Institute of Operating Systems and Computer Networks

A Clustering-Based Characteristic Model for Unreliable Sensor Network Data

WF-IoT 2015

<u>Ulf Kulau</u>, Tobias Breuer and Lars Wolf, December 14, 2015 Technische Universität Braunschweig, IBR

Introduction – Background

Many WSN/IoT applications deployed in challenging areas

- Harsh environmental conditions
 - → Reliability of nodes decreases
 - → Correctness of data-collection might be affected

Introduction – PotatoNet

Outdoor WSN testbed - Central box and field-nodes

https://www.ibr.cs.tu-bs.de/projects/potatonet/

Introduction - PotatoNet

Outdoor WSN testbed - Central box and field-nodes

https://www.ibr.cs.tu-bs.de/projects/potatonet/

Introduction – Proposed Approach

Convenient data handling – System overview

Collection of many (potentially faulty) data elements at the sink

Introduction – Proposed Approach

Convenient data handling - System overview

- Collection of many (potentially faulty) data elements at the sink
 - → Generate a more handy data model for processing and storage

Data model – Motivation

Characteristics of data can be used to...

- detect errors
 - → Unreliable sensing (challenging environment, undervolting, ...)

Characteristics of data can be used to...

- detect errors
 - → Unreliable sensing (challenging environment, undervolting, ...)
- detect redundant sensing
 - → Neighboring nodes are potentially redundant (shared sensing)

Data model - Motivation

Characteristics of data can be used to...

- detect errors
 - → Unreliable sensing (challenging environment, undervolting, ...)
- detect redundant sensing
 - → Neighboring nodes are potentially redundant (shared sensing)
- predict further system states
 - → Energy efficiency/budget can be predicted to schedule tasks

Course of action

Generation of the characteristic data model

Classification using k-means algorithm

1. Generate potential clusters C_i with a random center $C_i(c_x, c_y)$.

Step 1

Classification using k-means algorithm

- 1. Generate potential clusters C_i with a random center $C_i(c_x, c_y)$.
- 2. Calculate the distance of each element $e_i \in \mathbb{D}^2$ to the clusters C_i

Step 1

Step 2

Classification using k-means algorithm

- 1. Generate potential clusters C_i with a random center $C_i(c_x, c_y)$.
- 2. Calculate the distance of each element $e_i \in \mathbb{D}^2$ to the clusters C_i
- Assign elements to a cluster C_i and recalculate centroid of C_i

Classification using k-means algorithm

- 1. Generate potential clusters C_i with a random center $C_i(c_x, c_y)$.
- 2. Calculate the distance of each element $e_i \in \mathbb{D}^2$ to the clusters C_i
- Assign elements to a cluster C_i and recalculate centroid of C_i
- 4. Repeat step 2 and 3 add more C_i if necessary

Data model – Statistical representation

Characteristic Model

Model which is representative for all data elements but more handy

→ Convert the clusters dataset to variables by *Principal Component Analysis*

Data model – Statistical representation

Characteristic Model

Model which is representative for all data elements but more handy

- → Convert the clusters dataset to variables by Principal Component Analysis
- Covariance matrix of the clusters elements.

$$Cov_{C_j} = \begin{pmatrix} Cov(X_{C_j}, X_{C_j}) & Cov(X_{C_j}, Y_{C_j}) \\ Cov(Y_{C_j}, X_{C_j}) & Cov(Y_{C_j}, Y_{C_j}) \end{pmatrix}$$

Data model - Statistical representation

Characteristic Model

Model which is representative for all data elements but more handy

- → Convert the clusters dataset to variables by *Principal Component Analysis*
- Covariance matrix of the clusters elements

$$Cov_{C_j} = \begin{pmatrix} Cov(X_{C_j}, X_{C_j}) & Cov(X_{C_j}, Y_{C_j}) \\ Cov(Y_{C_j}, X_{C_j}) & Cov(Y_{C_j}, Y_{C_j}) \end{pmatrix}$$

- 2. Solve $Cov_{C_i} \lambda E = 0$ to get the eigenvectors $\vec{e_1}$, $\vec{e_2}$
 - \rightarrow Normalized eigenvectors represent the cluster C_i statistically

Characteristic model – Continuous update

Online update – Adding new sampled data

Incoming data elements are added to pre-clustered dataset

Characteristic model – Continuous update

Online update – Adding new sampled data

- Incoming data elements are added to pre-clustered dataset
- Check if new data is valid.
 - Add new data elements to corresponding clusters
 - 2. Recalculate the involved covariance ellipses

Characteristic model – Continuous update

Online update – Adding new sampled data

- Incoming data elements are added to pre-clustered dataset
- Check if new data is valid.
 - Add new data elements to corresponding clusters
 - 2. Recalculate the involved covariance ellipses

- Data model gets too tolerant after enduring update
 - → Recalculate the characteristic model periodically

Characteristic model – Detection of invalid data

Check if an element is part of the characteristic model

- Point-in-cluster
 - → Check if a new element fits to an ellipse

Check if an element is part of the characteristic model

- Point-in-cluster
 - → Check if a new element fits to an ellipse
- Cluster-in-cluster
 - → Cluster several new data elements and check intersection

Check if an element is part of the characteristic model

- Point-in-cluster
 - → Check if a new element fits to an ellipse
- Cluster-in-cluster
 - → Cluster several new data elements and check intersection
- Manhattan distance (echelon form)

$$d_{Man}(C_j, e_i) = \left\| \begin{pmatrix} c_x - e_x \\ c_y - e_y \end{pmatrix} \right\|_1$$

Characteristic model – Detection of invalid data

Check if an element is part of the characteristic model

- Point-in-cluster
 - → Check if a new element fits to an ellipse
- Cluster-in-cluster
 - → Cluster several new data elements and check intersection
- Manhattan distance (echelon form)

$$d_{Man}(C_j, e_i) = \left\| \begin{pmatrix} c_x - e_x \\ c_y - e_y \end{pmatrix} \right\|_1$$

Mahalanobis distance (considers covariance)

$$d_{Maha}(C_j, e_i) = \sqrt{ egin{pmatrix} c_x - e_x \ c_y - e_y \end{pmatrix}^T Cov_{C_j}^{-1} egin{pmatrix} c_x - e_x \ c_y - e_y \end{pmatrix}}$$

- Calculate the characteristic model $\overline{C_m}$ of sample data
 - 1. Add noise $[0, N_i]$ to the sample data
 - 2. Feed C_m with noised data iteratively
 - Update model

- Calculate the characteristic model $\overline{C_m}$ of sample data
 - 1. Add noise $[0, N_i]$ to the sample data
 - 2. Feed C_m with noised data iteratively
 - Update model

- Calculate the characteristic model $\overline{C_m}$ of sample data
 - 1. Add noise $[0, N_i]$ to the sample data
 - 2. Feed C_m with noised data iteratively
 - 3. Update model

- Calculate the characteristic model $\overline{C_m}$ of sample data
 - 1. Add noise $[0, N_i]$ to the sample data
 - 2. Feed C_m with noised data iteratively
 - 3. Update model

Real world experiment

Temperature sensing with 4 nodes with 1Hz sampling rate (5 days)

Functionality and evaluation

Real world experiment

- Temperature sensing with 4 nodes with 1Hz sampling rate (5 days)
 - → Exemplary results of 24h measurement

Node ID	Samples	Runtime	Iterations	Cluster
2	83162	429ms	17	22
3	83635	521ms	19	22
4	83592	581ms	22	28
5	83635	457ms	23	24

Sample application – Redundancy analysis

Detect redundancy between data

Overlapping areas of characteristic models imply redundant sensing

- Experimental setup: node 4 and node 5 located side by side
- Calculate intersection $S_{i,j} = \overline{C_i} \cap \overline{C_i}$

Detect redundancy between data

Overlapping areas of characteristic models imply redundant sensing

- Experimental setup: node 4 and node 5 located side by side
- lacktriangle Calculate intersection $S_{i,j}=\overline{C_i}\cap\overline{C_j}$

Goal: Convenient data handling of (potentially faulty) WSN data

Unreliable sensing: environmental conditions, undervolting, ...

Goal: Convenient data handling of (potentially faulty) WSN data

- Unreliable sensing: environmental conditions, undervolting, ...
- Generation of a handy characteristic data model
 - 1. Classification of data (clustering)
 - 2. Statistical representation (PCA)

Goal: Convenient data handling of (potentially faulty) WSN data

- Unreliable sensing: environmental conditions, undervolting, ...
- Generation of a handy characteristic data model
 - 1. Classification of data (clustering)
 - 2. Statistical representation (PCA)
- Initial evaluations
 - Robustness against noisy data
 - Real world experiment (redundancy analysis)

Goal: Convenient data handling of (potentially faulty) WSN data

- Unreliable sensing: environmental conditions, undervolting, ...
- Generation of a handy characteristic data model
 - 1. Classification of data (clustering)
 - 2. Statistical representation (PCA)
- Initial evaluations
 - Robustness against noisy data
 - Real world experiment (redundancy analysis)
- Next steps
 - → Integrate the modelling of data to our PotatoNet testbed

Thank you for your attention! Questions?

Ulf Kulau

kulau@ibr.cs.tu-bs.de

