
Network Monitoring with Asynchronous
Notifications in Web Service Environments

Torsten Klie1, Florian Müller2, and Stefan Fischer3

1 Technische Universität Braunschweig
Institute of Operating Systems and Computer Networks

Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
tklie@ibr.cs.tu-bs.de
2 Universität Düsseldorf

Institute of Computer Science / OS Department
Universitätsstr.1, 40225 Düsseldorf, Germany
marc-florian.mueller@uni-duesseldorf.de

3 Universität zu Lübeck
Institute of Telematics

Ratzeburger Allee 160, 23538 Lübeck, Germany
fischer@itm.uni-luebeck.de

Abstract. With the ongoing growth of the Internet, a reliable commu-
nications infrastructure becomes more and more important. To monitor
large networks, asynchronous notifications are needed to inform man-
agement systems about critical events. The SNMP framework provides
Traps which have been used for monitoring successfully for many years.
However, due to shortcomings of SNMP, XML and Web services get
more and more attention from the network management community. If
the new technologies should replace the existing ones, they must also pro-
vide asynchronous notifications. In this paper, we describe notification
solutions in traditional as well as in new management frameworks. More-
over, we compare them with a simple approach based on Web services
we have implemented.

1 Introduction

With the ongoing growth of the Internet, more and more people and enterprises
depend on a reliable communications infrastructure. Therefore, management sys-
tems that can deal with the complexity of today’s networks are needed. To moni-
tor large scale networks, asynchronous notifications, which inform a management
system about events such as failures and state changes, are helpful, since it is
often not desired to poll the state of a large number of devices regularly if the
states only change once in a while; valuable network resources and – probably
even more important – computing power of the manager would be wasted.

The SNMP Framework [1] is the standard management framework by the
IETF. Since SNMPv1, asynchronous notifications (called Traps here) are avail-
able. SNMP is a management specific technology, which makes it difficult and

expensive to find skilled personnel. XML-based technologies such as Web services
on the other hand, are a technology that is independent from the application
domain, so experts in that field are easier to find. Several frameworks for Web
services based management have been developed (e.g. OASIS WSDM [2] and
DMTF WS-Management [3]). Furthermore, the IETF has standardized NET-
CONF [4], an XML based protocol for configuring network devices. Syslog [5] is
a traditional notification protocol that is independent from management frame-
works.

In this paper, we will describe the basic principles of asynchronous notifica-
tions in current management frameworks. Furthermore, we will present our own
notification prototype. The paper is structured as follows. In Section 2, we will
show, how notifications are used in traditional approaches. Section 3 will then
describe notifications in newer approaches. In Section 4, we will describe our
own prototype implementation. We will end the paper with a conclusion and an
outlook on further work.

2 Traditional Approaches

2.1 SNMP Framework

SNMP [1] has been widely used since its first version (SNMPv1) was standardized
in 1990 and it is still in use today. The main focus of SNMP lies on hardware
devices such as routers, switches, bridges, DSL modems, etc., although it is also
possible to manage software systems such as Web servers, database servers, etc.
The fundamental design idea was simplicity. SNMP poses only minimal resource
requirements to the devices. Therefore, SNMP’s design and operations are kept
simple.

The SNMP model follows the manager-agent paradigm. The manager ini-
tiates the communication using a GET or a SET operation, to which the agent
replies with a GET-RESPONSE or a SET-RESPONSE. SNMP works on managed
objects that are defined in a Management Information Base (MIB). The data
models represented by a MIB are written in the Structure of Management In-
formation (SMI) language [6], which uses an adapted subset of ASN.1. By July
2004, there have been more than 200 IETF Standard MIB modules defined by
different IETF working groups and more than 600 vendor specific MIBs [7].

In some situations, it is desired to initiate the communication the other way
round: the agent notifies the manager about an event that has happened (a
critical situation, a reboot, etc.). In SNMPv1, the agent can send TRAP messages
to managers. Since SNMPv2, NOTIFICATIONs are a generalization of unconfirmed
TRAPs. They also include confirmed INFORMs, which were introduced in SNMPv2.

An SNMPv1 TRAP PDU consists of a PDU type marker indicating “TRAP”, an
identifier of the originating network management subsystem, the IP address of
the originating agent, the TRAP type (coldStart, warmStart, linkDown, linkUp,
authenticationFailure, egpNeighborLoss, or enterpriseSpecific), a code
that denounces more specific information, a time-stamp, and additional infor-
mation such as variable bindings. In SNMPv2, all information (except the PDU

type marker) are part of the variable bindings. The time-stamp has been replaced
with the uptime of the agent, the IP address has been removed.

2.2 Syslog

The BSD syslog protocol [5] is a simple notification protocol, which is very easy
to implement. It is a stand-alone protocol, that means it is not integrated into any
management protocol framework. To keep the protocol simple, no assumption
is made about the formatting of a message. Devices supporting syslog must
be configured to display a message (e.g. writing a log file) or to forward it to
another system (or both). Each process on every device is supposed to create
notifications. UDP (port 514) is used as the transport protocol.

Message categories are called facilities. There are 24 facilities, starting from
0: kernel message, over 1: user-level messages, 2: mail system, 7: network news
subsystem, and 9: clock daemon to facilities that are reserved for local use (16: lo-
cal use 0 to 23: local use 7). Moreover, there are 8 levels of severity (from 0: Emer-
gency to 7: Debug).

A syslog message consist of three parts: A priority value (PRI), a header (with
time-stamp and hostname), and the message body. The PRI value is calculated
using the following formula: PRI = 8× facility code+ severity. The time-stamp
and the hostname are optional but its use is recommended. If the originating
system does not know its hostname, the IP address can be used instead. The
message part consists of a TAG (free-form string of max. 32 alphanumeric char-
acters giving details about the event) and the contents of the message. Due to
length restrictions (the total length of the syslog packet must not exceed 1024
bytes) the payload may be truncated.

Syslog supports forwarding of messages using relays. A relay can forward the
message to other relays.

Standardization efforts for syslog extensions that are secure and reliable have
to deal with the lack of a standards-track and transport independent RFC.
Therefore, the IETF proposes a new layered specification [8], which has the
following main differences:

– The new specification is transport independent. However, all implementa-
tions must support at least the transport over UDP.

– The time-stamp format offers more precision and complies with RFC 3339[9].
– The format of the hostname is more specific.
– APP-Name, PROCID, and MSGID have been added to the header (as a

replacement for TAG.
– Structured data fields can be used between header and message body. Struc-

tured data, which contains an ID, the parameter name, and the parameter
value, can be added between header and body.

– The behavior of relays is not specified.
– The minimal message size a receiver must support has been reduced to 480

octets, although implementations should support messages up to 2048 octets.
More octets can be used, if needed.

3 New Management Approaches

3.1 DMTF WS-Management

WS-Management [3] is a SOAP-based protocol that is intended for configur-
ing and monitoring systems such as computers (PCs and servers) and appli-
cations (Web services, databases, etc.). It provides a core set of management
operations: find resources and navigate between them (DISCOVER), read and
modify individual management resources (GET, PUT, CREATE, RENAME,
DELETE), view the contents of large collections (ENUMERATE), enable the
reception of events (SUBSCRIBE), and perform specific management functions
(EXECUTE). Its specification poses constraints to Web services protocols and
formats such that the implementation of the Web services for management will
not have a large footprint on managed resources. These Web services should be
composable with Web services of other specifications. As a transport protocol,
only HTTP 1.1 and HTTPS are available for interoperability reasons.

WS-Management makes intensive use of other “WS-*” specifications. Man-
aged resources are addressed using WS-Addressing endpoint references. For ac-
cess, Get, Put, Create, and Delete from WS-Transfer are used. WS-Enumeration
is used for multi-instanced resources. WS-Management uses WS-Eventing for no-
tification purposes (see Section 3.2).

3.2 WS-Eventing

The draft specification [10] provides a framework for notifications in a Web ser-
vices based environment. Wherever possible, other Web services specific spec-
ifications (“WS-*”) are integrated. The goal of the specification is to enable a
secure, reliable, and/or transaction based delivery of notification messages.

Message delivery is subscription based. One of the most important assump-
tions is the expiration of these subscriptions. Furthermore, besides an asyn-
chronous, unconfirmed delivery (called Push Mode), the framework supports
other delivery modes (although the specification deals only with Push Modes).
In general, a delivery mode can be seen as an abstract mechanism that enables
event sources end event receivers to freely negotiate transport session parameters
that fit their specific requirements.

Subscriptions can, but do not have to be managed by the event source. The
event source may delegate subscription requests to an external entity called
subscription manager.

3.3 OASIS Web Services Distributed Management

The OASIS Web Services Distributed Management (WSDM) standard [2] tries
to unify management infrastructures by offering a framework that is independent
from vendors, platforms, network types, and protocols. It is intended to enable
management for a great variety devices from network devices such as routers to
consumer devices such as DVD players, including Web services as well. Therefore,

it provides two sets of specifications: Management Using Web Services (MUWS)
and Management of Web Services (MOWS).

Manageable resources, addressed with WS-Addressing endpoint references,
are in the main focus of WSDM. Managers (called “manageability consumers”)
can retrieve management information from a resource, either by asking explic-
itly (GetResourceProperty and GetMultipleResourceProperty), or by sub-
scribing to certain events of a resource (Subscribe, PauseSubscription, and
ResumeSubscription). What kind of management functions a resource supports
(i.e. its “manageability capabilities”) is specified in the resource property doc-
ument that is referenced from a WSDL port type. The manager can retrieve
portions of it using QueryResourceProperties and a filter (such as XPath). To
modify management information, SetResourceProperties is used.

According to WS-BaseNotification [11], there are several ways for a manager
to receive notifications. If it provides a Notify operation, the manageable re-
source will use it to submit the notification. Otherwise, the manager can ask the
resource using GetCurrentMessage for the last notification belonging to a given
topic.

3.4 IETF NETCONF

The NETCONF protocol defines operations for managing network devices. Con-
figuration data can be uploaded, downloaded, and manipulated either as a full or
a partial data set. This can be done using a formal API exposed by the managed
device, which is based on an RPC encoded in XML.NETCONF can use a large
number of application protocols for transport. Currently, there are RFCs that
specify bindings for SSH, SOAP, and BEEP.

NETCONF distinguishes between state data and configuration data. Config-
uration data can be retrieved with <get-config> and modified with the oper-
ations <edit-config>, <copy-config>, and <delete-config>. <get> retrieves
all available data.

The NETCONF protocol can handle several data stores, i.e. sets of config-
uration data. The active data store is called <running>. In addition, there can
be a <candidate> and a <startup> data store.

NETCONF exploits the tree structure of the data that is shipped with a
<rpc-reply> message from an agent by allowing to select parts of the query
result by means of XML. This subtree filtering allows the manager to specify
a filter that selects only the nodes the manager is interested in. The filtering
will be done on the agent, thus saving bandwidth. The mechanism works with
the XML tree structure, that means the agent can perform the filtering without
dealing with any data model specific semantics.

In order to allow supplementing the base NETCONF specification with addi-
tional sets of functionality, NETCONF supports the specification of capabilities.
Capabilities are augmentations to the basic NETCONF operations and the con-
tent of these operations, respectively, and are identified by a uniform resource
identifier (URI).

The most important requirements that NETCONF notifications [12] should
fulfill are reliable message transport, subscriptions, filter mechanisms, and a
reasonable message size limit. NETCONF notifications should be run as a sub-
system on NETCONF agents (called central event processor). If an event occurs
in the system components, the central event processor will use a notification
logging system to store the event details. Furthermore, it will forward the notifi-
cation to event streams. The NETCONF server can receive certain streams and
forward them to subscribed NETCONF clients.

Managers can subscribe to event streams of an agent that supports the noti-
fication capability using the <create-subscription> operation. Subscriptions
can be modified and cancelled with the operations <modify-subscription> and
<cancel-subscription>, respectively. Managers can receive a list of available
event streams using <get> with <eventStreams> as subtree filter. Notifications
are usually sent as “one-way messages”, thus every notification message is a
well-formed XML document, which can be processed directly after receiving it,
without having to wait for further events.

The manager is probably not interested in all messages from an agent. To
restrict the messages to the desired ones, filter rules can be used. An important
criterion is event class1. Moreover, filtering can be done on the data model using
the NETCONF filter mechanisms (subtree and XPath).

4 Our Approach

4.1 YAMA - Yet Another Monitoring Approach?

In the previous sections, we have described several approaches for asynchronous
event notification for monitoring purposes. Why are we introducing our own
approach? Except for syslog, all other approaches are embedded into a (man-
agement) framework. We wanted to create a monitoring solution that is indepen-
dent from existing frameworks. To use the approach in our Web services based
management environment [14], support for Web services was required.

In the following, we will describe the design of our approach, reveal some im-
plementation details, and present our initial evaluation results. Furthermore, we
will compare our approach to the approaches discussed in the previous sections.

4.2 Design

Our approach follows the manager-agent paradigm. In order to receive notifica-
tions from a specific agent, a manager must subscribe to certain events. Agents
are connected to the managed objects as in the SNMP framework: they could
be integrated into the device or system, or they could work as a proxy agent
outside the system.

1 Earlier versions of the draft (such as [13]) included a list of event classes, but they
have been removed since they were considered data model specific.

Before an agent starts to send notifications to a manager, it must know
which manager is interested in what kind of information. Therefore, managers
must choose agents, managed objects, and conditions that have to be fulfilled
before a notification is sent. The reason for this is twofold. Firstly, the system
should be flexible w.r.t. the type of notifications that are sent. Secondly, network
resources should not be wasted by unwanted messages. If a manager wants to
receive notifications from an agent, it sends a configuration request to that agent
specifying the chosen object and the conditions. Hereby, the manager delegates
the monitoring to the agent. For example, the manager could specify “processor
load” as the object and “greater than 3.0” as the condition. The manager then
does not have to perform any further monitoring, this is done by the agent. If
the processor load exceeds 3.0, the manager will receive a notification from the
agent.

Objects that can be monitored this way are called monitoring functions.
There are two kinds of monitoring functions: functions that collect and aggre-
gate information about the resource (statistical monitoring functions) and func-
tions that monitor a resource for certain events (event monitoring functions). An
event is the occurrence of a certain state at the agent. The events can be faults,
state changes, reached thresholds, external input, etc. Events can be tagged with
an arbitrary number of labels. Currently, the tags fault, information, state
change, configuration, and periodic notification are available. Other tags
can be added if necessary.

Depending on the use case or notification class, monitoring functions may
need additional parameters. These parameters provide options for the execution
of the monitoring function or define conditions under which managers have to
be informed about events. Some monitoring functions do not need parameters
(such as functions that inform about a reboot of a system), other functions may
need several parameters.

The design is divided into three modules (see Figure 1). The configuration
module offers a Web service interface, with which managers can administrate
their subscriptions. The monitoring module performs the supervision of the re-
source. The notification module informs the manager on behalf of the monitoring
module in case an event occurs.

To allow several managers to connect to the agent independently, managers
use a Global Unique Identifier (GUID). In particular, this allows several man-
agers to use the same monitoring functions. To identify a subscription, every
instance of a pair of manager and monitoring function uses a unique handle,
because a manager can subscribe to the same monitoring function more than
once. The configuration interface offers the following functions:

– subscribe(guid, monitorfunction, parameterlist)
Start a subscription to a monitoring function. If the subscription is suc-
cessfully established, the manager will receive a handle that identifies the
subscription.

– unsubscribe(guid, handle)
Remove the subscription identified by the given handle.

Fig. 1. Design of the monitoring system

– reconfigure(guid, handle, parameterlist)
Change a subscription identified by the given handle and apply the given
parameters.

– getMonitorObjects()
Show all monitoring functions the agent provides.

– getParameterInformation(monitoringfunction)
Retrieve information about the required parameters of the given monitoring
function.

– getRegisteredMonitoringInstances(guid)
Get a list of active subscriptions for the given manager.

To ensure flexibility and extensibility, all monitoring functions should be im-
plemented in independent software modules, which communicate with the moni-
toring module using a well defined interface. These modules are called monitoring
objects. Monitoring objects should be grouped and categorized with other sim-
ilar monitoring objects in a tree-like fashion for clarity reasons, since there can
be a large number of monitoring objects (see example shown in Figure 2).

Every manager must provide a call-back Web service interface. The noti-
fication module of the agent uses this interface (pushNotification(guid,
handle, messageClass, data)) to send notifications to the manager.

system

network

cpu

temperature

ip

interfaces

throughput

send

receive

Fig. 2. Hierarchical organization of monitoring objects

4.3 Implementation

We implemented both a manager application and a prototype agent application
in Java 5.0. For Web service support, we have used Webmethod’s Glue Stan-
dard Edition [15]. The agent simulates a complete resource. Thus, besides the
basic agent functions, the agent also contains a data generator to produce some
realistic data for testing purposes.

Each monitoring object in the agent implements the method monitor run(),
which is called periodically by a monitoring thread. If this behavior is not desired
for a specific monitoring object, the generic monitoring thread can be overrid-
den by a more suitable one. The agent creates such a monitoring thread for each
manager that has subscribed to a management function of the agent, as well as
a notification thread. Having these two threads per manager makes the system
more scalable and fault tolerant, because problems in one thread do not lead to
problems in monitoring threads belonging to other managers. If a manager can-
cels its subscriptions at an agent, the corresponding threads will be terminated.

Monitoring objects are implemented in the package agent.monitorObjects.
Within this package, the hierarchy presented in Section 4.2 can be implemented
(e.g. agent.monitorObjects.system.cpu.Temperature), using arbitrary levels
of nesting. Own objects can be added here. The agent application uses reflection
to find all available management objects.

The manager application contains a graphical user interface (GUI) with
which the administrator can connect to connect to the agents and delegate
monitoring tasks to them. Furthermore, active subscriptions can be modified
or cancelled. In case of an arriving event notification, it will display the notifi-
cation in the manager window.

4.4 Evaluation

The correctness of the implemented prototype has been validated using a De-
bugger, JUnit [16] tests and experiments with several scenarios with multiple
managers and agents.

1. 1 Manager ⇔ 1 Agent: One manager controls monitoring tasks for and re-
ceives notifications from a single agent. This test includes the call of all
configuration functions on different monitoring functions with different pa-
rameter configurations. Moreover, sending and receiving of notifications is
tested.

2. n Managers ⇔ 1 Agent: Multiple managers control monitoring tasks for a
single agent. Besides the aspects tested in the 1-1 case, the n-1 test includes
checks for data isolation, i.e. that each manager can only see and modify its
own tasks.

3. 1 Manager ⇔ n Agents: A single manager controls monitoring tasks on
different agents. This test is a generalization of 1-1 test.

4. n Managers ⇔ n Agents: Multiple managers control monitoring tasks for
and receive notifications from multiple agents. This is the most realistic test
case that combines the test cases 1-n and n-1.

Our initial tests have shown a good performance. However, as a next step,
our approach must be tested in a large scale realistic testing environment in
order to do a detailed performance analysis and comparison with our notification
approaches.

With our approach, a manager can delegate large parts of the monitoring to
the agent (management by delegation). This approach scales much better than
a simple monitoring by polling. The impact on the network is lower, since the
number of management messages in the network can be reduced significantly.
Moreover, management applications only need to take actions if a certain event
occurs (management by exception). This facilitates the development of manage-
ment applications. Another advantage is the spreading of Web services. They are
available for a large number of platforms and well known to a large developer
community. Communication is based on open protocols (SOAP, HTTP, etc.).

On the other hand, our approach has certain drawbacks. Although efficient
implementations exist, Web services still have quite a large footprint on machines
due to the protocol overhead. The management by delegation also leads to a
larger footprint on the agent, because the agent has to perform monitoring in
addition to its actual tasks. An issue with the implementation is the vendor
dependence. Glue standard Edition (in the form that we have used) is no longer
available. However, the prototype can (and will be) ported to use an application
server and SOAP engine such as Apache Tomcat and Apache Axis.

In Sections 2 and 3, we have presented several existing notification envi-
ronments. Here, we briefly compare our approach with the other mentioned
approaches (see Table 1).

Our approach is not linked to any Web services or management framework.
Whether this is an advantage or a disadvantage depends on the use case. It will

SNMP Syslog WS- WS- NETCONF Our
Traps Eventing Base App.

Notification

Scope network system generic generic network generic
devices applications devices

Framework SNMP none WS-* WSDM NETCONF none

Data ASN.1 syslog XML XML XML XML
Format (BER)

Transport UDP UDP, SOAP SOAP SSH, SOAP
Protocols others (HTTP, BEEP,

HTTPS) SOAP

Web Services no no yes yes optional yes
Support

Intermediaries no yes no yes no no

Subscription no no yes yes yes yes

Automatic n/a n/a timeouts no no no
Subscription
Termination

Transport push push push, push, push push
Modes others pull

Event Classes 7 24 user user user 5+user
Table 1. Comparison between notification approaches

be more easy to use stand-alone but more difficult to integrate into an existing
framework. Our approach is subscription-based and uses XML as the data format
(like the other Web services approaches). It is not limited to a specific scope and
easily extensible. For example, event classes can be added as needed. Note that
in our approach event classes may overlap since we use tagging.

5 Conclusions

In this paper, we have discussed several asynchronous event notification ap-
proaches for network management. We have compared traditional approaches
(SNMP Traps and syslog) to newer XML-based approaches that use Web services
(except NETCONF, which uses SSH and offers only optional SOAP transport),
including our own prototype implementation. Notifications should only be sent
to managers that have subscribed to a certain event type. Furthermore, XML-
based data encoding eases processing of received notifications, the use of Web
services makes the development of management applications easier. Especially in
autonomic environment following the Service Oriented Architecture (SOA), the
availability of management functions as Web services is a big advantage. There-
fore, the traditional approaches are not suited to such systems. All presented
XML-based approaches follow the same basic principles (subscription, XML-
encoding). However, there are differences in the details and in the use cases.
Customers can choose the framework that best fits their requirements. However,

this freedom of choice has a drawback: interoperability. Different standards lead
sooner or later to interoperability problems and away from an integrated man-
agement. This is the opposite of what the approaches promise.

Our future work will concentrate on analyzing possible interoperability prob-
lems and search integrative solutions. Furthermore, we will integrate Web service
based notification systems into our autonomic management architecture [17].

References

1. Harrington D, Presuhn R, Wijnen B: An Architecture for Describing Simple Net-
work Management Protocol (SNMP) Management Frameworks. RFC 3411, En-
terasys Networks, BMC Software, Lucent Technologies, December 2002.

2. Bullard V, Murray B, Wilson K: An Introduction to WSDM. OASIS Commitee
Draft wsdm-1.0-intro-primer-cd-01, AmberPoint Inc., Hewlett-Packard and Com-
puter Associates International, February 2006.

3. McCollum R, et al.: Web Services for Management. WS-Management June 2005,
DMTF, June 2005.

4. Enns R: NETCONF Configuration Protocol. RFC 4741, Juniper, December 2006.
5. Lonvick C: The BSD syslog Protocol. RFC 3164, Cisco Systems, August 2001.
6. McCloghrie K, Perkins D, Schönwälder J, et al.: Structure of Management Informa-

tion Version 2 (SMIv2). RFC 2578, Cisco Systems, SNMPinfo, TU Braunschweig
and others, April 1999.

7. Schönwälder J: Characterization of SNMP MIB Modules. Proc. 9th IFIP/IEEE
International Symposium on Integrated Network Management (IM). Nice, France,
May 2005.

8. Gerhards R: The syslog Protocol. Internet Draft <draft-ietf-syslog-protocol-
19.txt>, Adiscon GmbH, November 2006.

9. Newman C, Klyne G: Date and Time on the Internet: Timestamps. RFC 3339,
Clearswift Corporation and Sun Microsystems, July 2002.

10. Box D, Cabrera LF, Critchley C, et al.: Web Services Eventing (WS-Eventing).
W3C Member Submission SUBM-WS-Eventing-20060315, Microsoft, IBM, TIBCO
Software, BEA Systems and Computer Associates, March 2006.

11. Graham S, Murray B: Web Services Base Notification 1.2 (WS-BaseNotification).
OASIS Working Draft wsn-WS-BaseNotification-1.2-draft-03, IBM and Hewlett-
Packard, June 2004.

12. Chisholm S, Trevino H: NETCONF Event Notifications. Internet Draft <draft-
ietf-netconf-notifications-04.txt>, Nortel and Cisco, October 2006.

13. Chisholm S, Curran K, Trevino H: NETCONF Event Notifications. Internet Draft
<draft-ietf-netconf-notifications-02.txt>, Nortel and Cisco, June 2006.

14. Klie T, Wolf L: Autonomic Policy-based Management using Web Services. Proc.
2nd CoNext Conference. Lisbon, Portugal, December 2006.

15. Webmethods: Web Service Development. Product Web Site, 2006. URL
http://www.webmethods.com/meta/default/folder/0000006047.

16. Meade E, Martin RC, Kohnke J: JUnit, Testing Ressources for Extreme Program-
ming. Project Web Page, Object Mentor, 2004. URL http://www.junit.org.

17. Gu X, Klie T, Wolf L: A Proactive Policy-based Management Approach Towards
Autonomic Communications. Proc. 4th IEEE Consumer Communications & Net-
working Conference (CCNC). Las Vegas, USA, January 2007. To appear.

