

DroidCluster: Towards Smartphone Cluster ComputingThe Streets are Paved with Potential Computer Clusters

The Streets are I aved with I otential Computer Clusters

Sebastian Schildt, Felix Büsching, Lars Wolf

PhoneCom 2012

Once upon a time...

In the beginning of 2011 we bought 6 medium class Android Smartphones for a programming lab.

LG P500, Android 2.2, 600 MHz Qualcomm MSM7227, 512 MiB RAM

The idea...

The idea...

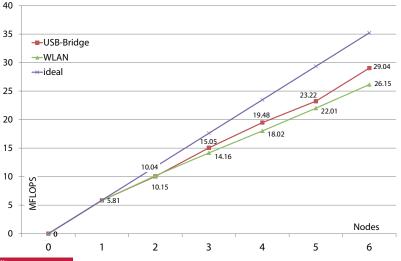
We should build a cluster out of it!

The idea...

We should build a cluster out of it!

Sounds like a reasonable idea!

Architecture



Software

- Full ARM Debian installation alongside the Android OS (chroot)
- MPI-based Linpack benchmark
- Connectivity through WiFi or USB reverse-tethering
- Control PC only used for controlling and monitoring the phones, not involved in calculation

Results

Our Cluster

- No specialized mobile application, but standard Debian distribution and standard libraries and tools
 - ightarrow would not have been possible on a phone a few years ago
- Running alongside the normal phone applications
- Closely-coupled: Standard MPI, but over slow communication links
- ightarrow still scales reasonably

Absolute performance not that impressive

SoC Evolution: Measured Performance under Android

$S_{JS}\epsilon_{e_{II}}$		AME	ARM Core	Android	MELOPS
Huawei U8120	Qualcomm MSM7225	528	ARM11	2.3.7	3.7
LG P500	Qualcomm MSM7227	600	ARM11	2.2	4.0
HTC Legend	Qualcomm MSM7227	600	ARM11	2.3.7	7.5
Samsung Galaxy S	Samsung Exynos 3110	1000	Cortex A8	2.3.7	17.7
HTC Nexus One	Qualcomm QSD 8250	1000	Scorpion	4.0.3	31.0
Medion Lifetab P9514	Nvidia Tegra 2	2x1000	Cortex A9	3.2	54.4
Samsung Galaxy Nexus	Texas Instruments OMAP 4460	2x1200	Cortex A9	4.0.2	75.0

SoC Evolution: Measured Performance under Android

$S_{J}^{S_{f}}$		ATTA.	4RM Core	Android	MELOPS
Huawei U8120	Qualcomm MSM7225	528	ARM11	2.3.7	3.7
LG P500	Qualcomm MSM7227	600	ARM11	2.2	4.0
HTC Legend	Qualcomm MSM7227	600	ARM11	2.3.7	7.5
Samsung Galaxy S	Samsung Exynos 3110	1000	Cortex A8	2.3.7	17.7
HTC Nexus One	Qualcomm QSD 8250	1000	Scorpion	4.0.3	31.0
Medion Lifetab P9514	Nvidia Tegra 2	2x1000	Cortex A9	3.2	54.4
Samsung Galaxy Nexus	Texas Instruments OMAP 4460	2x1200	Cortex A9	4.0.2	75.0

Performance drivers: Transition to multicore, out-of-order

architectures, (better) FPU+SIMD units

Next big thing: OpenCL capable mobile GPUs for GPGPU offloading

Opportunities

Chances for ubiquitous mobile applications, crowd sensing platforms, data distribution networks based on mobile phones.

You can

- put computation back from the backend into the users device
- form Ad-Hoc groups to cooperatively solve a problem
- consider the best tradeoff between closely-coupled cooperation (e.g. MPI) and loosely-coupled cooperation (BOINC, "seti@home")

Opportunities

Chances for ubiquitous mobile applications, crowd sensing platforms, data distribution networks based on mobile phones.

You can

- put computation back from the backend into the users device
- form Ad-Hoc groups to cooperatively solve a problem
- consider the best tradeoff between closely-coupled cooperation (e.g. MPI) and loosely-coupled cooperation (BOINC, "seti@home")

"If I am collecting temperature and pressure data, why shouldn't I also calculate the weather report?"

ntroduction The Cluster Implications Opportunities Opportunities

An example...

Employee Charges Phone - Fired for Stealing Electricity!

Proposal: distcc for Android

Distribute compilation of larger projects over different nodes

- During the day employees put their phone into a USB port of their computer for charging
- 2. Phone registers at the company Phone-Cloud control server
- Phone will be automatically provisioned with the necessary compilation environment and registered to the distcc system

Proposal: distcc for Android

Distribute compilation of larger projects over different nodes

- During the day employees put their phone into a USB port of their computer for charging
- 2. Phone registers at the company Phone-Cloud control server
- Phone will be automatically provisioned with the necessary compilation environment and registered to the distcc system

Benefits

- Users can charge phones without risking being fired
- Bring-Your-Own-Device: Companies can leverage hardware already paid for by their employees

Conclusions

- Many mobile phones today are faster than desktop computers from 10 years ago
- The architectural evolution of mobile SoCs follows those of traditional desktop and server CPUs
- But SoCs are catching up: Programmable GPUs, SIMD units, ...
- This gives some room for innovative research applications
- Levering existing smartphones' processing power is environmentally sustainable, as their SoCs are quite energy efficient
- It is necessary to find a trade-off between tapping the computing power and draining the battery

One more thing...

I will go to explore to Hong Kong from Friday 22nd in the morning until Monday the 25th.

Anybody want to join?

One more thing...

I will go to explore to Hong Kong from Friday 22nd in the morning until Monday the 25th.

Anybody want to join?

Also: If interested there is still an extra bed for 3 nights in the room I rent (around 70 EUR (90\$) for all nights).

Conclusions

 Many mobile phones today are faster than desktop computers from 10 years ago

- The architectural evolution of mobile SoCs follows those of traditional desktop and server CPUs
- But SoCs are catching up: Programmable GPUs, SIMD units, ...
- This gives some room for innovative research applications
- Levering existing smartphones' processing power is environmentally sustainable, as their SoCs are quite energy efficient
- It is necessary to find a trade-off between tapping the computing power and draining the battery

ntroduction The Cluster Implications Opportunities

Conclusions

 Many mobile phones today are faster than desktop computers from 10 years ago

- The architectural evolution of mobile SoCs follows those of traditional desktop and server CPUs
- But SoCs are catching up: Programmable GPUs, SIMD units, ...
- This gives some room for innovative research applications
- Levering existing smartphones' processing power is environmentally sustainable, as their SoCs are quite energy efficient
- It is necessary to find a trade-off between tapping the computing power and draining the battery

Thank you!

