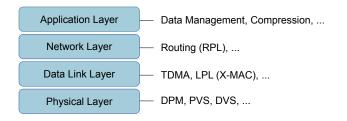
Institute of Operating Systems and Computer Networks

Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes E2Nets 2014

Stephan Friedrichs, <u>Ulf Kulau</u> and Lars Wolf, June 14, 2014 Technische Universität Braunschweig, IBR

Energy Efficiency in WSNs – Motivation


- Energy Efficiency in WSNs / IoT plays a significant role
 - Usability, feasibility, acceptance...
- Limping evolution of batteries (capacity)
- Various existing approaches on several layers

Energy Efficiency in WSNs – Motivation

- Energy Efficiency in WSNs / IoT plays a significant role
 - Usability, feasibility, acceptance...
- Limping evolution of batteries (capacity)
- Various existing approaches on several layers

Starting Point – Peripherals

Existing work focuses on the transceiver and the processing unit:

- Peripheral energy consumption may dominate
 - Transceiver (16 mA) vs. GPS(44 mA)
 - Various multi-sensing applications (many peripherals)

June 14, 2014 | Ulf Kulau | Page 3 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Starting Point – Peripherals

Existing work focuses on the transceiver and the processing unit:

- Peripheral energy consumption may dominate
 - Transceiver (16 mA) vs. GPS(44 mA)
 - Various multi-sensing applications (many peripherals)

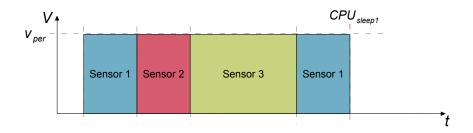
Basic Idea:

Reducing overall energy consumption by adding DVS to peripherals

June 14, 2014 Ulf Kulau | Page 3 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Voltage Level and Energy Consumption – Basics

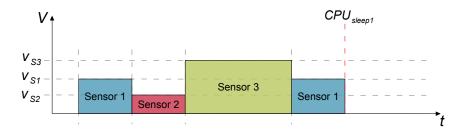
Background:


- Energy consumption of peripherals depends on voltage level
- Each peripheral requires a different minimum voltage level

Voltage Level and Energy Consumption – Basics

Background:

- Energy consumption of peripherals depends on voltage level
- Each peripheral requires a different minimum voltage level Classical approach:

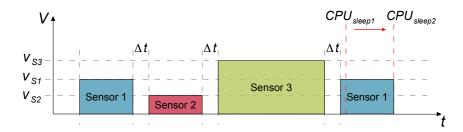


Voltage Level and Energy Consumption – Basics

Background:

- Energy consumption of peripherals depends on voltage level
- Each peripheral requires a different minimum voltage level

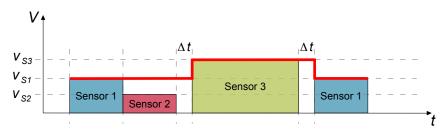
Our approach: Dynamic adaptation of the peripherals voltage



Individual Voltage Adaptation – Tradeoff

Dynamic adjustment of the peripherals voltage, but how?

- Additional overhead: Switching the voltage consumes energy
 - Timing overhead (Δt) leads to higher CPU duty cycles
 - Static power dissipation of a voltage scaling module



Individual Voltage Adaptation – Tradeoff

Dynamic adjustment of the peripherals voltage, but how?

- Additional overhead: Switching the voltage consumes energy
 - Timing overhead (Δt) leads to higher CPU duty cycles
 - Static power dissipation of a voltage scaling module

Calculation of an optimal voltage schedule for arbitrary sequences

Voltage Scheduling Problem – Definitions

- Consider a sensor node with a set S of peripheral hardware
- Energy consumption of a peripheral $\pmb{s} \in \pmb{S}$

$$\boldsymbol{e}_{\boldsymbol{s}}(\boldsymbol{v}) = \boldsymbol{v} \int_{0}^{t_{\boldsymbol{s}}} \boldsymbol{I}_{\boldsymbol{s}}(\boldsymbol{v},t), \, dt$$

 $I_{S}(v, t)$ flowing through s as well as through the inactive peripheral hardware $S \setminus \{s\}$

- Constant amount C of energy the switching overhead
- Given sequence of queries [1, ..., n]
 - Query *i* operates the peripheral device $s_i \in S$
 - *s_i* requires minimum voltage level *v_{min}(s_i)*
- Searched for optimal voltage schedule $v(1), \ldots, v(n)$

Voltage Scheduling Problem – Optimal Solution

• The energy consumption *E* of a voltage schedule is:

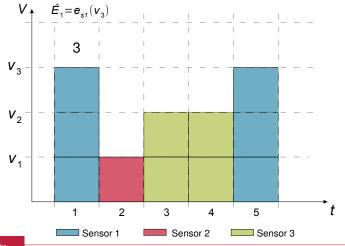
$$E = \sum_{i=1}^{n} e_{s_i}(v(i)) + \sum_{i=2}^{n} \begin{cases} C & \text{if } v(i-1) \neq v(i), \\ 0 & \text{otherwise.} \end{cases}$$

• Result: Voltage schedule is optimal if *E* is minimal

Voltage Scheduling Problem – Optimal Solution

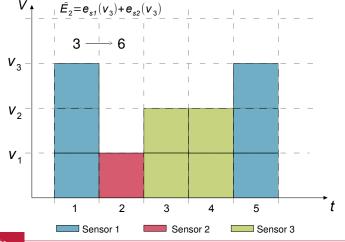
• The energy consumption *E* of a voltage schedule is:

$$E = \sum_{i=1}^{n} e_{s_i}(v(i)) + \sum_{i=2}^{n} \begin{cases} C & \text{if } v(i-1) \neq v(i), \\ 0 & \text{otherwise.} \end{cases}$$

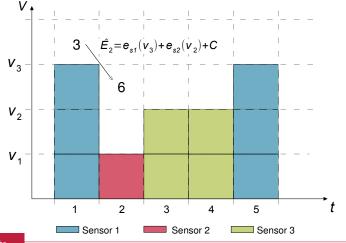

• Result: Voltage schedule is optimal if *E* is minimal

Solution:

- Optimal voltage schedule would only use $v(i) \in \{v_{min}(s) \mid s \in S\}$
- Determining an optimal schedule by *dynamic programming*

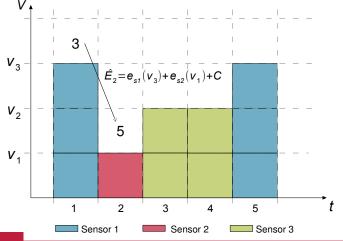

Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

June 14, 2014 Ulf Kulau Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes


Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

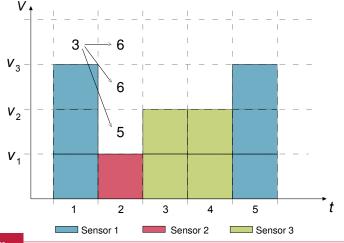
June 14, 2014 Ulf Kulau Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

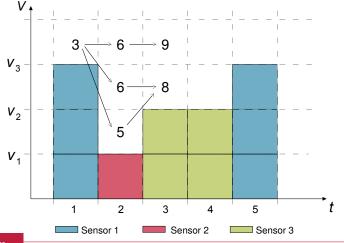


June 14, 2014 | Ulf Kulau | Page 8

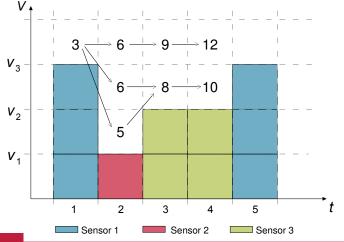
Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes


Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

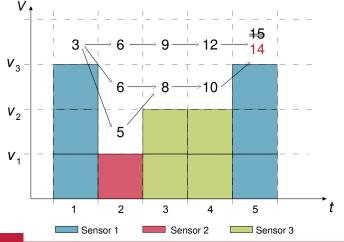
June 14, 2014 | Ulf Kulau | Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes


Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

June 14, 2014 | Ulf Kulau | Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

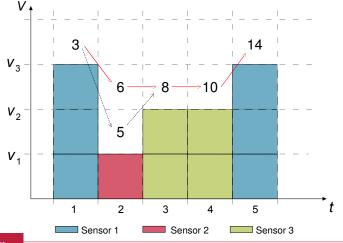

Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

June 14, 2014 | Ulf Kulau | Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes


Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,

June 14, 2014 Ulf Kulau Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

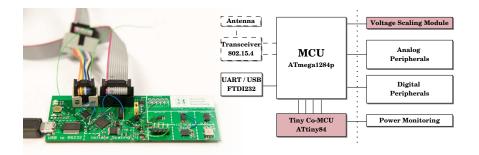
Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,



June 14, 2014 Ulf Kulau Page 8

Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Simplification: C = 1, $v_i = i$ and $e_s i = v_i$,



June 14, 2014 Ulf Kulau Page 8 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Theory and Practice – Prototype Implementation

Implementation of a HW and SW prototype

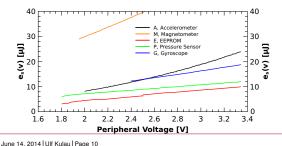
- Equipped with common peripherals for WSN applications
- Evaluation of the effect of Voltage Scheduling

June 14, 2014 | Ulf Kulau | Page 9 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Self-Parametrization $e_s(v)$

Prototype Peripherals:

Peripheral s	Device	Description	v _{min} (s)[V]
A	ADXL345	Accelerometer	2.000
E	AT24C08C	EEPROM	1.800
Р	BMP085	Pressure Sensor	1.800
G	L3G4200D	Gyroscope	2.400
М	MAG3110	Magnetometer	1.950
Mb	MAG3110	Magnetometer (high accuracy)	1.950

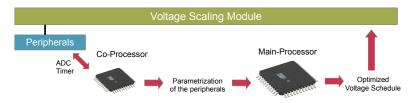


Self-Parametrization $e_s(v)$

Prototype Peripherals:

Peripheral s	Device	Description	$v_{min}(s)$ [V]
Α	ADXL345	Accelerometer	2.000
E	AT24C08C	EEPROM	1.800
Р	BMP085	Pressure Sensor	1.800
G	L3G4200D	Gyroscope	2.400
М	MAG3110	Magnetometer	1.950
Mb	MAG3110	Magnetometer (high accuracy)	1.950

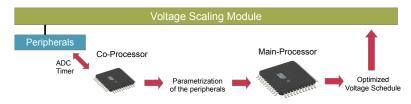
- How to get information about the energy consumption?
- Modelling of $e_s(v)$ might be arbitrary complicated



Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Self-Parametrization e(s)

- Fully self-optimizing approach
 - Parametrization (e_s(v)) is done by second micro controller
 - Resource-friendly calculation (no expensive floating-point needed)



June 14, 2014 | Ulf Kulau | Page 11 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Self-Parametrization e(s)

- Fully self-optimizing approach
 - Parametrization (e_s(v)) is done by second micro controller
 - Resource-friendly calculation (no expensive floating-point needed)

Monotonicity: Schedule only uses minimum voltage levels

Reference Voltage		Energy Consumption $e_s(v_{min}(s'))$ [µJ] per Query				
s'	<i>v_{min}</i> (<i>s'</i>)[V]	s = E	s = P	s = M	<i>s</i> = <i>A</i>	s = G
Е, Р	<i>V</i> ₁ = 1.800	4.943	13.140	_	—	_
М	$V_2 = 1.950$	6.106	15.072	282.827	_	_
A	$V_3 = 2.000$	6.363	15.466	292.033	18.962	_
G	$V_4 = 2.400$	8.019	18.915	365.285	25.585	14.391

June 14, 2014 Ulf Kulau | Page 11 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes

Evaluation – Results

Test sequences are compared to three trivial strategies

		Energy saved by Scheduled compared to		
#	Query Sequence	ConstDefault	ConstMaxMin	AlwaysSwitch
1	AEPGMAEPGM	45.80 %	17.13%	0.97 %
2	GAMGAMGAM	46.15%	17.04 %	0.49%
3	GAMPE	46.91 %	18.52 %	1.40 %
4	GAMPEGAMPE	46.26 %	17.50 %	1.79%
5	GEPGEPGEP	33.33 %	0.81 %	10.29 %
6	PEMAG	46.91 %	18.52 %	1.68 %
7	PEMAGPEMAG	46.39 %	17.59 %	1.79%
8	GAPEGAPE	37.80 %	2.26 %	8.45 %
9	GPGPGPGPGP	31.54 %	0.00 %	20.29 %
10	PAMPE	47.90 %	20.41 %	2.53 %
11	APEGAME	46.53 %	17.20 %	3.27 %

Note: A = Accelerometer, E = EEPROM, P = Pressure Sensor, G = Gyroscope, M = Magnetometer

- Scheduled voltage level saves energy
- Scheduling never uses more energy than other strategies (optimal)

Peripherals are less considered:

- Energy consumption of peripherals may dominate
- Energy consumption depends on applied voltage level

Peripherals are less considered:

- Energy consumption of peripherals may dominate
- Energy consumption depends on applied voltage level

Many peripherals with different minimum voltage levels

- Trade-off between decreased voltages and switching overhead
- Calculation of optimal schedule by dynamic programming

Peripherals are less considered:

- Energy consumption of peripherals may dominate
- Energy consumption depends on applied voltage level
- Many peripherals with different minimum voltage levels
 - Trade-off between decreased voltages and switching overhead
 - Calculation of optimal schedule by dynamic programming

Prototype implementation and evaluation

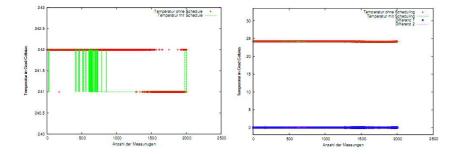
- Fully self-optimizing approach through second MCU
- Scheduling is always optimal
- Saves up to 47.9% compared to related solutions

Peripherals are less considered:

- Energy consumption of peripherals may dominate
- Energy consumption depends on applied voltage level
- Many peripherals with different minimum voltage levels
 - Trade-off between decreased voltages and switching overhead
 - Calculation of optimal schedule by dynamic programming

Prototype implementation and evaluation

- Fully self-optimizing approach through second MCU
- Scheduling is always optimal
- Saves up to 47.9% compared to related solutions


Thank you for your attention! Questions?

Ulf Kulau

kulau@ibr.cs.tu-bs.de

Appendix – Quality of Sensing

June 14, 2014 Ulf Kulau | Page 14 Energy-Efficient Voltage Scheduling of Peripheral Components on Wireless Sensor Nodes