Institute of Operating Systems and Computer Networks

Paint it Black – Increase WSN Energy Efficiency with the Right Housing RealWSN 2015

<u>Ulf Kulau</u>, Sebastian Schildt, Stephan Rottmann and Lars Wolf, November 1, 2015 Technische Universität Braunschweig, IBR

Introduction

Many WSNs in challenging areas of application

- Harsh environmental conditions
 - \rightarrow Reliability of nodes decreases
- Bad maintainability
 - \rightarrow Constrained energy resources (e.g. batteries)

November 1, 2015 | Ulf Kulau | Page 2 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Temperature vs. Reliability vs. Energy Efficiency

The crux: Higher temperatures...

1. might disturb wireless communication [1, 2, 3]

Boano et.al., The Impact of Temperature on Outdoor Industrial Sensornet Applications, IEEE Industrial Informatics, 2010

- Boano et.al., Hot Packets: A Systematic Evaluation of the Effect of Temperature on Low Power Wireless Transceivers, ExtremeCom 2013
- Schmidt et.al., If You Can't Take The Heat: Temperature Effects On Low-Power Wireless Networks And How To Mitigate Them, EWSN 2015

Technische Universität Braunschweig

November 1, 2015 | Ulf Kulau | Page 3 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Temperature vs. Reliability vs. Energy Efficiency

The crux: Higher temperatures...

- 1. might disturb wireless communication [1, 2, 3]
- 2. lead to increased energy efficiency

ightarrow Q: How does temperature affect the energy efficiency of a node?

Boano et.al., The Impact of Temperature on Outdoor Industrial Sensornet Applications, IEEE Industrial Informatics, 2010

Boano et.al., Hot Packets: A Systematic Evaluation of the Effect of Temperature on Low Power Wireless Transceivers, ExtremeCom 2013

Schmidt et.al., If You Can't Take The Heat: Temperature Effects On Low-Power Wireless Networks And How To Mitigate Them, EWSN 2015

Technische Universität Braunschweig

November 1, 2015 | Ulf Kulau | Page 3 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Undervolting – Basics

Voltage Scaling increases energy efficiency significantly

• Dynamic power dissipation of CMOS $p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$

Undervolting – Basics

Voltage Scaling increases energy efficiency significantly

- Dynamic power dissipation of CMOS p_{dyn} = C_L · f_{cpu} · V²
- DVS: Adapting f_{cpu} to current workload and scale V(f_{cpu})

November 1, 2015 Ulf Kulau Page 4 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Undervolting – Basics

Voltage Scaling increases energy efficiency significantly

- Dynamic power dissipation of CMOS $p_{dyn} = C_L \cdot f_{cpu} \cdot V^2$
- DVS: Adapting f_{cpu} to current workload and scale V(f_{cpu})
- Undervolting: Violate specifications $V(f_{cpu}) \rightarrow V(f_{cpu}) \Delta V$

November 1, 2015 | Ulf Kulau | Page 4 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Undervolting – Legitimation

Temperature dependency of CMOS gates

- Specification of V(f_{cpu}) is given in data sheets
- Specification does *not* include the temperature $V(f_{cpu}, \underline{T})$
 - Threshold Voltage V_{th} of CMOS is temperature-dependent

$$V_{th}(T) = V_{th0} + \alpha \cdot (T - T_0)$$

Undervolting – Legitimation

Temperature dependency of CMOS gates

- Specification of V(f_{cpu}) is given in data sheets
- Specification does not include the temperature V(f_{cpu}, <u>T</u>)
 - Threshold Voltage V_{th} of CMOS is temperature-dependent

$$V_{th}(T) = V_{th0} + \alpha \cdot (T - T_0)$$

MCUs cover a widespread temperature range with a fixed $V(f_{cpu})$

 \rightarrow MCUs must be able to run below $V(f_{cpu})$ (under *normal* conditions)

Short Demo

First Results – Temperature Dependency

Measurement of v(T) in a climatic chamber

- Higher temperatures allow lower voltage levels
- Heterogeneity due to manufacturing and temperatures

November 1, 2015 | Ulf Kulau | Page 7 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

First Results – Energy Model

Measurement of $I_{cc}(v, T)$ in a climatic chamber

November 1, 2015 | Ulf Kulau | Page 8 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

First Results – Energy Model

Measurement of $I_{cc}(v, T)$ in a climatic chamber

• Derivation of an energy model $I_{cc}(v, T) = p + s \cdot T + t \cdot v$

least squares method leads to p = -4.558[mA], $s = -11.976[\mu AK^{-1}]$ and $t = 3.770[mAV^{-1}]$

Experiment

Idea: Quantify the energy saving potential of housings

- 1. Measurement of thermal characteristics of different housings
- 2. Simulate the energy consumption by using v(T) and $I_{cc}(v, T)$

Experiment

Idea: Quantify the energy saving potential of housings

- 1. Measurement of thermal characteristics of different housings
- 2. Simulate the energy consumption by using v(T) and $I_{cc}(v, T)$

Setup: Four different housings at different locations

- Housings Unpacked (pure), Plastic (case), Transparent (glass), Stone
- Locations Direct sunlight (\doteqdot) and shadow (ullet)

Technische Universität Braunschweig

November 1, 2015 | Ulf Kulau | Page 9 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Experimental Results – Temperature profile

Long-term temperature measurement in northern Germany^a

November 1, 2015 | Ulf Kulau | Page 10 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Experimental Results – Characteristics

Thermal characteristics during day and night

ightarrow Average temperature – remarkable difference during daytime

November 1, 2015 Ulf Kulau Page 11 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Experimental Results – Energy Consumption

Energy Consumption [J] (dawn to dusk)

 \rightarrow Housing and location influences the energy efficiency

	Under hot day	volted cold day	Nominal hot day	Voltage cold day
Case	323.76	376.83	852.46	902.86
Case 🌣	313.07	374.58	843.63	901.05
Glass \bullet	320.99	374.26	850.17	900.90
Glass 🌣	312.73	372.04	843.27	899.10
Pure	325.06	377.99	853.54	903.80
Pure 🌣	318.94	376.02	848.44	902.32
Stone	322.68	377.95	851.67	903.87
Stone 🌣	312.05	374.87	842.79	901.38

Experimental Results – Exemplary Day

Gain in energy efficiency (baseline = pure shadow)

 \rightarrow Significant differences between location and housings

November 1, 2015 Ulf Kulau Page 13 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

WSNs in harsh environments:

- Potential for increased energy efficiency
 - Undervolting in WSNs \rightarrow Temperature dependent voltage level

WSNs in harsh environments:

- Potential for increased energy efficiency
 - Undervolting in WSNs \rightarrow Temperature dependent voltage level

Preliminary studies:

- Individual characteristics of v(T)
- Derivation of an energy model $I_{cc}(v, T)$

WSNs in harsh environments:

- Potential for increased energy efficiency
 - Undervolting in WSNs \rightarrow Temperature dependent voltage level

Preliminary studies:

- Individual characteristics of v(T)
- Derivation of an energy model $I_{cc}(v, T)$
- Experiment: Thermal characteristics of housings
 - Energy savings...
 - pprox 4% between housings (single day)
 - pprox 20% between cold \Leftrightarrow hot days

WSNs in harsh environments:

- Potential for increased energy efficiency
 - Undervolting in WSNs \rightarrow Temperature dependent voltage level

Preliminary studies:

- Individual characteristics of v(T)
- Derivation of an energy model I_{cc}(v, T)

Experiment: Thermal characteristics of housings

- Energy savings...
 - pprox 4% between housings (single day)
 - \approx 20% between cold \Leftrightarrow hot days

Thank you for your attention! Questions?

Ulf Kulau

kulau@ibr.cs.tu-bs.de

Backup – Transceiver vs. Temperature

November 1, 2015 Ulf Kulau | Page 15 Paint it Black – Increase WSN Energy Efficiency with the Right Housing

Backup – Protocols

November 1, 2015 Ulf Kulau | Page 16 Paint it Black – Increase WSN Energy Efficiency with the Right Housing