Evaluatio

A Peer-to-Peer Registry for Network Management Web Services

Torsten Klie¹, Adrian Belger², Lars Wolf²

¹Universität Erlangen-Nürnberg
 ²Technische Universität Braunschweig

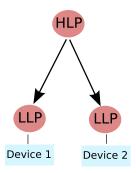
2009-06-05

Evaluatio

Motivation

Autonomic Communications

- Complexity of networks grows
- Administrators should be released from repetitive tasks
- Analogy: the autonomic nervous system


Policy-based Network Management

- Govern the behavior of networks with rules
- Policy = Event + Condition + Action
- Research for 15 years

Evaluation

Policy Refinement

- Policies exist on different levels of abstraction
 - High-level policies: business goals
 - Low-level policies: technical details for devices
- Policy Refinement: Breaking down high-level to lower level policies
- Automatic policy refinement: Use Web service composition → Registry required
- Provide a distributed registry as a peer-to-peer overlay

oMAS

/S Registry

Evaluatio

Outline

Introduction

PoMAS: Policy-based Management for Autonomic Self-Organization

Web Service Registry

Evaluation

Conclusion

PoMAS Architecture

Evaluatio

Conclusion

Web Service Composition

- Use WS as building blocks
- Synthesis: service selection
- Orchestration: service execution

OWL-S

- OWL Ontology to describe functional properties (IOPEs) semantically
- Static and dynamic synthesis

WS Registi

Evaluation

Conclusion

Management Web Services for Policy Refinement

WS Access to Management Functionality

- Devices offer management services directly (WSDM, WS-Management, NETCONF)
- Devices can register proprietary services
- Gateways can be used (e.g. Nagios, SNMP)

Evaluatio

Management Web Services for Policy Refinement

WS Access to Management Functionality

- Devices offer management services directly (WSDM, WS-Management, NETCONF)
- Devices can register proprietary services
- Gateways can be used (e.g. Nagios, SNMP)

Refinement Steps

- Extract policy components from input policies
- Formulate OWL-S service composition tasks
- Search for matching service composition
- Execute composed service when needed

Evaluatio

Conclusion

Centralized Approach

UDDI

- Potential service users can browse the categories
 - White Pages: information about organizations
 - Yellow Pages: categorized list
 - Green Pages: technical information (e.g. URI)
- Semantic of services: usually textual descriptions
- No support for OWL-S

Evaluation

Conclusion

Centralized Approach

UDDI

- Potential service users can browse the categories
 - White Pages: information about organizations
 - Yellow Pages: categorized list
 - Green Pages: technical information (e.g. URI)
- Semantic of services: usually textual descriptions
- No support for OWL-S
 - $\bullet \ \to \mathsf{Registries} \ \mathsf{associated} \ \mathsf{with} \ \mathsf{OWL}\text{-}\mathsf{S} \ \mathsf{Matchmakers}$

Evaluatio

Conclusion

Distributed Approach

The One Ring (Castro et al.)

- Universal ring as overlay
 - Persistent storage
 - Multicast communication
 - Distributed search
- No support for a particular Service description language

Evaluatio

Distributed Approach

The One Ring (Castro et al.)


- Universal ring as overlay
 - Persistent storage
 - Multicast communication
 - Distributed search
- No support for a particular Service description language

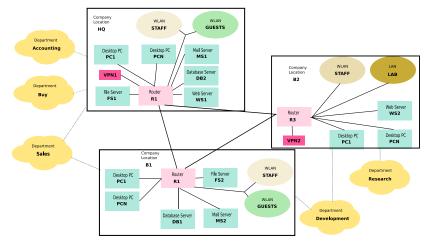
Edutella (Thaden, Siberski, and Nejdl, 2003)

- Peer-to-peer Registry based on Edutella
- Web Service description: DAML-S
- Idea: build an overlay over UDDI (and other) registries

Evaluation

Our Approach: An overlay built by the devices

- All devices take part in the overlay
- No external / central entitity needed
- Different roles based on the resources


MAS WS Registry

Evaluation

Conclusion

Application Scenario: User Management

Network Structure

Evaluation

Conclusion

Application Scenario: User Management

Requirements

- All devices offer management Web services
- PoMAS is used

Automation

- New user added
- PoMAS checks policies for users
 - Search the registry for relevant Web services
 - 2 Call the found monitoring Web services
- Policy violated → perform action
 - Search the registry for relevant Web services
 - ② Call the found configuration Web services

Evaluatio

Conclusion

Service Description

Semantic description with OWL-S

- Allows searching for IOPEs
- Use inference engines to determine equality
- Exploit inheritance

Evaluatio

Service Description

Semantic description with OWL-S

- Allows searching for IOPEs
- Use inference engines to determine equality
- Exploit inheritance

Network Ontology

- Ontlogy covering all aspects of networks
- Danger of "world-ontology"
- Use DEN-ng model as starting point

IAS WS Registry

Evaluatio

Implementation

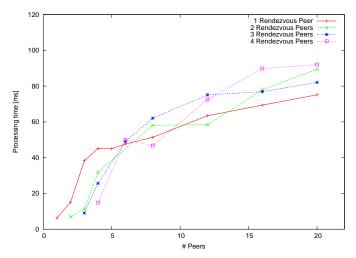
- Prototype in Java (using OWL-S API)
- JXTA P2P Framework
 - Rendezvous peers
 - Peers that hold Shared Resource Distributed Index (SRDI)
 - Take part in a distributed hash table (DHT)
 - Edge peers: "normal" peers
 - JXTAPipes for internal and external communication
- Plug-in for PoMAS

Evaluation

Evaluation – Settings

Query Processing

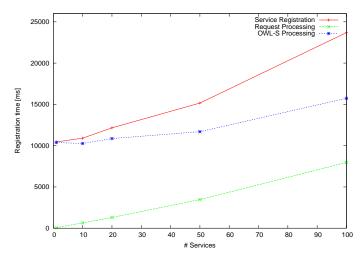
- Initialize Peers in a Gigabit LAN
- Obedicated host sends 100 random requests to the network
- Repeat 50 times
- Use other rendezvous peers


Service Registration

- Most registration on start-up
- Network with 16 peers (4 of them rendezvous peers)

Evaluation

Conclusion


Query Processing

Evaluation

Conclusion

Service Registration

Summary

- Concept of a distributed Peer-to-peer registry for Web services
 - Stores management Web services according to their IOPEs (using OWL-S)
 - Supports PoMAS Policy-based management system for Autonomic Communications
- Registry as an overlay formed by the devices
- Fits better into the self-management paradigm
- Initial evaluation results: linear scaling

ЛAS WS Regi

Evaluatio

Future Work

- Optimizations, especially for ontology processing
- Investigate and integrate distributed ontology processing techniques
- Find a leaner subsitute for OWL-S libraries
- Provide a prototype suitable for embedded systems

Evaluation

Conclusion

The End

Questions and/or Comments

- Here and now: Speak up!
- Later: torsten.klie@informatik.uni-erlangen.de