamic sample rate adaptation can increase the energy efficiency
 - Issue: Data pattern are a priori unknown

- Many long-term applications with tough energy demands
 - Dynamic sample rate adaptation can increase the energy efficiency
 - Issue: Data pattern are a priori unknown
- Estimation of the waiting time for the next sample
 - Transferring the concept of Bollinger Bands
 - Derivation of estimation functions (Bollinger Bands, Vertical distances)

- Many long-term applications with tough energy demands
 - Dynamic sample rate adaptation can increase the energy efficiency
 - Issue: Data pattern are a priori unknown
- Estimation of the waiting time for the next sample
 - Transferring the concept of Bollinger Bands
 - Derivation of estimation functions (Bollinger Bands, Vertical distances)
- Evaluation of the approach
 - Both estimation function work well but vd outperforms Bollinger bands
 - Real world experiment 'crop water stress index'
 - \rightarrow Sample rate reduction by up to 400 times
 - \rightarrow Sensing error mainly within $\pm \imath\,\%$
 - Implementation on an 8-bit low-power MCU

- Many long-term applications with tough energy demands
 - Dynamic sample rate adaptation can increase the energy efficiency
 - Issue: Data pattern are a priori unknown
- Estimation of the waiting time for the next sample
 - Transferring the concept of Bollinger Bands
 - Derivation of estimation functions (Bollinger Bands, Vertical distances)
- Evaluation of the approach
 - Both estimation function work well but vd outperforms Bollinger bands
 - Real world experiment 'crop water stress index'
 - \rightarrow Sample rate reduction by up to 400 times
 - \rightarrow Sensing error mainly within $\pm \imath\,\%$
 - Implementation on an 8-bit low-power MCU

Thank you for your attention! Questions?

kulau@ibr.cs.tu-bs.de

