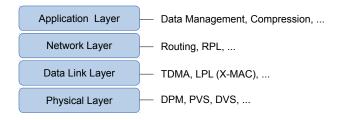

Institute of Operating Systems and Computer Networks

Undervolting in WSNs – A Feasibility Analysis IEEE World Forum Internet of Things 2014 <u>Ulf Kulau</u>, Felix Büsching and Lars Wolf, March 8, 2014 Technische Universität Braunschweig, IBR

Undervolting in WSNs – Motivation


- Energy Efficiency in WSNs / IoT plays a significant role
 - Usability, Feasibility, Acceptance...
- Limping evolution of batteries (capacity)
- Various existing approaches on several layers

Undervolting in WSNs – Motivation

- Energy Efficiency in WSNs / IoT plays a significant role
 - Usability, Feasibility, Acceptance...
- Limping evolution of batteries (capacity)
- Various existing approaches on several layers

March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 2

Undervolting in WSNs – Motivation

Existing approaches are inflexible:

- Real environmental conditions (changes) are less considered
- They act conservatively (reliability)
- Usage comes often with some limitations (e.g. waiting periods)

Undervolting Basics - DVS

- ICs are mostly based on CMOS technology
 - Static power dissipation is negligible
 - Overall power consumption is dominated by

$$p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$$

- But the switching delay of CMOS gates depends on V
- $\rightarrow V(f_{cpu})$ (Un-)Safe Operating Area

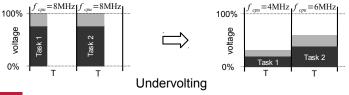
Undervolting Basics - DVS

- ICs are mostly based on CMOS technology
 - Static power dissipation is negligible
 - Overall power consumption is dominated by

$$p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$$

- But the switching delay of CMOS gates depends on V
- $\rightarrow V(f_{cpu})$ (Un-)Safe Operating Area
- DVS: Adapting f_{cpu} to current Workload <u>and</u> scale V(f_{cpu})

Universität Braunschweig


March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 4

Undervolting Basics - DVS

- ICs are mostly based on CMOS technology
 - Static power dissipation is negligible
 - Overall power consumption is dominated by

$$p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$$

- But the switching delay of CMOS gates depends on V
- $\rightarrow V(f_{cpu})$ (Un-)Safe Operating Area
- Undervolting: Violate specifications $V(f_{cpu}) \rightarrow V(f_{cpu}) \Delta V$

March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 4

Undervolting – Basics

Temperature Dependency

- Specification of V(f_{cpu}) is given in Datasheets
- Specification does <u>not</u> include the temperature $V(f_{cpu}, T)$
 - Threshold Voltage V_{th} of CMOS is temperature dependent

$$V_{th}(T) = V_{th0} + \alpha \cdot (T - T_0)$$

Undervolting – Basics

Temperature Dependency

- Specification of V(f_{cpu}) is given in Datasheets
- Specification does <u>not</u> include the temperature $V(f_{cpu}, T)$
 - Threshold Voltage V_{th} of CMOS is temperature dependent

$$V_{th}(T) = V_{th0} + \alpha \cdot (T - T_0)$$

MCUs cover a widespread temperature range with a fixed voltage level $V(f_{cpu})$

 \rightarrow MCUs must be able to run below $V(f_{cpu})$ (under *normal* conditions)

Challenges and Issues

Undervolting will lead to a higher unreliability:

- Operating devices outside their specification
- Calculation errors, losses, resets, failures may affect the application

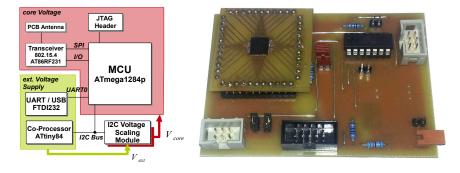
Challenges and Issues

Undervolting will lead to a higher unreliability:

- Operating devices outside their specification
- Calculation errors, losses, resets, failures may affect the application

Our Perspective:

- WSNs are designed to be fault tolerant per se (protocols, algorithms, applications, ...)
- WSNs need increased energy efficiency and offer fault tolerance (ideal)



Theory and Practice

Preparations:

- Ordering of ATmega1284p MCUs from different distributors
- Implementation of a prototype to analyze the effect of Undervolting

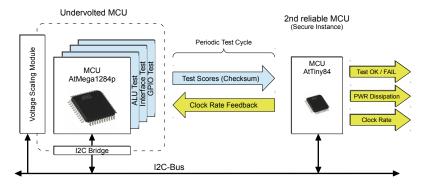
March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 7

Detecting failures caused by Undervolting

- Continuous (periodic) observation (counter-check) of...
 - Busses (I2C, SPI)
 - GPIOs
 - Clock rate
 - ALU failures (calculation errors)

¹A. Rohani and H.-R. Zarandi, "An analysis of fault effects and propagations in avr microcontroller atmega103(l),"

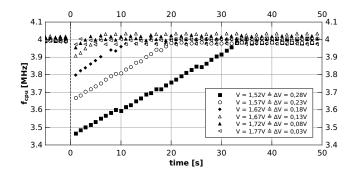
Detecting failures caused by Undervolting


- Continuous (periodic) observation (counter-check) of...
 - Busses (I2C, SPI)
 - GPIOs
 - Clock rate
 - ALU failures (calculation errors)
- How to detect ALU failures by software?
 - A complete test is not adequate ((2ⁿ)^m)
- Sufficient error detection through checksum calculation¹

checksum = det($A \cdot B$) with $A, B \in \mathbb{R}^{n \times n}$

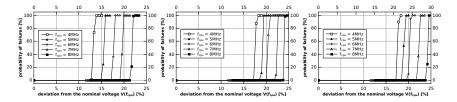
¹A. Rohani and H.-R. Zarandi, "An analysis of fault effects and propagations in avr microcontroller atmega103(I),"

Testbench Implementation



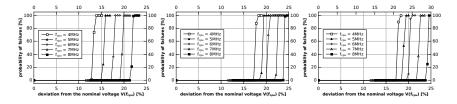
Periodic Test Cycle (1Hz):

- Execute tests on undervolted MCU and use reliable MCU for validation
- Measure time between test cycles and generate binary feedback for clock rate adjustment


Results – Clock Rate Recalibration

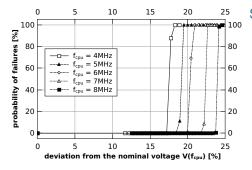
- Linear recalibration of the clock rate (binary feedback)
- Constant clock rate despite using undervolting

Results – Functionality analysis 1/2


Evaluation of three MCUs from different distributors:

Results – Functionality analysis 1/2

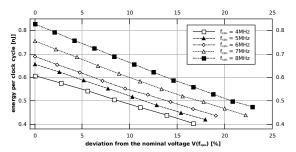
Evaluation of three MCUs from different distributors:



ightarrow Similar but individual results even with same kind of MCU!

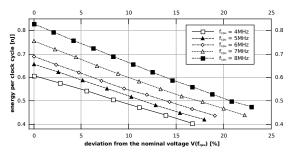
Results – Functionality analysis 2/2

Exemplary Results of MCU2:


Statements:

- Undervolting is possible
- Malfunction appears in a small, sharp region
- Individual characteristic (even for same kind of MCUs)
- Possible deviation growth with clock rate

Results – Energy Savings

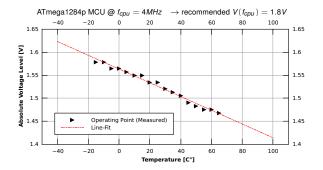

Averaged energy per clock cycle:

Results – Energy Savings

Averaged energy per clock cycle:

Compared to recommended voltage level $V(f_{cpu})$:

f _{cpu} [MHz]	4	5	6	7	8
E _{min} [pJ]					
$max(\delta_e)[\%]$	33.52	35.96	36.67	38.23	42.66



March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 13

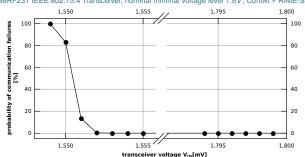
Results – Temperature Dependency

Presumption: Threshold voltage depends on temperature

 Measurement of the minimum (stable) operating point in a climatic chamber

Nodes are exposed to various environmental conditions

March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 14

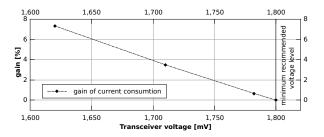

Undervolting and transceiver unit:

- Not mainly based on CMOS (RF-section, amplifiers, ...)
- How to detect errors?
 - Increased packet loss indicates communication errors

Undervolting and transceiver unit:

- Not mainly based on CMOS (RF-section, amplifiers, ...)
- How to detect errors?
 - Increased packet loss indicates communication errors




March 8, 2014 Ulf Kulau Undervolting in WSNs - A Feasibility Analysis Page 15

- The transceiver has a fixed transmit and reception power
 - Power dissipation is less bound to the voltage level
 - Nevertheless:

- The transceiver has a fixed transmit and reception power
 - Power dissipation is less bound to the voltage level
 - Nevertheless:

Only few experiences:

Undervolting of other parts (e.g. transceiver) is possible

Legitimation for undervolting in WSNs:

- Using safety margin of CMOS parts
 - Temperature dependencies
 - Individual tolerances
- WSNs are fault tolerant

Legitimation for undervolting in WSNs:

- Using safety margin of CMOS parts
 - Temperature dependencies
 - Individual tolerances
- WSNs are fault tolerant

Prototype implementation and evaluation of COTS MCUs:

- Undervolting of MCUs is possible
- May influence parts of the MCU (e.g. RC-oscillator)
- Energy savings up to 42%

Legitimation for undervolting in WSNs:

- Using safety margin of CMOS parts
 - Temperature dependencies
 - Individual tolerances
- WSNs are fault tolerant

Prototype implementation and evaluation of COTS MCUs:

- Undervolting of MCUs is possible
- May influence parts of the MCU (e.g. RC-oscillator)
- Energy savings up to 42%

Usage of experimental results on higher layers:

- Undervolting adds heterogeneity
 - New approaches for load balancing, routing, ...

Legitimation for undervolting in WSNs:

- Using safety margin of CMOS parts
 - Temperature dependencies
 - Individual tolerances
- WSNs are fault tolerant

Prototype implementation and evaluation of COTS MCUs:

- Undervolting of MCUs is possible
- May influence parts of the MCU (e.g. RC-oscillator)
- Energy savings up to 42%

Usage of experimental results on higher layers:

- Undervolting adds heterogeneity
 - New approaches for load balancing, routing, ...

Thank you for your attention! Questions?

Ulf Kulau

kulau@ibr.cs.tu-bs.de

March 8, 2014 | Ulf Kulau | Undervolting in WSNs - A Feasibility Analysis | Page 17