Institute of Operating Systems and Computer Networks

REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes SenseApp 2017 Ulf Kulau, Daniel Bräckelmann, Felix Büsching, Sebastian Schildt and Lars Wolf, 09.10.2017

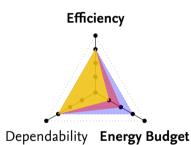
Technische Universität Braunschweig, IBR

WSNs in real environmental conditions

- Various parameters (especially temperatures) affect the characteristics of WSNs
 - Dependability: Efficiency of transceivers, HW faults, ...
 - Efficiency: Power dissipation, ...
 - Energy budget: Energy Harvesting, Energy storage, ...

09.10.2017 Ulf Kulau REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes Page 2

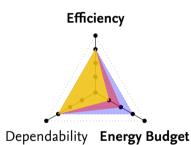
Project goal: Robust but efficient WSNs by adapting operation parameters



Dependability Energy Budget

09.10.2017 Ulf Kulau REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes Page 3

Project goal: Robust but efficient WSNs by adapting operation parameters



- Adaptive energy harvesting platform REAPer
 - Energy harvesting:
 - \rightarrow Varying energy budget
 - Voltage scaling (undervolting):
 - \rightarrow Adaptive energy efficiency

09.10.2017 Ulf Kulau REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes Page 3

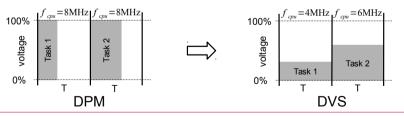
Project goal: Robust but efficient WSNs by adapting operation parameters

- Adaptive energy harvesting platform REAPer
 - Energy harvesting:
 - \rightarrow Varying energy budget
 - Voltage scaling (undervolting):
 - \rightarrow Adaptive energy efficiency

09.10.2017 Ulf Kulau REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes Page 3

Undervolting in WSNs – Background

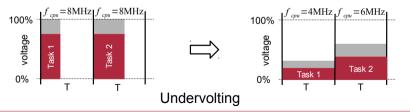
Voltage Scaling increases energy efficiency significantly


- Dynamic power dissipation of CMOS $p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$

Undervolting in WSNs - Background

Voltage Scaling increases energy efficiency significantly

- Dynamic power dissipation of CMOS $p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$
- DVS: Adapting f_{cpu} to current workload and scale V(f_{cpu})



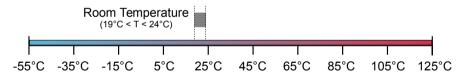
09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 4

Undervolting in WSNs – Background

Voltage Scaling increases energy efficiency significantly

- Dynamic power dissipation of CMOS $p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$
- DVS: Adapting f_{cpu} to current workload and scale V(f_{cpu})
- Undervolting: Violate specifications $V(f_{cpu}) \rightarrow V(f_{cpu}) \Delta V$

09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 4


Undervolting in WSNs - Background

Legitimation to use undervolting

Threshold Voltage V_{th} of CMOS is temperature-dependent

$$V_{th}(T) = V_{tho} + \alpha \cdot (T - T_o)$$

MCUs cover a widespread temperature range with a fixed $V(f_{cpu})$

 \rightarrow MCUs must be able to run below V(f_{cpu}) (under *normal* conditions)

Is this a good idea?

Undervolting will lead to a higher unreliability:

- Operating devices outside their specification
- Calculation errors, losses, resets, failures may affect the application

Is this a good idea?

Undervolting will lead to a higher unreliability:

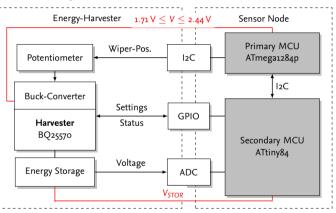
- Operating devices outside their specification
- Calculation errors, losses, resets, failures may affect the application

Our Perspective:

- WSNs need increased energy efficiency and offer fault tolerance (ideal)
- Fulfill WSN tasks even with limited energy budget!

IdealVolting – Adaptive undervolting scheme

IdealVolting implementation on undervolting capable node INGA v1.6.1


- 1. Control loop to ascertain ideal voltage levels
 - ightarrow Find most energy efficient but reliable operating point individually
- 2. Supervised-Learning approach
 - \rightarrow Collect and predict ideal operating points
 - Kulau et.al., IdealVolting Reliable Undervolting on Wireless Sensor Nodes, ACM Transactions on Sensor Networks (TOSN), 2016

Architecture of REAPer

Integrate IdealVolting to energy harvesting and vice versa...

09.10.2017 Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 7

Static current consumption of REAPer

Quiescent current of the entire REAPer platform

- Test conditions:
 - Energy Storage initially charged to $V_{STOR} = 5V$, no load at buck-converter

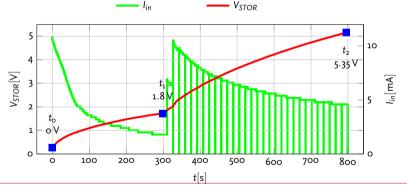
	Mean (nA)	Min (nA)	Max (nA)
Normal	567.23 \pm 15.45	546.0	592.0
Normal + Buck	708.24 \pm 13.93	672.0	742.0

Static current consumption of REAPer

Quiescent current of the entire REAPer platform

- Test conditions:
 - Energy Storage initially charged to $V_{STOR} = 5V$, no load at buck-converter

	Mean (nA)	Min (nA)	Max (nA)
Normal	567.23 \pm 15.45	546.0	592.0
Normal + Buck	708.24 \pm 13.93	672.0	742.0


 \rightarrow Reasonable overhead below 1 μA

Charging characteristics

Exemplary charging curve at $V_{in} = 1000 \text{ mV}$ input voltage (Energy storage: Cap 1 F)

 $t_{0\to 1}$: Cold start phase for $V_{STOR} \le 1.8$ V with integrated charge-pump $t_{1\to 2}$: Boost-Converter and duty-cycled MPPT is active for $V_{STOR} > 1.8$ V

09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 9

Efficiency of the charging

Considering the energy that is stored by the capacitor (C = 1 F)

$$E=\frac{1}{2}\cdot CV^2$$

Efficiency η can be derived by comparing stored Energy against input energy:

$$\eta = rac{{\sf E}}{{\sf E}_{{\it in}_{t_0}
ightarrow t_2}}$$

Where $E_{in_{t_0} \rightarrow t_2}$ is based on...

• the time of charge $t_{
m o}
ightarrow t_{
m 2}$, the input current I_{in} and the input voltage V_{in}

09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 10

(1)

(2)

Efficiency of the charging

Evaluation of the efficiency for different input Voltages 450 mV $\leq V_{in} \leq$ 1000 mV

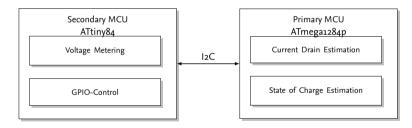
	$t_{o ightarrow \mathtt{l}}$	$t_{1 ightarrow 2}$	$t_{ m o ightarrow 2}$	
$V_{in}[mV]$	Ē _{in} [mWh]	$\overline{E}_{in}[mWh]$	Ē _{in_{total} [mWh]}	η (%)
450	1.42	5.62	7.04	53.69
550	0.88	5.47	6.35	59-53
700	0.79	5.20	5.99	63.11
850	0.73	5.06	5.79	65.28
1000	0.71	5.04	5.75	65.74

• Higher input voltages lead to higher input power and higher efficiency

Efficiency of the charging

Evaluation of the efficiency for different input Voltages 450 mV $\leq V_{in} \leq$ 1000 mV

	$t_{o ightarrow 1}$	$t_{1 \rightarrow 2}$	$t_{ m o ightarrow 2}$	
$V_{in}[mV]$	Ē _{in} [mWh]	$\overline{E}_{in}[mWh]$	Ē _{in_{total} [mWh]}	η (%)
450	1.42	5.62	7.04	53.69
550	0.88	5.47	6.35	59.53
700	0.79	5.20	5.99	63.11
850	0.73	5.06	5.79	65.28
1000	0.71	5.04	5.75	65.74


Higher input voltages lead to higher input power and higher efficiency
 Advice for *How to connect your energy sources* (serial vs. parallel)

Software components (excluding IdealVolting)

SW Implementation on both MCUs

- Rudimentary functions on tiny secondary MCU
- More complex implementations on primary MCU

Voltage metering of the energy storage

Additional parts (OpAmps, voltage divider, ...) are inefficient

Voltage metering of the energy storage

Additional parts (OpAmps, voltage divider, ...) are inefficient

Measurement of supply voltage $V_{cc} = V_{STOR}$ via bandgap reference V_{ref}

$$ADC = ADC_{max} \cdot \frac{V_{ref}}{V_{STOR}} \quad \Leftrightarrow \quad V_{STOR} = ADC_{max} \cdot \frac{V_{ref}}{ADC}$$
(1)

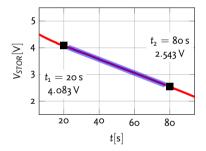
Voltage metering of the energy storage

Additional parts (OpAmps, voltage divider, ...) are inefficient

Measurement of supply voltage $V_{cc} = V_{STOR}$ via bandgap reference V_{ref}

$$ADC = ADC_{max} \cdot \frac{V_{ref}}{V_{STOR}} \Leftrightarrow V_{STOR} = ADC_{max} \cdot \frac{V_{ref}}{ADC}$$
(1)

$$\underbrace{\overset{3.4}{\underset{3.25}{\overset{0}{\underset{160}{\overset{0}{\atop{}}}}}}_{160} \underbrace{\overset{3.4}{\underset{165}{\atop{}}}}_{165} \underbrace{\overset{1}{\underset{170}{\atop{}}}}_{170} \underbrace{\overset{1}{\underset{175}{\atop{}}}}_{175} \underbrace{Result:}{\overset{1}{\underset{15}{\atop{}}}} \rightarrow Measurement error below 1.5\%$$



09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 12

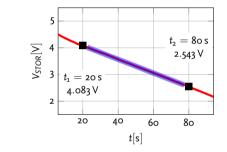
Further utilization of voltage metering

Assumption:

 \rightarrow Energy storage is a capacitor (normal case) \rightarrow Exploit the linear dis-/charge behavior

(2)

Further utilization of voltage metering


Assumption:

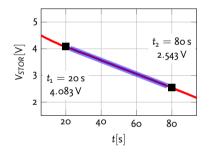
 \rightarrow Energy storage is a capacitor (normal case) \rightarrow Exploit the linear dis-/charge behavior

State of charge

Relative state of charge is trivial

$$SoC(t)[\%] = rac{V_{STOR}(t) - V_{min}}{V_{max} - V_{min}}$$

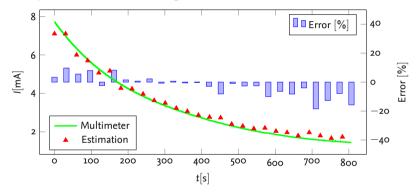
Further utilization of voltage metering


Assumption:

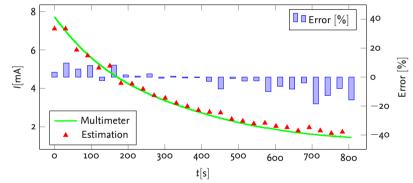
 \rightarrow Energy storage is a capacitor (normal case) \rightarrow Exploit the linear dis-/charge behavior

Current drain estimation

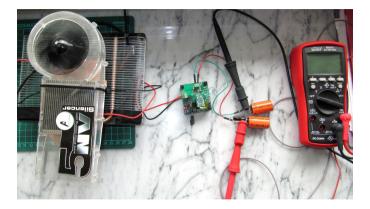
- Estimation of the average current consumption \overline{I}
- State of charge Q(t) at two points in time


$$\bar{I} = \frac{\Delta Q}{\Delta t} = \frac{Q(t_2) - Q(t_1)}{t_2 - t_1}$$
⁽²⁾

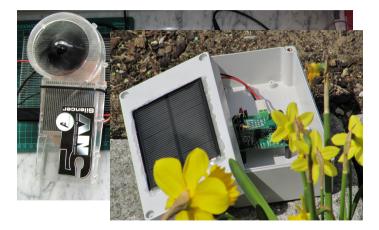
Evaluation – Current drain estimation


Result: Accuracy is suitable for a rough current drain estimation

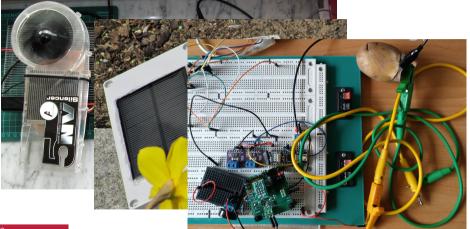
Evaluation – Current drain estimation


Result: Accuracy is suitable for a rough current drain estimation

 \rightarrow Limitation: Harvesting must be deactivated during measurement


First tests and future perspective

09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 15


First tests and future perspective

09.10.2017 | Ulf Kulau | REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes | Page 15

First tests and future perspective

09.10.2017 Ulf Kulau REAPer Adaptive Micro-Source Energy-Harvester for Wireless Sensor Nodes Page 15

More adaptive WSNs

Robust but energy efficient WSNs by adapting operational parameters (REAP)

More adaptive WSNs

- Robust but energy efficient WSNs by adapting operational parameters (REAP)
 REAPer
- Integration of voltage scaling (undervolting) to energy harvesting
- Evaluation and characteristics of REAPer
 - Overhead, charging characteristics, Efficiency
- Software implementation
 - Voltage metering \rightarrow State of charge, Current drain estimation

More adaptive WSNs

- Robust but energy efficient WSNs by adapting operational parameters (REAP)
 REAPer
- Integration of voltage scaling (undervolting) to energy harvesting
- Evaluation and characteristics of REAPer
 - Overhead, charging characteristics, Efficiency
- Software implementation
 - Voltage metering \rightarrow State of charge, Current drain estimation

Future perspective

• Focusing on smart farming applications (e.g. utilizing soil temperature)

More adaptive WSNs

- Robust but energy efficient WSNs by adapting operational parameters (REAP)
 REAPer
- Integration of voltage scaling (undervolting) to energy harvesting
- Evaluation and characteristics of REAPer
 - Overhead, charging characteristics, Efficiency
- Software implementation
 - Voltage metering \rightarrow State of charge, Current drain estimation

Future perspective

• Focusing on smart farming applications (e.g. utilizing soil temperature)

Thank you for your attention! Questions? Ulf Kulau kulau@ibr.cs.tu-bs.de

