A Peer-to-Peer Registry for
Network Management Web Services

Torsten Klie
Technische Universitit Braunschweig
Institute of Operating Systems and
Computer Networks (IBR)
Miihlenpfordtstr. 23
38106 Braunschweig, Germany
Email: tklie@ibr.cs.tu-bs.de

Abstract—Network management becomes more and more com-
plex with growing networks. Web services are seen as a possible
way to deal with the complexity. To exploit the advantages of Web
services, a management system must be aware of the management
functionality that is offered by the devices as Web services. In
a distributed management environment, a centralized registry is
not suited. In this paper, we propose a peer-to-peer registry that
is based on semantic descriptions of the available management
Web services. The idea is to let all devices that offer management
Web services take part in the overlay peer-to-peer network, such
that no external or central registry server is needed. We show
how a policy-based management system that depends on Web
services can benefit from such a registry, discuss some of the
implementation issues, and give evaluation results.

I. INTRODUCTION

Although networks seem to be almost ubiquitous these days,
they are still growing. The vast majority of companies use
networks to connect different company locations, to share
resources, and to communicate via e-mail and voice over
IP (VoIP). Not only the number of connected devices is
growing, bandwidth and real-time requirements are growing,
too. It is the task of network management to ensure that these
requirements are not violated. This task is becoming more
and more difficult due to the rising complexity that results
from the heterogeneity. Standard management techniques such
as the Simple Network Management Framework (SNMP) [1],
command line interfaces and management scripts, commonly
used by many administrators, are no longer suited to deal with
heterogeneity in the network. For example, the management
of a Juniper router is very different from the management of
a Cisco router.

In the network management community, many people see
Web services [2] as a possibility to solve some of the most
important problems: First of all, since Web services are
platform independent and use standard Internet protocols, they
help to deal with the heterogeneity [3]. Second, they offer a
unified communication model for network, application, and
systems management [4]. Third, with Web service composition
mechanisms, automation can be supported [5], [6]. To make
use of these advantages, a management system must be aware
of the available management Web services and its semantics,

Adrian Belger
Technische Universitit Braunschweig
Institute of Computer and
Network Engineering (IDA)
Hans-Sommer-Str. 66
38106 Braunschweig, Germany
Email: belger@ida.ing.tu-bs.de

Lars Wolf
Technische Universitit Braunschweig
Institute of Operating Systems and
Computer Networks (IBR)
Miihlenpfordtstr. 23
38106 Braunschweig, Germany
Email: wolf@ibr.cs.tu-bs.de

e.g. it must “understand” the differences between Juniper
and Cisco routers. UDDI [7] is often used for this purpose,
although it is difficult to add semantic support to it. Futher-
more, UDDI is a centralized approach, and therefore not well
suited for a registry of management Web services. The main
argument against a centralized registry is the self-management
paradigm that is becoming more and more popular [8], [9]. In
a self-managing environment, management is done in a heavily
distributed fashion. A centralized component is a single point
of failure and an impurity [10]. A distributed approach, where
the registry is formed as an overlay by the devices that offer
the management Web services fits much better into the self-
management paradigm.

This paper proposes a Web service registry based on
peer-to-peer technology and shows, how this registry can
be integrated into a policy-based management architecture
for Autonomic Communications. It is structured as follows.
Section II discusses related work regarding peer-to-peer Web
service registries. POMAS, a policy-based architecture based
on Web services is introduced in Section III, and it is shown,
how such a system can benefit from a peer-to-peer registry.
In Section IV, we present our concept of a distributed peer-
to-peer-based Web services registry for network management
Web services. Section V explains some aspects of the imple-
mentation and the implemented prototype. Evaluation results
are shown in Section VI, before we summarize the paper in
Section VIIL

II. RELATED WORK

Universal Description, Discovery and Integration (UDDI)
[7] specifies a central directory service that should serve two
purposes:

1) Registering available Web services and

2) Searching for applicable Web services.

UDDI servers can be open to the public or kept private
in an intranet. The information provided by an entry of the
UDDI registry can be classified as White Pages (information
about the publishing organization, Yellow Pages (categorized
list of Web service descriptions), and Green Pages (technical
information about services including the URI).

Thaden, Siberski, and Nejdl [11] presented an approach
for a decentralized Web services registry, which allows dis-
tributed registration and discovery of Web services and is
based on peer-to-peer technology. There is also a prototype
implementation based on the Edutella framework [12]. The
running example used in the paper is a special purpose
image search over a large amount of databases, which offer
different Web services for searching. In the prototype, the Web
services are described using DAML-S. Moreover, they use
an ontology containing concepts such as ImageService,
DeliverByMailImageService, VectorImage, GIF,
etc. Based on this information, candidate services for image
search can be found using a matching algorithm proposed by
Paolucci et al. [13]. The prototype supports queries in the
Edutella query exchange language (QEL). It allows searching,
but not service binding and execution. The idea is to con-
nect different UDDI and other private registries with peer-
to-peer technology, because neither a global UDDI registry
nor globally replicated registry information seem realistic and
achievable. The idea has been proposed in [14]. Furthermore,
previous work on combining semantic web and peer-to-peer
technology has been discussed by Maedche and Staab [15], as
well as Nejdl et al. [16].

Castro et al. [17] proposed a universal ring as an over-
lay joined by all participating nodes. This ring provides a
persistent store, a multicast communication service, and a
distributed search algorithm. For service advertisement and
discovery, a description of the service is stored in the ring. This
description can be associated with different implementations
of the service.

OWL-S [18] is an ontology for semantic description of
Web services and Web service compositions. The descrip-
tion is subdivided into three components: ServiceProfile,
ServiceModel, and ServiceGrounding. The ServiceProfile de-
scribes what a service does using functional properties (IOPE:
input parameters, output parameters, preconditions, and ef-
fects) and non-functional properties (e.g. serviceName,
textDescription). Especially the functional properties
are used to publish and find OWL-S Web services. In the Ser-
viceModel, a Web service is mapped to one or more processes.
The inputs and outputs of processes can be defined using OWL
classes [19] or W3C XML Schema types [20], whereas the
preconditions and effects can be modeled as logic formulas.
Processes can be AtomicProcesses, CompositeProcesses or
SimpleProcesses (processes that do not have a grounding and
cannot be executed). All processes (except SimpleProcesses)
need a ServiceGrounding that binds them to concrete specifi-
cations and messages. The grounding makes use of the Web
Service Description Language (WSDL) [21].

III. POMAS - A POLICY-BASED MANAGEMENT SYSTEM
USING WEB SERVICES
In this section, we describe POMAS!, an architecture for

Autonomic Communications [22], [23], which is based on

IThe abbreviation stands for “Policy-based Management System for
Autonomic Self-organization”.

Web services. POMAS uses a policy refinement algorithm
based on automatic Web service composition. This refinement
algorithm stresses the need for a powerful registry component
to find relevant services that can be included in the composi-
tion. The following description of POMAS is meant as a brief
introduction to POMAS, for more details refer to [23].

A. PoMAS Architecture

PoMAS contains three parts (see Figure 1): the network
devices layer, the policy engine, and the user interface.

User Interface

Policy Engine

Policy Service Mapping

HLS HLS

Policy
Repository Web

Service

Web Service
Registry
Composition LLS

‘ ‘ 5 (@S

‘ Refinement Engine LLS

- Policy Decision Component

Configuration

LLS

Monitoring Registration

Device Layer /

WS WS WS SNMP
’ DeviceN‘ ’ Device W ’ Devicex‘

SNMP

’ Device 1 ‘ ’ Device Y ‘

Fig. 1. A Policy-based Architecture for Autonomic Communications

The devices on the device layer are expected to offer Web
services for configuration, for monitoring, and/or for notifi-
cation. These services are called Low-level services (LLS).
Network devices register their LLS in the registry, along with
information about the structure and semantics of their LLS.

The refinement engine uses automatic Web service com-
position to combine different higher-level services (HLS) to
perform aggregated tasks [24]. For example, it is possible
to compose the Web services for a certain management task
(LLS) into a single HLS that performs the operation in an
entire subnet.

With the user interface, the administrator can specify poli-
cies and additional (high-level) services.

B. Policy Refinement Algorithm

The policy refinement approach is based on semantic Web
services in OWL-S. It assumes a Web service based manage-
ment infrastructure with management Web services as low-
level services (LLS) offered by the devices. Automatic Web

service composition is used to combine different available
Web services in order to obtain a desired higher-level result.
The idea is to automatically create OWL-S services that can
perform monitoring or configuration tasks needed by a policy.

The task of the policy refinement engine is to break down a
high-level policy (HLP) into several HLS descriptions. The
refinement engine tries to compose services that perform
the tasks of the HLS, using the existing LLS offered by
the devices. It receives policies from the GUI and sends a
refined policy in the form of OWL-S descriptions of composite
services combined with the extracted policy event (if present)
to the policy decision component. In order to process the
policy, the refinement engine needs access to a Web service
repository (see Figure 2).

GUI

lPolicy

Policy Refinement Engine >

<«— WS Registry

JOWL-S + Event

Policy Decision Component

Fig. 2.
registry

Interactions of the policy refinement engine and the Web Services

In order to find the LLS that have to be combined, a
description of the infrastructure and the available (low-level)
management Web services is needed. We use ontologies,
because they provide concepts and abstractions needed for
the semantic description of the devices in the network and
their management functionality. OWL-S descriptions of the
available services include their IOPEs and make use of these
ontologies. The refinement engine is responsible for identify-
ing the needed IOPEs by extracting them from the policies
and for finding relevant services.

C. Using a Peer-to-Peer Registry

As described above, a centralized registry such as UDDI is
an impurity in a self-management environment. A distributed
approach, where the registry is formed as an overlay by the
devices that offer the management Web services fits much
better into the self-management paradigm.

The idea is to let all devices that offer management Web
services take part in the overlay peer-to-peer network, such
that no external or central registry server is needed. The
registry function is offered by the devices themselves. Figure 3
illustrates this idea.

However, not all devices are powerful enough to participate
as “full members” of the overlay. Therefore, different roles
with different responsibilities, assigned based on the available
resources on the devices have to be supported.

As described in Section III-B, the registry has to be con-
sulted for every policy refinement. Thus, the output of the
refinement may vary, if the contents of the registry changes.

Policy Refinement Engine

WS Registry

Slp2p p2p| . VWoRegistry P2P
Kernel ws Kernel ws Kernel ws
Device 1 Device 2 Device n

Fig. 3. The Web service registry as a peer-to-peer overlay in POMAS

However, this reflects the volatile nature of the network. A
stable network without frequent changes will have a more
stable refinements.

IV. CONCEPT OF A PEER-TO-PEER REGISTRY FOR
MANAGEMENT WEB SERVICES

This section presents the concept of the proposed peer-to-
peer registry. The registry has been designed to work with
PoMAS, as a “plug-in”. Thus, it does not rely on the policy-
based architecture and could be also used in other settings and
for purposes others than network management.

In the following, we describe the application of the registry
with POMAS and discuss how service are described. Then,
we reveal details of the messages that are used for external
and internal communication and describe the overlay network.
Finally, we sketch some of the used algorithms briefly.

A. Application Scenario

Adding users to an organization’s network system is a
typical task for an administrator. In the university context,
for example, new user accounts are needed not only for
new employees, but also for students participating in special
practical courses, for conference participants, or for specific
other external guests. Usually, the administrator has to take
care that the different user accounts get the correct permissions
according to their roles. Sometimes, they are assisted by scripts
or predefined work-flows.

The network for the user management example consists of
different servers and services, including wireless access, Mail
service, DB servers, VPN, file server, etc. There are different
company locations. Each location has a router and several
different servers. Furthermore, there are wireless LANs at each
location. The company is divided into departments. The system
offers services such as SPAM filtering, mailing lists, and file
backup service.

If all these devices offer their management functionality as
Web services and POMAS is used as a policy-based manage-
ment system, configuration for new users can be automated.
An administrator has to add a new user to the system. POMAS
will notice that it has to call the Web services of the devices
to check whether all policies for users (such as “all employees
have an email account”) are fulfilled. If not, PoMAs will call
the Web service of the email server to create the missing email
account. This Web service could be a composed one, e.g. it
could consist of a Web service to determine the relevant email
server for the new user, another one the generate an email

address for the new user which is not already used, and the
actual Web service to create the account.

1) Scenario 1 — Adding a Component: When a new com-
ponent such as an email server is connected to the network,
it will try to register its management Web services at the
registry. The registry can be found via broadcast or a service
location protocol. For registration, the semantic description of
the service (see Section IV-B) is used. Thus, a service is stored
in the registry according to the URIs of its concepts for the
IOPEs. After the registration, the management Web services
of the new component can be found by consulting the registry.

2) Scenario 2 — Performing Configuration Changes: If a
configuration change (such as adding a new user to the system)
has to be performed, POMAS uses the registry to search for all
relevant services. Relevant in this case means the Web service
belongs to a desired target device and it performs the requested
operation (i.e. providing needed properties for the new user).
To determine which services are relevant, their semantic
description (see Section IV-B) is used. By calling all the Web
services that are the result of the query, the configuration
change can be done without requiring the administrator to have
any further knowledge about the location of the devices, the
network topology, or other specific information.

B. Service Description

The Web services that offer management functionality are
described using OWL-S. These semantic descriptions are
stored in the peer-to-peer registry. Using semantic descriptions
allows searching a service by a desired effect, not only by
name. Inference engines can be used to find services providing
equivalent outputs or effects. An example of such a conceptual
equivalence is “duplex mode” and “double-sided printing
mode”. Also, inheritance can be exploited. For example, if
a service producing a URI is needed, a service that outputs a
URL will also fit.

In order to support such queries, the objects, i.e. the service
descriptions, have to be distributed in the peer-to-peer network
not according to their names (or hashes on it) but according to
its concepts. Since we want to consider both output parameters
and effects, a service description may be stored more than
once. For example, a service changing the printing mode and
returning an error code and an error text may be stored under
the concept “printing mode”, “error code” and “error text”.

In order to effectively use these ontologies in a production
system, they must cover all needed aspects of networks and
system. Although no “world ontology” is needed, a set of
standardized management ontologies should be used — which
currently does not exist. However, we used parts of the DEN-
ng [25] information model as a starting point to create the
needed ontologies.

C. Messages from Clients to the Registry

Communication with the peer-to-peer registry is done using
two request/reply message pairs, which are shown in the
following. Since we are working in a SOAP, WSDL, and

UDDI environment, it seems obvious to choose an XML-
based [26] message protocol. For transport, User Datagram
Protocol (UDP) is sufficient, because we do not use state-based
communication but a simple request/reply protocol. Reliable
transport is also not needed since messages can be repeated
if they get lost. Fig. 4 shows the grammar of the registration
message in W3C XML Schema. It takes an RDF document
containing the OWL-S description of the Web service as
argument.

<xsd:element name="XMLServiceData”>
<xsd:complexType name="rdfType™>
<xsd:sequence>
<xsd:element ref="rdf:RDF”>
<xsd:annotation>
<xsd:documentation xml:lang="en”>
OWL-S service description in an RDF document
</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Fig. 4. Excerpt of the XML Schema of the registration message

A query is done in the same way as the registration. An
OWL-S description of the desired service is specified as an
argument. Of course, the OWL-S description of the desired
service will be much less complete than that given during the
registration since only effects and outputs are used. Figure 5
shows an OWL-S description for a desired service.

<rdf :RDF>
<!— namespace declarations and OWL imports omitted —>
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="&service;” />
<owl:imports rdf:resource="&profile;” />
</owl:Ontology>
<service:Service rdf:ID="DesiredService”>
<service:presents rdf:resource="Profile_Desired_Service”/>
<service:describedBy rdf:resource="DesiredProcessModel”/>
<service:supports rdf:resource="DesiredGrounding”/>
</service:Service>
<profile:Profile
rdf :ID="Profile_Desired_Service”>
<service:presentedBy rdf:resource="DesiredService”/>
<profile:has_process rdf:resource="DesiredProcessModel”/>
<!—— desired outputs and effects —>
<profile:hasEffect rdf:resource="SetDuplexModeEffect”/>
<profile :hasOutput rdf:resource="ErrorCodeOutput”/>
<profile :hasOutput rdf:resource="ErrorMessageOutput”/>
</profile:Profile>
</rdf :RDF>

Fig. 5. OWL-S description of a desired service

D. The Overlay Network

One of the main issues that have to be solved when using
peer-to-peer technology is the organization of the overlay
network. The topology of the overlay network may differ
completely from the underlying “real” network topology.
Therefore, the peer-to-peer system has to provide its own
routing methods, which should be robust enough to deal with
changes in the underlying network structure as well as with
link faults or peer faults.

Platform independence and XML-based communication are
important characteristics of Web service environments. The
peer-to-peer framework should fit well into this paradigm.
Therefore, we chose JXTA [27]. JXTA supports both ren-
dezvous peers and edge peers. Rendezvous peers are special
peers that hold the shared resource distributed index (SRDI).
The SRDI is a distributed algorithm for creating and main-
taining a conceptual resource index of a network [28]. The
rendezvous peers take part in a distributed hash table (DHT) to
answer queries. Edge peers are normal, non-rendezvous peers.
Devices with limited resources can participate as edge peers,
whereas more powerful devices take more responsibility and
act as rendezvous peers.

E. Internal Communication

For the internal communication, i.e. the communication
inside the peer-to-peer overlay network, JXTA offers a large
number of different pipes. JXTABiDiPipes, for example,
offer a bidirectional communication channel which can be used
in a reliable way optionally. The messages used for internal
communication are the same as described in Section IV-C.

F. Important Algorithms

1) Finding Responsible Peers: Every peer participating in
the overlay network of the peer-to-peer registry must assign
the same peer to a Web service. The organization of the peers
is done by the JXTA framework. It provides information about
available peers. To assign concept to peers, we use a version
of a content addressable network (CAN) [29] that has been
adapted to JXTA IDs. In contrast to the original CAN, the
responsible peer is not identified based on its peer ID but on
the published pipe ID in order to achieve a better distribution
of the peers. Figure 6 depicts how the algorithm works.

The algorithm starts by checking a trivial case: if there is
only one known peer in the network, this peer is responsible.
Otherwise, the decision will be based on hash values. Before
calculating the hash values of the concepts, the reasoner is
used to find compatible concepts for which the hash value
calculation is also done. After that, the algorithm tries to find
a peer for each hash value with a value minimally greater than
the calculated one. If there is no peer with a minimally greater
hash value, one with a value minimally smaller is searched.
The resulting peer is the responsible peer. To calculate the
hash value, well-established hash functions such as MD5 [30]
or SHA1 [31] can be used.

2) Processing Requests: The first step of processing a
request is to find the responsible peers (as described above).
A request may include several concepts. Therefore, more than
one peer may be responsible. Also, the reasoner checks for
compatible concepts before hash values are calculated. The list
of responsible peers will be iterated. In case the responsible
peer is the local host, the request can be answered locally.
Otherwise, the request has to be forwarded to the other peer.
The forwarding peer is responsible for collecting the answers
from the different peers and sending back an aggregated
answer to the origin of the request. If an error occurs, this

Start

¥

Load known
paers

Calculate
hash valuses

Y

Find peer with hash
value mininmalky

greater
no
[Find peer with hash
found? o - value mininmally
y smaller

Return
responsible
pear

Fig. 6. Flow diagram showing the algorithm that is used to select the
responsible peer for given attribute

peer has to send back an error message. Figure 7 illustrates
this algorithm.

3) Ensuring Data Consistency: Peer-to-peer networks may
experience continuous change. Peers may be added and re-
moved, either due to voluntary actions of administrators or
because of failures. This is a hazard to the consistency of the
data in the peer-to-peer network. If a peer leaves the network
voluntarily, it has to transfer its data to another peer. Therefore,
a new responsible peer will be selected (see above).

However, peers may also leave involuntarily due to faults or
failure. In this case, data will be lost. To keep the stored data
consistent with the actual situation, data should be reloaded
from time to time. To lower the risk of data loss, redundancy
can be added to the peer-to-peer network by assigning more
than one responsible peer. However, a trade-off has to be made
between protection against data loss and the added overhead.
This trade-off depends on the planned usage environment of
the system. In a stable environment with few failures and
changes, redundancy should be kept low.

V. IMPLEMENTATION

A prototype of the registry has been developed in Java
1.6, using the OWL-S API [32] for OWL-S processing. The

Start

¥
Search for
responsible
peers

Quiput result Yes

no

L

Che':k ne}d
peer
Local
e yes >

na l
h J

Add reply to
resulls

Process
locally

Wait for
response

Add error
message to
result

Fig. 7. Flow diagram for request processing

prototype consists of three main parts: Registry Server, XML
Message, and Peer-to-Peer.

In addition to the main parts mentioned above, which are
implemented as different packages, there is a test package that
provides JUnit tests for the parts that are independent from the
peer-to-peer overlay network.

A. Registry Server

This part contains the main class of the system
(RegistryServer), which is responsible for controlling
the system as well as the functionality of the local server.
Its main functions are the local server and the peer-to-peer
kernel, which are implemented as different threads.

The server listens to UDP packets and forwards them to the
peer-to-peer kernel, if they have been identified as requests

by the XML parser. The kernel determines the responsible
peer(s) and forwards the request. The local server collects and
aggregates replies.

The local data is managed by the class DataStorage. It
uses a TreeMap with the URIs and the device IDs. A FIFO
queue is used to manage the data validity efficiently, without
frequent searching through the entire database.

B. XML Message

This package implements the object-oriented message rep-
resentation. It provides the necessary scanner and parser for
the messages, including OWL-S support. In order to ensure a
modular design that facilitates future extensions, the messages
are created using the visitor pattern [33].

C. Peer-to-Peer

This package contains the peer-to-peer kernel (P2PCore)
that is started in the registy server (see Section V-A). The
thread first initializes the JXTA framework. After that, the peer
connects itself to the overlay network. The peer-to-peer kernel
publishes the local resources, especially the contents of the
JXTAServerPipe periodically. The JXTAServerPipe is
the input channel for requests in the overlay network.

For efficiency reasons, an internal representation indepen-
dent from the JXTA framework is used for the data stor-
age. Advertisements are stored in AdvertisementKeeper,
which is implemented in analogy to the DataStore, includ-
ing the validity check using a FIFO queue.

Another important class in the peer-to-peer package is
SHAlDigestProducer. It can be used to calculate hash
values with SHA1, which is used for assigning information to
individual peers according to the CAN principle.

For startup, a file named knownhosts.dat is used. Each
entry in the file is contacted with a timeout, which defaults to
30 s. If no rendezvous connection can be established during
this time, the next entry is probed.

VI. EVALUATION

In order to evaluate our prototype, we have performed
different experiments. In the following, we will discuss the
time needed for query processing. Then, we will take a look at
service registration and the required initial OWL-S processing.

A. Processing Queries

Scalability with a growing number of peers is an important
criterion for the usablility of a peer-to-peer solution. To
evaluate the implemented prototype, we measured the average
duration of processing a request (until the reception of the
answer). To ensure scalability, this duration should increase
only moderately with the increase of the number of peers.

Table I shows our measurement results for the average
processing time (in ms) of different requests. The peers have
been initialized uniformly inside a Gigabit LAN. Afterwards,
a dedicated host sent a series of 100 random requests to the
peer-to-peer network. The experiment has been repeated 50
times. Different rendezvous peers have been used.

Rendezvous Peers
Peers 1] 2] 3] 4
1 6.25 - - -
2 15.16 6.88 - -
3 38.34 | 11.41 9.08 -
4 || 45.16 | 31.87 | 25.63 | 14.89
6 || 47.62 | 51.87 | 49.06 | 50.00
8 51.40 | 58.12 | 62.08 | 46.76
12 63.44 | 5843 | 75.13 | 72.50
16 69.38 | 77.81 | 76.87 | 89.84
20 75.15 | 89.47 | 82.11 | 92.03

TABLE I

MEASUREMENT RESULTS FOR THE DURATION OF THE REQUEST
PROCESSING (IN MS) FOR DIFFERENT NUMBERS OF PEERS

Fig. 8 illustrates the increase of the average processing time
related to the number of peers in the system. The huge increase
in the beginning of the curves results from the following effect.
If the number of peers is equal to the number of rendezvous
peers, queries can be answered locally, resulting in average
processing times around 6.5 ms.

120 T T

T T
1 Rendezvous Peer —+—

2 Rendezvous Peers

3 Rendezvous Peers ------

4 Rendezvous Peers &

80 T g

60 | X // 4

Processing time [ms]

40

20 b E

L
0 5 10 15 20
Peers

Fig. 8. Comparison of the average processing time (in ms) with different
numbers of rendezvous peers.

If we compare the results for 8 and 16 peers, we see an
increase of processing time of ca. 34% when the number of
peers is doubled (with 1 - 3 rendezvous peers). This increase
results from a decreasing probability that the contacted peer
is already the responsible peer. Extrapolating these results
for 1280 peers, we should be around 0.5 s. for the average
processing time. This is consistent with the evaluation results
for the underlying JXTA framework [34], [35].

B. Service Registration

The majority of the Web services is registered when the
peer-to-peer registry is started. Later, new services will be
added when new devices with additional management Web
services are integrated into the network.

In the following, we present measurement results for the
start-up phase (see Table II). We measured the time that it
took to register all available Web services in the peer-to-peer

registry using different sets of Web services with different
numbers of services. We used a peer-to-peer network of 16
peers, where 4 peers act as rendezvous peers.

Web services | Registration time (ms)
1 10446
10 10910
20 12159
50 15163
100 23700
TABLE II

TIME NEEDED TO REGISTER WEB SERVICES (WITH 12 EDGE PEERS AND
4 RENDEZVOUS PEERS)

The time needed for the registration rises with a growing
number of Web services, as expected. However, besides a
relatively slow registration, we can observe a large plateau in
the beginning. Even the registration of a single Web service
takes more than 10 s. Therefore, we analyze the OWL(-S)
initialization separately from the registration request process-
ing. Table IIT shows only the time needed for processing the
registration request, without the ontology preparation.

Web services | Registration request precessing time (ms)
1 64.85
10 641.45
20 1296.15
50 3471.15
100 7963.15
TABLE III

TIME NEEDED TO PROCESS A REQUEST (IN MS), WITHOUT INITIAL
OWL-S PROCESSING

Figure 9 depicts the results graphically. We see that espe-
cially the OWL-S processing is responsible for the long regis-
tration time. The actual request processing, i.e. the processing
done by the peer-to-peer registry, shown by the line at the
bottom, is much faster. The reason for the weak performance
of the OWL-S processing is the slow ontology set-up of the
used libraries (Jena and OWL-S API).

VII. CONCLUSION

In this paper, we have shown the concept of a peer-to-
peer-based registry for Web services. This registry is part of
PoMAS, a policy-based management system for Autonomic
Communications. The registry is realized as an overlay formed
by the devices that offer management functionality as Web
services, because in this way a single point of failure can be
avoided and the registry fits better into the self-management
paradigm. The contribution of the paper is to show how a
distributed Web service registry that stores management Web
services according to their IOPEs using OWL-S can support
PoMAS.

Initial evaluation results demonstrate that the registry scales
linear to the number of Web services being registered. Al-
though linear is sufficient here, optimizations are still needed,
especially for the ontology processing.

25000 Service Re‘glstrauon‘—»— 4
Request Processing
OWL-S Processing ---:--
~
~
~
-
_—
20000 - 4
~
~
~
~
T _
E —
@ 15000 e]
E — e
c
] _
8 _— T %
g 10000 X]
14
5000 | 4
0 | L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Services

Fig. 9. Time needed to register services in the registry (with 12 edge peers
and 4 rendezvous peers) depending on the number of Web services.

In our future work, we will investigate and integrate dis-
tributed ontology processing techniques. This includes sub-
stitution of the used OWL(-S) libraries with less resource
consuming alternatives. Also, we want to reduce memory
consumption of our software to make it more lightweight and
better suited for network devices with limited resources.

REFERENCES

[1] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management
Frameworks,” RFC 3411, Dec. 2002.

[2] D. Booth, H. Haas, and F. McCabe, “Web Services Architecture,
W3C Working Group Note,” Feb. 2004. [Online]. Available:
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/

[3] J. Schonwilder, A. Pras, and J.-P. Martin-Flatin, “On the Future of
Internet Management Technologies,” IEEE Communications Magazine,
vol. 41, no. 10, Oct. 2003.

[4] J.-P. Martin-Flatin, Web-Based Management of IP Networks and Sys-
tems. Wiley, 2002.

[5]1 D. Berardi, G. D. Giacomo, M. Mecella, and D. Calvanese, “Auto-
matic Web Service Composition: Service-tailored vs. Client-tailored
Approaches,” in Proc. 8th Int’l Conference on Artificial Intelligence and
Symbolic Computation, Beijing, China, Sept. 2006.

[6] T. Klie, F. Gebhard, and S. Fischer, “Towards Automatic Composition
of Network Management Web Services,” in Proc. of 10th IFIP/IEEE
International Symposium on Integrated Management (IM), Munich,
Germany, May 2007.

[7] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “UDDI Version
3.0.2,” OASIS Technical Commitee Draft <uddi_v3>, Oct. 2004.
[Online]. Available: http://uddi.org/pubs/uddi_v3.htm

[8] M. Smirnov, “Autonomic Communication: Research Agenda for a New
Communication Paradigm,” Fraunhofer FOKUS,” White Paper, Nov.
2004.

[9] X. Gu,J. Strassner, J. Xie, L. Wolf, and T. Suda, “Autonomic Multimedia
Communications: Where Are We Now?” Proceedings of the IEEE,
vol. 96, no. 1, pp. 143-154, Jan. 2008.

[10] C. Prehofer and C. Bettstetter, “Self-Organization in Communication
Networks: Principles and Design Paradigms,” IEEE Communications
Magazine, vol. 43, no. 7, pp. 78 — 85, July 2005.

[11] U. Thaden, W. Siberski, and W. Nejdl, “A Semantic Web based Peer-
to-Peer Service Registry Network,” L3S Research Center, Tech. Rep.,
2003.

[12] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmér, and T. Risch, “EDUTELLA: A P2P Networking Infrastruc-
ture Based on RDF,” in Proc. 11th Int’l. World Wide Web Conference
(WWW), Honululu, Hawaii, USA, July 2002.

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic Match-
ing of Web Services Capabilities,” in /st Int’l. Semantic Web Conference
(ISCW), Sardinia, Italy, June 2002.

G. Glass, Web Services. Prentice Hall, Nov. 2001.

A. Maedche and S. Staab, “Services on the Move — Towards P2P-
Enabled Semantic Web Services,” in Proc. 10th Int’l. Conference on
Information Technology and Travel & Tourism (ENTER), A. J. Frew,
M. Hitz, and P. ’Connor, Eds. Helsinki, Finland: Springer, Jan. 2003.
M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “HyperCuP —
Hypercubes, Ontologies and Efficient Search on P2P Networks,” in Proc.
Ist Int’l Workshop on Agents and Peer-to-Peer Computing (AP2PC),
Bologna, Italy, July 2002.

M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “One
Ring to Rule them All: Service Discovery and Binding in Structured
Peer-to-Peer Overlay Networks,” in Proc. 10th ACM SIGOPS European
Workshop, Saint-Emillion, France, July 2002.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. Mcllraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “OWL-S: Semantic Markup for Web
Services,” DAML White Paper Release 1.1, Nov. 2004. [Online].
Available: http://www.daml.org/services/owl-s/1.1/overview/

P. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL Web Ontology
Language Semantics and Abstract Syntax, W3C Recommendation,”
Feb. 2004. [Online]. Available: http://www.w3.org/TR/owl-semantics/
P. V. Biron and A. Malhotra, “XML Schema Part 2: Datatypes Second
Edition, W3C Recommendation,” Oct. 2004. [Online]. Available:
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language,” W3C Recommendation REC-wsdl20-20070626, June
2007. [Online]. Available: http://www.w3.0org/TR/2007/REC-wsdl120-
20070626/

T. Klie and L. Wolf, “Autonomic Policy-based Management using Web
Services,” in Proc. 2nd CoNext Conference, Lisbon, Portugal, Dec. 2006.
T. Klie, “Policy Refinement Using Automatic Composition of Manage-
ment Web Services in a a Policy-based Autonomic Communications
Environment,” Ph.D. dissertation, TU Braunschweig, Nov. 2008.

T. Klie, B. Ernst, and L. Wolf, “Automatic Policy Refinement Using
OWL-S and Semantic Infrastr ucture Information,” in Proc. 2nd IEEE
Int. Workshop on Modelling Autonomic Communications Environments
(MACE), San José, CA., USA, Oct. 2007.

J. Strassner, “DEN-ng: Achieving Business-driven Network Manage-
ment,” in Proc. 2002 IEEE/IFIP Network Operations and Management
Symposium, Florence, Italy, Apr. 2002, pp. 753-766.

T. Bray, J. Paol, M. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan, “Extensible Markup Language (XML) 1.1 (Second Edition),”
W3C Recommendation REC-xml11-20060816, Sept. 2006. [Online].
Available: http://www.w3.0rg/TR/2006/REC-xml111-20060816/

M. Duigou et al, “JXTA v2.0 Protocols Specification,
JXTA Specification,” Aug. 2007. [Online]. Available: https://jxta-
spec.dev.java.net/nonav/JXTAProtocols.html

S. Li, “JXTA 2: A high-performance, massively scalable P2P
network,” IBM DeveloperWorks, Nov. 2003. [Online]. Available:
http://www.ibm.com/developerworks/java/library/j-jxta2/

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker., “A
Scalable Content-Addressable Network,” in Proc. 7th ACM SIGCOMM
Conference, San Diego, CA, USA, Aug. 2001.

R. L. Rivest, “MD5 Message-Digest Algorithm,” RFC 1321, Apr. 1992.
[Online]. Available: http://tools.ietf.org/html/rfc1321

D. E. Eastlake and P. E. Jones, “US Secure Hash Algorithm
1 (SHAI)” RFC 3174, Sept. 2001. [Online]. Available:
http://tools.ietf.org/html/rfc3174

E. Sirin, “OWL-S APL” Project WWW Page, Maryland Information and
Network Dynamics Lab Semantic Web Agents Project (MINDSWAP),
2004. [Online]. Available: http://www.mindswap.org/2004/owl-s/api/
B. Meyer and K. Arnout, “Componentization: the Visitor example,”
IEEE Computer, vol. 39, no. 7, pp. 23-30, July 2006.

E. Halepovic, R. Deters, and B. Traversat, ‘“Performance Evaluation of
JXTA Rendezvous,” in Proc. Int’l Sympoium on Distributed Objects and
Applications, Larnaca, Cyprus, Oct. 2004.

G. Antoniu, P. Hatcher, M. Jan, and D. A. Noblet, ‘“Performance evalu-
ation of JXTA communication layers,” in Proc. 5th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid), Cardiff, UK,
May 2005.

