Energy-Efficient Voltage Scheduling of Peripheral
Components on Wireless Sensor Nodes

Stephan Friedrichs, Ulf Kulau and Lars Wolf
Technische Universitit Braunschweig
Institute of Operating Systems and Computer Networks
Miihlenpfordtstrae 23
D-38106 Braunschweig
Email: {sfriedr, kulau,wolf}@ibr.cs.tu-bs.de

Abstract—Much effort has been put into optimizing the
energy-efficiency of wireless sensor nodes, but existing work
exclusively focuses on the transceiver and the processing unit.
Nevertheless, the peripheral energy consumption may dominate
that of the entire node. We introduce the concept of a dynamically
scalable peripheral voltage supply: Even for peripheral devices,
a lower voltage level leads to a lower energy consumption. Each
peripheral requires a different minimum operating voltage, but
switching the voltage level consumes energy as well. We combine
theory and practice to present an algorithm weighing off the
benefits of a downscaled voltage level against the switching
overhead, i.e., for calculating an optimal peripheral voltage
schedule. Our approach is capable of self-parameterization and
has been implemented and tested on a prototype, saving up to
47 % of peripheral energy as compared to existing solutions.

I. INTRODUCTION

Compared to the growth of computational capabilities
(Moore’s law), the evolution of adequate mobile energy
sources is limping. Hence, a significant amount of research
aims at improving the lifetime of mobile applications like
wireless sensor networks (WSNs). In this context, Dynamic
Voltage Scaling (DVS) is a well-known technique, which
depends on the ability of a system to adapt the voltage level to
its workload. As the dynamic power consumption of CMOS
gates shows a quadratic dependency on the voltage level, DVS
helps to significantly improve the energy efficiency of micro-
electronic systems [1], which has been exploited in several
existing approaches [2], [3], [4], [5], leading to an increase of
WSN lifetime. Nevertheless, existing work exclusively focuses
on the micro-controller unit and does not consider peripherals
like memory devices, sensors, or actuators. However, for some
applications, a set of various sensors is needed [6]. Thus, the
active power consumption of the sensing unit can easily exceed
that of the micro-controller unit. For example, the current
consumption of a typical gyroscope [7] is about three times
higher than those of the msp430 [8] micro-controller.

Hence, the reduction of peripheral power consumption has
a significant impact on the overall energy efficiency of a sensor
node. Typical sensor node implementations lose much energy
to a fixed, predefined, global peripheral voltage level. In this
paper, we seize the concept of scalable peripheral voltage to
optimize the overall power consumption and thus battery life.

For this purpose, we assume an a-priori known usage
sequence of the peripheral devices on one sensor node, e. g. one
that is periodically repeated, for instance: “read sensor 1, read

sensor 2, write to external memory, read sensor 1, ...”. Every
peripheral device requires a minimum peripheral voltage level
and a lower voltage implies lower energy consumption [5]; but
switching the voltage level requires energy as well.

The current best practice is to statically set the voltage level
to the maximum of the minimum required voltage level of all
peripherals and to not change it dynamically.

Our novel approach addresses the trade-off between the
energy gain of a temporarily reduced peripheral voltage and
the corresponding switching overhead. We have developed
and implemented an algorithm calculating optimal voltage
schedules for arbitrary peripheral usage sequences. Yet, the
overhead for calculating the schedule is negligible, as the
optimal sequence of switching the voltage level is calculated
only once during startup.

We address the rather practical issue of measuring the
parameters of the involved peripheral components in our
implementation as well. The developed prototype is able to
self-parameterize every needed variable to run the algorithm.
Hence, a fully self-optimizing and generic solution is pre-
sented.

The outline of the paper is as follows: Related work
is discussed in the next section. Section III formalizes the
peripheral voltage scheduling problem and introduces notation.
Sections IV and V present our scheduling algorithm and
its practical implementation. Our approach is evaluated in
Section VI, while Section VII concludes this paper.

II. RELATED WORK

Typical DVS approaches focus on the processing unit
only [9], [3]. However, our previous work [5] considers the ef-
fects of various voltage levels on the peripherals as well. Even
peripherals like Micro-Electro-Mechanical Systems (MEMS),
which mainly consist of none-CMOS parts [10], have a re-
duced energy consumption when exposed to a downscaled
voltage level. This result leads to the idea of adapting the
peripheral voltage level to the actual sensing requests instead
of the system load.

[5] introduces an exclusive scalable voltage path for the
peripheral components. Thus, together with a non-negligible
switching overhead, the voltage level of the sensors and
memory devices can be adapted. In this context, the scheduling
problem is to find the best trade-off between reducing the

energy consumption by temporarily lowering the voltage level
and the inferred switching costs.

Existing algorithms [11], [12] for voltage scheduling on
low-performance sensor nodes are not sufficient for this pur-
pose. In conclusion, they focus on the processing unit only or
neglect the energy costs for adapting the voltage level.

To the best of our knowledge, there is no related work
addressing the scheduling problem of finding an optimal
voltage adaption scheme.

III. THE PERIPHERAL VOLTAGE SCHEDULING PROBLEM

We consider a wireless sensor node with a set of periph-
eral hardware, typically sensors and external memory. Each
peripheral hardware device requires a minimum voltage to
be properly operated. To the best of our knowledge, the
best practice up to date is to statically configure the lowest
peripheral voltage conform to all peripheral devices’ voltage
requirements. This can be very inefficient, because most hard-
ware consumes more energy when exposed to higher voltage.
In this work, we seek to exploit a sensor node’s mechanism
to dynamically switch the peripheral voltage.

The crux is that switching the voltage does not come for
free. If it would, one could simply operate every peripheral
device with its minimum required voltage. But switching
the voltage consumes energy as well: The additional time
interfacing a scalable voltage supply prolongs the duty-cycle
of a processing unit, leading to a higher energy consumption.
We present a measurement for the switching overhead in
Section V.

In this work, we provide an algorithm for peripheral voltage
scheduling that weighs off the energetic benefits of switching
to a lower peripheral voltage against the switching overhead
without violating the minimum voltage requirements of active
hardware.

We achieve this by exploiting two observations due to
preliminary measurements.

1) Most peripheral hardware devices can be safely un-
dervolted while they are inactive.

2) The energy consumption of each peripheral device
increases when the peripheral voltage is increased.

Both observations have been verified in experiments for a wide
variety of hardware.

A. Peripheral Energy Consumption

Consider a sensor node with a set S of peripheral hardware
devices. In order to assess the benefits of switching to a lower
peripheral voltage before using s € S, we need to know
how much energy is consumed when querying s using the
peripheral voltage v. We denote that relation by the function
es(v), which may be arbitrarily complicated, see Figure 1.
es(v) depends on the time ¢, necessary to query s, the
peripheral voltage v, and the accumulated current I4(v,t)
flowing through s as well as through the inactive peripheral
hardware S\ {s}:

ts
es(v) = v/ Is(v,t)dt (1)
0

40 —— 7 —T— —————T1———— 40
r ’ — A, Accelerometer b
r ! M, Magnetometer]
30 / —==—= My, Magnetometer (high accuracy)—| 30
_ + ; ——— E, EEPROM « —_
— r / P, Pressure Sensor b —
3 [7 —-—= G, Gyroscope] 3
Ol S A R | R 1203
b R A I N N A st 1 3
[} S A I I R Iy 8 [
10 4110
0 —0
1.5 3.5
Peripheral Voltage [V]
Figure 1. Active and passive energy consumption of the peripheral set of

our prototype, compare Table I. The vertical bars at 1.800[V], 1.950[V],
2.000[V], and 2.400[V] denote the minimum voltages of EEPROM and
Pressure Sensor, Magnetometer, Accelerometer, and Gyroscope, respectively.

Moreover, some peripherals support various operating
modes, resulting in a different energy consumption as well.
As an example in Figure 1 the magnetometer can be used in
standard mode M, and with higher accuracy M, leading to
higher energy consumption ey, (v). We simply model such
varieties as different peripherals s € S.

Instead of attempting to explicitly model eg(v), we con-
sider it a black box and only assume that it is a monotonically
increasing function. In the following subsection, we argue
that only a very small set of values for v is of interest for
our scheduling problem (only the minimal voltages for the
peripherals). That allows us to (1) measure all relevant values
of es(v), of which there are no more than |S|%, in a self-
parameterization phase, compare Section V-A, (2) then run
the scheduling algorithm using those values, and (3) run the
schedule.

B. Notation

We formalize the peripheral voltage scheduling problem
motivated above, using the following model.

Consider a sensor node with a set S’ of peripheral hardware
devices. Each s € S has two attributes: (1) a minimum voltage
Umin(8) required to properly operate s, and (2) the energy
consumption eq(v) of all peripherals while only s is active,
depending on the peripheral voltage v, see above. Throughout
this work, we assume e, (v) to be a monotonically increasing
function, i.e., that a reduction of the peripheral voltage never
results in an increased energy consumption. For a constant
amount C' of energy, the switching overhead, the sensor node
can adapt its peripheral voltage.

The sensor node is presented a sequence of gueries denoted
by [1,...,n] to fulfill its sensing and operation tasks. Query
i operates the peripheral device s; € S, thus requiring a
minimum peripheral voltage of vmi,(s;) and resulting in an
energy consumption of ey, (v). Note that s; = s; for i # j
is quite common, because the typical application repeatedly
operates a handful of sensors over a very long running time;
in other words, we usually have n > |S|. A sequence of pe-
ripheral voltages v(1),...,v(n) is called voltage schedule for
the queries [1,...,n], and we call a pair of query and voltage
(i,v(2)) a configuration. (i,v(i)) is feasible if v(i) > Vmin(s;)
and a voltage schedule is feasible if all its configurations are

feasible. The energy consumption E of a voltage schedule is:

Ezzggmm»+§;{§ if ol — 1) # o)

otherwise.

Our goal is to minimize E. We call a voltage schedule optimal
if E is minimal. It follows from the monotonicity of e, (v) that
an optimal schedule only uses v(i) € {vmin(s) | s € S} =
{V1,...,Vip} with V; < ... < V,,,. As motivated above, there
are at most |S|? device-voltage combinations whose energy
consumption can be measured in a self-parameterization phase,
compare Section V-A.

©))

Note that the current best practice, i.e., not adapting the
peripheral voltage, is equivalent to a trivial schedule that
simply keeps the minimum peripheral voltage high enough for
all peripheral devices: v(1) = ... = v(n) = maxses Vmin(s).

IV. ALGORITHM

Let us, for the configuration (¢,V}), determine the min-
imum amount of energy E; ; necessary to reach it using a
feasible schedule v(1),...,v(¢) while assuming an infinite
energy consumption for infeasible configurations. For the first
query, we have:

o0
E“_{%A%)

For 2 < ¢ < n, there is the mandatory energy consumption
es, (V) to answer the query i itself, as well as the accumulated
costs for traversing ¢ — 1 preceding configurations. There are
two ways to reach the configuration (¢, V) with an optimal
energy consumption: Either the peripheral voltage from the
previous query is kept, or it is changed. The former case yields
an additional energy consumption of F;_ ;. In the latter case
we require the minimum amount of energy E;_1 to reach the
cheapest feasible predecessor configuration and the additional
costs C for switching the voltage, where E; 1 = E;_; ; with
j:=arg minj E;_1 ;. This yields, for 2 <i < n:

if V; < Umin(s1),
otherwise.

3)

00 (¢, V;) is infeasible,
E;ij=qes,(Vj)+Ei1; Eia1j<Ei1+C, &
es;(Vj)+ Ei—1 +C otherwise.

Equations (3) and (4) directly translate into Algorithm 1,
see Figure 3. It uses dynamic programming to efficiently solve
the recursion by determining F; . before F;,.; the optimal
overall schedule is that ending in the configuration (n,V}),
where E,, j = E,, is minimal and the schedule v(1),...,v(n)
is determined by following the backward references stored in
P, compare Figure 2.

A. Algorithm Extensions

Algorithm 1 processes finite query sequences of fixed order.
In the remaining part of this section, we outline how to extend
it to determine optimal schedules for periodically repeating
queries, how the order of queries can be modified to find more
energy-efficient schedules, and how to integrate global voltage
limits into Algorithm 1.

3457678910 t

Figure 2. Using dynamic programming to determine an optimal schedule.
Here: (v(1),...,v(10)) = (V3,V3, Vs, V3, V4, Va, Vo, V3, V3, V3). Note
that different queries with the same vy (s;), like 3, 7, and 9 may originate
from the same sensor s € S.

1: for j < 1,....,m do
.. By, {oo if V; < Vmin(51)
es; (V;) otherwise
3 P17j — 1
4: end for
5: for i < 2,...,n do
6 Jargming_y ., Eiq
7 for j < 1,...,m do
8 if V; < vmin(s;) then
9 Ei,j <— OO
10 Pi’j +— 1
11 else if I/;_, ; < F;_1; + C then is a maximum
of
12 Eij e, (Vi) + Eia
13 P«
14 else
15 Eiﬂ‘ — esi(Vj) +Ei,1,j+C
16 Pi,j — 3
17 end if
18: end for
19: end for
Figure 3. Algorithm 1. Determining an optimal schedule using dynamic
programming.

1) Periodic Schedules: The most common scenario is not
to have a finite sequence of queries, but one that is repeated
indefinitely, i. e., until battery depletion. So instead of a query
sequence [1,...,n], we have [1,...,n,1...,n,...]. Algo-
rithm 1 can calculate an optimal schedule for that case as well:
Suppose that query ¢ has the strongest voltage requirement
of all queries, i.e., it maximizes vpi,(s;) =: V. Then any
feasible schedule must enter the configuration (i, V') whenever
i occurs in the query sequence. We use (i,V) as a fixed
point. It is easy to check that an optimal voltage schedule
is obtained by providing Algorithm 1 with the query sequence
1,...,4,...,m,1,...,i— 1,] and then periodically repeating
the schedule for the underlined queries.

2) Optimal Ordering of Queries: Occasionally, queries
do not have to be served in a specific order, e.g. in case
of independent data aggregation. This scenario allows us to

- .
Antenna_| || Voltage Scaling Module
| .
Transceiver|—
| 802154 | MCU Analog
| NP Peripherals
ATmegal284p
UART / USB . Digital
S—— 181
FTDI232
: Peripherals
Tiny Co-MCU —.—| Power Monitoring
ATtiny84 :

Figure 4. Block diagram of the prototype implementation.

reorder queries and the question arises, which ordering results
in the cheapest voltage schedule. We claim that a cheapest
optimal schedule is achieved when the queries [1,...,n| are
ordered such that, w.1.o.g., Umin(s1) > ... > Umin(s,) and
outline a proof:

Suppose we know some ordering resulting in a cheapest
schedule. Group its queries into segments S, ..., S, of max-
imal length, such that all queries in segment S; are served
with the same voltage V' (S;). For all i # j we have V(S;) #
V(S;), because otherwise merging S; and S; would result in
a cheaper schedule, contradicting optimality. Sorting queries
within a segment doesn’t change the energy consumption and
neither does sorting the segments themselves. Note that every
query j belongs to the segment S; with minimum V'(S;) >
Unmin($ j): If it didn’t, the schedule would not be optimal due to
the monotonicity of e, (v). Putting it all together proves that
ordering the queries by descending minimum voltage yields a
schedule with the same, i.e., optimal, costs.

3) Voltage Limits: There might be some lower bound Vi,
to the voltage of some inactive peripheral that is violated by
Umin(s) for some other peripheral s € S. Then Algorithm 1
is easily extended to only use voltages of Vp, or higher:
Recall that we only use V; < ... <V, as voltage candidates
and let V; = max{V; | V; < Viun}. Now Algorithm 1 can
just use the voltage candidates Vi, < Vi < ... <V,
instead. This even speeds up the process, especially the self-
parameterization phase, because less voltages need to be
considered, see Section V-A.

V. IMPLEMENTATION

The demand of energy-efficiency leads to limited resources
like computational performance. Hence, typical wireless sen-
sor nodes are equipped with ultra low-power (ULP) micro-
controllers of small complexity. We use an 8-bit Atmel AT-
megal284p micro-controller as processing unit, because it is
wide-spread [13], [14], i.e., has practical relevance, and due
to its scarce (CPU-) resources, a common limitation in WSNGs.
So it demonstrates that our approach is sufficiently lightweight
for such requirements.

Related to the DVS capable node of [5], we borrow the
design of its voltage-scaling module to achieve the ability of a
software-defined voltage level for the peripherals: The voltage
scaling module is connected to the processing unit via I2C-bus
and provides a voltage level of 1.8 [V] < v < 3.3[V] with an

Table 1. PROTOTYPE PERIPHERALS.

Peripheral s | Device | Description | vmin(s) [V]
A ADXL345 Accelerometer 2.000
E AT24C08C EEPROM 1.800
P BMPO085 Pressure Sensor 1.800
G L3G4200D Gyroscope 2.400
M MAG3110 Magnetometer 1.950
My MAG3110 Magnetometer (high accuracy) 1.950
Table II. ENERGY CONSUMPTION €5 (vpin(s’)) PER QUERY FOR EACH
SENSOR-VOLTAGE PAIR (8, Upin (8”)).
Reference Voltage “ Energy Consumption e (vmin(s’)) [J] per Query
s [vmi“(s)[V] “s:E[s:P[s:M[s:A[s:G
E, P Vi = 1.800 4.943 13.140 — — —
M Vo = 1.950 6.106 15.072 282.827 — —
A Vs = 2.000 6.363 15.466 292.033 18.962 —
G Vy = 2.400 8.019 18.915 365.285 25.585 14.391

8-bit resolution. In this case, the overhead of switching to an
arbitrary voltage level is C' & 7.76 [pJ], which could be further
reduced using more sophisticated hardware.

Our prototype’s sensing unit is divided into an analog
and a digital section. The analog section offers the ability of
connecting fully analog sensors to the ADC channels of the
ATmegal284p, while the digital section includes the devices
of Table I. All of them are connected via 12C bus.

The basic sensor set is inspired by motion-sensing ap-
plications like gait analysis [15] or flight control of quadro-
copters [6]. These applications observe various sensors, So our
scheduling approach promises to increase their energy effi-
ciency. Nevertheless, in order to expand the set of peripherals
for further experiments, the 12C-bus is accessible through a
pin header. Figure 4 shows a block diagram of the prototype.

A. Self-Parameterization of es(v)

As described above, in order to calculate an optimal sched-
ule, we need information describing the overall peripheral
energy consumption, which depends on the active peripheral
device s and the peripheral voltage v. We denote that by the
function e,(v), compare Equation (1). For this reason, we
added a tiny co-micro-controller (co-MCU) to the prototype,
which is able to concurrently sample the current consumption
of the peripherals (a shunt is used in connection with current
sense amplifiers) and to measure the time (the co-MCU can be
triggered by the ATmegal284p via digital GPIOs). That design
allows us to measure e4(v) for any given values of s and v.

Together with the predefined minimum voltage level
Umin(s) of each peripheral s, the co-MCU is able to determine
the energy consumption of all components as depicted in Equa-
tion (1): For each (s,s’) € S x S, we measure es(vmin(s’)),
see Table II.

In connection with the subsequent calculation of the sched-
ule, it is sufficient to use raw values instead of the physical
units for time, current, and voltage. With regard to limited
processing power of wireless sensor nodes, this simplification
replaces expensive floating-point arithmetic with cheap integer
operations.

Figure 5.

Test-setup of the evaluation.

VI. EVALUATION

Figure 5 shows the prototype implementation and the test-
setup for evaluating our voltage scheduling concept.

We compare four peripheral voltage handling strategies,
three heuristics and Algorithm 1:

1) CONSTDEFAULT is what happens when a sensor node
has no mechanism to adapt the peripheral voltage.
A constant peripheral voltage of 3.3[V] is kept —
a wide-spread default sufficient for most peripheral
hardware.

2) CONSTMAXMIN is the trivial strategy that uses the
maximum minimum voltage, i.e., maXses Umin($),
for all queries. It never changes the peripheral volt-
age. Note that this strategy is, to our best knowledge,
the current best practice. It is motivated by the
scenario of a statically configured voltage that cannot
be adjusted dynamically.

3) ALWAYSSWITCH, another trivial strategy, which al-
ways, i.e., for every query with a different voltage
requirement than its predecessor, switches the voltage
to its minimum requirement. It ignores the switching
overhead.

4) SCHEDULED refers to a schedule computed by Algo-
rithm 1, carefully weighing off the benefits of a lower
peripheral voltage against the switching overhead.

In order to test the strategies, we devise various test cases,
i.e., query sequences. Each of the above strategies is applied to
every test case. We run the resulting voltage schedules 10 times
each and measure their average energy consumption. Consult
Section IV-A1 on how to use Algorithm 1 to efficiently deal
with periodically repeating query sequences.

All test sequences, the resulting peripheral energy con-
sumption of each strategy, as well as the percentage of energy
saved by the SCHEDULED strategy as compared to the other
three are presented in Table III. Which character refers to
which sensor in a test sequence is specified in Table I, e. g.,
sequence 9 alternates between the gyroscope and the pressure
Sensor.

The average peripheral energy consumption for a query
sequence is depicted in the center block of Table III. Clearly,

the SCHEDULED strategy, i.e., Algorithm 1, never consumes
more energy than any other strategy.

We present the percentage of energy saved by the
SCHEDULED strategy compared to CONSTDEFAULT, CON-
STMAXMIN, and ALWAYSSWITCH in the right block of
Table III.

The improvement of SCHEDULED over CONSTDEFAULT
is between 31.54 % (sequence 9) and 47.90 % (sequence 10),
clearly a significant improvement.

Compared to CONSTMAXMIN, SCHEDULED saves up
to 20.41 % (sequence 10), the majority of the improvements is
comfortably above 17.00 %. As CONSTMAXMIN is a much
better approach than CONSTDEFAULT, these still are out-
standing improvements. On the other hand, the improvement
regarding sequences 5 and 9 is zero within measuring noise.
This is explained as follows: For sequences 5 and 9, the
optimal schedule is to constantly keep the minimum maximum
voltage. The CONSTMAXMIN strategy does that by chance,
SCHEDULED does it, because it is optimal.

ALWAYSSWITCH performs better than CONSTDEFAULT
and, in most cases, better than CONSTMAXMIN, but SCHED-
ULED still saves more energy. Despite the median improvement
of SCHEDULED compared to ALWAYSSWITCH being be-
tween 1 % and 2 %, there are some cases where it is significant:
For sequences 8, 5, and 9, SCHEDULED saves 8.45 %, 10.29 %,
and 20.29 %, respectively. There are cases where there is
little to no improvement of SCHEDULED compared to AL-
WAYSSWITCH. As above, this is owed to the fact that the
ALWAYSSWITCH strategy happens to provide an optimal or
near-optimal schedule.

Concluding, there are three important observations:

1) Much energy is saved by SCHEDULED compared to
the three other strategies.

2) SCHEDULED never uses more energy than any of
the other strategies. I.e., there is no situation where
using it wastes energy. This is owed to the fact that
Algorithm 1 finds an optimal schedule within our
model, while any other strategy is bound to fail for
some cases.

3) Occasionally, SCHEDULED is just as good as CON-
STMAXMIN or ALWAYSSWITCH. These are the sce-
narios where the heuristics CONSTMAXMIN or AL-
WAYSSWITCH happen to find an optimal solution.
This does not impair the quality of SCHEDULED, it
rather demonstrates that CONSTMAXMIN and AL-
WAYSSWITCH are worthy competitors.

A final insight of our experiments is the following. In
our prototype, the switching overhead is 7.76 [uJ], which
is quite high compared to peripheral queries requiring be-
tween 4.94 [J] and 365.29 [J]. It could be improved using
more sophisticated hardware, compare Section V. But even
under those adverse conditions, dynamically switching the
voltage saves energy, even with a simple strategy as AL-
WAYSSWITCH, even more so with the optimal SCHEDULED
strategy.

Our concluding observation is that the good experimental
results stem from the fact that dynamic voltage scheduling

Table III.

Average Peripheral Energy Consumption [pJ]

IMPACT OF VOLTAGE SCHEDULING ON PERIPHERAL ENERGY-EFFICIENCY COMPARED TO CLASSICAL APPROACHES.

Energy saved by SCHEDULED compared to

[Query Sequence “ CONSTDEFAULT [CONSTMAXMIN [ALWAYSSWITCH [SCHEDULED “ CONSTDEFAULT [CONSTMAXMIN [ALWAYSSWITCH
1 AEPGMAEPGM 1321 864 723 716 45.80 % 17.13 % 0.97 %
2 GAMGAMGAM 1872 1215 1013 1008 46.15 % 17.04 % 0.49 %
3 GAMPE 663 432 357 352 46.91 % 18.52 % 1.40 %
4 GAMPEGAMPE 1325 863 725 712 46.26 % 17.50 % 1.79 %
5 GEPGEPGEP 183 123 136 122 33.33% 0.81 % 10.29 %
6 PEMAG 663 432 358 352 4691 % 18.52 % 1.68 %
7 PEMAGPEMAG 1328 864 725 712 46.39 % 17.59 % 1.79 %
8 GAPEGAPE 209 133 142 130 37.80 % 2.26 % 8.45%
9 GPGPGPGPGP 241 165 207 165 31.54 % 0.00 % 20.29 %
10 PAMPE 666 436 356 347 47.90 % 20.41 % 2.53%
11 APEGAME 720 465 398 385 46.53 % 17.20 % 3.27%
can save much energy, that we use a good model, and that REFERENCES

SCHEDULED, i.e., Algorithm 1, is not a heuristic but provides
provably optimal voltage schedules.

A. Limitations

Our method guarantees that active peripherals never are
undervolted, but relies on undervolting the inactive ones —
otherwise CONSTMAXMIN would be optimal. So a potential
drawback of our method is that the measurements of an active
peripheral might be impaired by the fact that it has been
undervolted in the recent past. We tried to find evidence for
such an impairment, but none of our peripherals, see Table I,
was in any way compromised by the undervolting.

Should, however, such an effect be observed in an appli-
cation, e.g., that one sensor must not be undervolted below
a certain limit, Section IV-A3 shows how to easily integrate
such a limit into Algorithm 1.

VII. CONCLUSION

In this paper, we address sensor nodes capable of dy-
namically adjusting the peripheral voltage level. We optimize
peripheral energy-efficiency by (1) carefully modeling and
(2) optimally solving the following optimization problem:
Peripheral hardware consumes more energy when exposed
to a higher voltage level, each peripheral hardware device
requires some minimum voltage to be properly operated,
and adjusting the voltage level requires energy as well, the
switching overhead. Our approach weighs off the benefits of
a downscaled voltage level against the switching overhead.

We formulate a mathematical model of the above optimiza-
tion problem and provide an algorithm finding optimal voltage
schedules. The optimality of our schedules is verified with an
implementation and a dedicated prototype sensor node.

In experiments we observe energy savings of up to 47 % as
compared to a fixed voltage level. The experimental evaluation
also confirms the practical performance of our approach, thus
verifying both our model and our algorithm. Additionally, due
to its optimality, our approach never requires more energy than
its alternatives.

Further work includes the generalization of our approach
to related scheduling problems, as well as the distribution
of the problem: Neighboring sensor nodes may collaborate
when observing the environment and thus avoid the switching
overhead by sharing their sensor set.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

U. Tietze and C. Schenk, Electronic Circuits: Handbook for Design
and Application. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2007.

T. Hamachiyo, Y. Yokota, and E. Okubo, “A cooperative power-saving
technique using dvs and dms based on load prediction in sensor
networks,” in Sensor Technologies and Applications (SENSORCOMM),
2010 Fourth International Conference on, july 2010, pp. 7 —12.

L. B. Hoermann, P. M. Glatz, C. Steger, and R. Weiss, “Energy
efficient supply of wsn nodes using component-aware dynamic voltage
scaling,” Wireless Conference 2011 - Sustainable Wireless Technologies
(European Wireless), 11th European, pp. 1 =8, april 2011.

W. Tuming, Y. Sijia, and W. Hailong, “A dynamic voltage scaling
algorithm for wireless sensor networks,” in Advanced Computer Theory
and Engineering (ICACTE), 2010 3rd International Conference on,
vol. 1, aug. 2010, pp. V1-554 —V1-557.

U. Kulau, F. Biisching, and L. C. Wolf, “A node’s life: Increasing WSN
lifetime by dynamic voltage scaling,” in The 9th IEEE International
Conference on Distributed Computing in Sensor Systems 2013 (IEEE
DCoSS 2013), Cambridge, USA, May 2013. [Online]. Available:
http://www.ibr.cs.tu-bs.de/papers/kulau-dcoss2013.pdf

M. Muller, S. Lupashin, and R. D’ Andrea, “Quadrocopter ball juggling,”
in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, 2011, pp. 5113-5120.

ST Microelectronic, “L3g4200d mems motion sensor: ultra-stable
three-axis digital output gyroscope,” 2010. [Online]. Avail-
able: http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/CD00265057.pdf

Texas Instruments, “Msp430f15x, msp430f16x, msp430f161x mixed
signal microcontroller,” 2002. [Online]. Available: http://www.ti.com/
lit/ds/symlink/msp430£1611.pdf

W. Dargie, “Dynamic power management in wireless sensor networks:
State-of-the-art,” Sensors Journal, IEEE, vol. 12, no. 5, pp. 1518 —1528,
may 2012.

F. Khoshnoud and C. de Silva, “Recent advances in mems sensor tech-
nology x2013; biomedical applications,” Instrumentation Measurement
Magazine, IEEE, vol. 15, no. 1, pp. 8-14, 2012.

T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynam-
ically variable voltage processors,” in Low Power Electronics and
Design, 1998. Proceedings. 1998 International Symposium on, 1998,
pp. 197-202.

Y. Cho, Y. Kim, Y. Joo, K. Lee, and N. Chang, “Simultaneous opti-
mization of battery-aware voltage regulator scheduling with dynamic
voltage and frequency scaling,” in Low Power Electronics and Design
(ISLPED), 2008 ACM/IEEE International Symposium on, 2008, pp.
309-314.

Crossbow, “Micaz,” 2012. [Online]. Available:
openautomation.net/uploadsproductos/micaz_datasheet.pdf
Atmel, “Avr raven,” 2012. [Online]. Available: http://www.atmel.com/
Images/doc8117.pdf

J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable sensors
for reliable fall detection,” in Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference
of the, 2005, pp. 3551 -3554.

http://www.

