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Abstract—While for an automatic and autonomous indoor fall
detection an enormous amount of different sensors is conceivable,
for an outdoor fall detection only wearable sensors are applicable.
For practical uses cases, it would be very beneficial if after a
detected fall a medical alert is initiated. In indoor environments,
a base station connected to a telephone line can handle these
calls. On the road, this can be achieved by mobile phones or
smartphones.

In this paper we first estimate the suitability of several systems
for an outdoor fall detection. Then, we propose a system for
a mobile and stationary fall detection and alerting system. We
implemented and evaluated this system, which is consisting of a
smartphone and a wireless sensor node.

Index Terms—Outdoor Fall Detection; Wireless Sensor Node;
Smartphone; Accelerometer

I. INTRODUCTION & RELATED WORK

The automatic detection of a person’s fall is a much-debated
topic and there are several different approaches, algorithms,
sensors and systems [1]. In practical use cases, these systems
should come along with an autonomous alarm signaling which
transmits the event of a detected fall to some kind of emer-
gency response infrastructure. Elderly people – living at home
alone – represent a large target group for such systems. In
the GAL project [2], we focus on such a setting. In case a
person tumbles and nobody is around to help, an independent
fall detection and alarming system could automatically call for
help, even if the person is unable to trigger an alarm by his-
/herself. This may additionally increase the personal feeling
of security.

A. Fall Detection

An automatic fall detection in general can be performed
by many different sensors and systems. One or more video
sensors (cameras) are often and reliably used [3] in home
environments. Arrays of infrared sensors [4], laser scanners [5]
and even floor vibration and sound [6] are possible candidates
for a fall detection. But, as these are stationary sensors, it is
obvious that these sensors only work within a certain area
which most likely will be located indoors.

However, most publications regarding fall detection con-
sider wearable sensors. Accelerometers [7][8], gyroscopes [9]
or even barometric pressure sensors [10] are attached on a
person’s body and allow a precise assessment of the body’s
motion. Whereas in most cases, these systems also only work
within a certain area, as the raw data is just gathered by

the wearable sensors and not processed in place. In most
publications, these systems transmit raw sensor data to a
powerful computer which is analyzing the data and performing
fall detecting algorithms. Thus, most approaches that use
wearable sensor nodes for fall detection are also only working
indoors.

B. Personal Emergency Response System

The idea of a Personal Emergency Response System
(PERS) [11] has come up a long time ago and nowadays
these systems are widely used. Traditional PERS or medical
alert systems usually consist of a wearable device and a base
station. Whenever the user needs to call for help, he or she
just has to press a button on the wearable mobile device.
The mobile device then radios a message to the base station
which is connected to a stationary phone line and initiates
an emergency call to a certain service provider. Talking to
health-care professionals and system operators, many different
behaviors of elderly people equipped with a PERS can be
observed:

1) Normal usage: The desired use case for a PERS is
a person wearing an emergency wireless transmitter like a
wristwatch, a necklace or a pendant permanently during the
whole daytime.

2) Non-usage: During a normal maintenance interval, a
service technician drops by for changing the batteries of the
wireless transmitter. Not rarely, some elderly persons have
to grope around for the device in various drawers, obviously
never wearing it.

3) Refused usage: Even if a fall occurs and the respective
person is unable to get up again on its own, some people tend
to "not wanting to bother" other persons with their accident.
Especially if the home care service is expected to appear
within the next few hours, some elderly people prefer to wait
helpless on the floor, rather than to put somebody out and call
for help.

4) Anxious usage: Anxious or confused persons may tend
to wear the transmitter additionally during bedtime. This
can lead to a higher amount of false alarms, because of
inadvertently triggering the alarm by a turnover or in the
consequence of a bad dream.

5) Avoidance behavior: Besides that, anxious people may
avoid to leave the residence, because the PERS only works
inside the range of the base station (∼ 30− 100meter).



The case of non-usage (I-B2) can only be handled by a
non-invasive and non-worn autonomous system with deployed
sensors like cameras, light barriers, laser scanners or other suit-
able sets for an indoor fall detection (see I-A). Nevertheless,
these will never work outside the residence.

The case of refused usage (I-B3) can be addressed by an
automatic fall detection without the need of an interaction
of the user. The anxious usage (I-B4 could be handled by a
system that only works automatically, without the opportunity
of a manual trigger; but this would probably also lead to a
lower acceptance rate of the system.

The avoidance behavior (I-B5 can be addressed by a mobile
PERS, which is able to utilize other channels than just the local
phone line to make an emergency call.

C. Mobile PERS

A mobile PERS has been considered in several smart-
phone applications. Apps like PerFallD [12] or iFall [13] are
some examples that utilize the accelerometer of an Android
smartphone for the realization of a fall detection. As they all
additionally use the GSM/UMTS radio for sending messages
or emergency calls, such system – consisting of just one
mobile phone – could already be called a mobile PERS.

PerFallD is the only one of the previously referred mobile
PERS that mentions the power consumption of the system. The
authors claim that their system is able to run for ∼ 33.5 hours
on a HTC Dream (T-Mobile G1) smartphone. Referring to
the datasheet, the maximum battery lifetime of this particular
phone in idle state is ∼ 402 hours. Thus, the lifetime decreases
by more than a factor of 10 – if the manufacturer can be trusted
regarding the achievable runtime. Nevertheless, it is a matter of
common knowledge that the batteries of today’s smartphones
– of any manufacturer and any kind – will not last for a longer
period of time, if the smartphone is actually used. In a heavy
usage scenario [14], none of the up-to-date smartphones will
last more than a few hours.

In the next section, we will state some design decisions
for our approach of a mobile PERS, which consists of more
than just a mobile phone and is presented in Section III. In
Section IV we will give a short insight in the implementation
which is then evaluated in Section V. Finally, in Section VI
we conclude the paper.

II. DESIGN DECISIONS

At a first glance, today’s smartphones offer anything that is
needed for a mobile fall detection and automated emergency
calls. Most devices include an accelerometer, some even
include a gyroscope. The computational power of smartphones
is comparable to former workstations [15] and, thus, even
complex algorithms for fall detection and gait analysis can
easily be implement – in a common programming language
like JAVA. Also, several mobile networks, like G2/3/4 net-
works or WiFi enable to make emergency calls from almost
everywhere in the urban, suburban and rural areas. But, the
tempting story of "one device fits all needs" is worth a second
glance.

Table I
FALL DETECTION CAPABILITIES OF DIFFERENT SYSTEMS

Fixed Installation1 Smartphone Sensor Node
Computing Power very high high very limited
Available Memory very high high very limited
Power Limitation none2 very high normal
Available Sensors all few some3

A. Limitations of Smartphones
Unlike the processing capabilities of modern devices that

more or less follow Moore’s Law, only moderate progress can
be observed for nowadays batteries. Thus, the normal usage
of a smartphone is to carry it while outdoors and to charge it
while indoors. In other words, a smartphone can never be the
only sensor for a fall detection, as one normally immediately
takes it out of the pocket and plugs it in a charging station
when returning home. Another aspect to be considered when
utilizing a smartphone for fall detection is the unspecified
position and alignment at the body. As it is still a smartphone
in the first place, some people put it in a pocket of the trousers,
or in the jacket, or handbag or belt bag. While the correct
alignment can be calculated by special algorithms [16], some
of these locations are more tight, others are more loosely
bound to the body, which may lead to huge inconsistencies
in the fall detection.

B. Single Device for In- and Outdoor Fall Detection
If a "single-device-solution" for combined mobile and sta-

tionary PERS is wanted, this single device cannot be a smart-
phone, just because of it’s power consumption. But, having
one system for monitoring falls at home and another system
for monitoring falls on the road does also not sound like the
cleverest idea ever. In fact, such a diversity would rather lead
to confusion than to a raised feeling of security.

C. Benefits and Limitations of Sensor Nodes
As mentioned in Section I-A, a wireless sensor node with

a dedicated set of sensors is frequently used for performing
a fall detection. In contrast to a smartphone, the usage of
dedicated wireless sensor nodes allows a more or less exact
placement on the person’s body (e.g. by a belt or wrist
mounted device). A wireless sensor node can also have a
known and determined set of sensors, whereas the specific
types of sensors in smartphones differ from unit type to
unit type. Additionally, the configuration of theses sensors
(range and resolution) can be directly controlled, whereas
most smartphones only provide a high level abstraction for
sensor data). Furthermore the implemented "intelligence" in
nowadays digital sensors – e.g. an interrupt request at a certain
acceleration threshold or at a detected predefined pattern –
allows for more energy and computation efficient algorithms.

But, on the other hand, a "normal" (wireless) sensor node
is surely an additional device, as it is not capable of making
emergency calls outside the radio range of it’s base station.

1See first paragraph of Section I-A.
2Excluding wireless wearable sensors.
3Dependent on the used sensor node.
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Figure 1. Fall detection system, indoors (A) and outdoors (B).

In Table I we summarized our assessment of the different
systems for an autonomous fall detection.

III. SYSTEM OVERVIEW

As a consequence of the arguments presented in Section II,
we propose an autonomous fall detection and emergency
call system consisting of 3 parts. We consider one and the
same system for detecting the falls and different systems –
according to the location of the user – for making emergency
calls. In Figure 1 the components and the basic functionality
is presented. In an indoor environment (A) and within the
communication range (d) of the base station, a worn wireless
sensor node directly communicates via a wireless link with
a base station, like in a "normal" PERS scenario. As an
enhancement to the normal PERS setting, this node is not just
a mobile alarm button. With the onboard sensors an automatic
fall detection can be performed, whereas the computation
of the algorithms could be performed either directly on the
node or the raw data is transmitted to the (presumably more
powerful) base station and processed there.

In an outdoor environment (B) the same worn wireless
sensor node collects data. But, in this particular case, it
communicates with a mobile phone, which again is responsible
for making emergency calls. These emergency calls could be
enriched by localization data derived from the cellular network
or a built-in GPS receiver. Here, too, the computation of
the fall detection algorithms can either be performed on the
wireless sensor node or on the mobile phone, which again
only in the latter case would have to be a smartphone. When
just acting as a gateway for emergency calls, even an already
present legacy phone can be utilized for this purpose. For that

Figure 2. INGA sensor node, extended by a Bluetooth shield.

case, we expect only little additional battery drain at the mobile
phone.

For the indoor and the outdoor scenario, we assume that
the constant transmission of raw data to another device (be it
base station or smartphone), will lead to an increased power
consumption of the system.

IV. IMPLEMENTATION

The implementation covers three different use cases:
1) Sensor sampling and fall detection performed by sensor

node; emergency alarm performed by smartphone.
2) Sensor sampling performed by sensor node; fall detec-

tion and emergency alarm performed by smartphone.
3) Sensor sampling, fall detection, and emergency alarm

performed by a smartphone.
For our implementation, we used an INGA [17] wireless

sensor node. This node is equipped with an accelereometer, a
gyroscope and a barometric pressure sensor, but, for a proof-
of-concept implementation, we only utilized the accelerometer
for the fall detection.

The wireless sensor node is equipped with an IEEE 802.15.4
compatible radio transceiver, which is widely used in the
area of Wireless Sensor Networks (WSNs) and Wireless Body
Area Networks (WBANs). Unfortunately, most of the existing
mobile phones do not offer such a radio interface. To still
enable a communication between a WBAN and a mobile
phone (or smartphone), we developed a Bluetooth shield which
can be mounted below INGA (see Figure 2) and allows a
connection to any Bluetooth capable phone. We also devel-
oped a respective hardware driver for the Contiki Operating
System [18], which runs on INGA. We implemented a fall de-
tection algorithm that takes advantage of the "intelligence" of
INGAs concerning accelerometer [19]. Besides the automatic
fall detection, the push button can be used to manually trigger
the transmission of an emergency call.

We used a common Android smartphone as counterpart and
implemented the three different applications. All applications
are able to initiate emergency calls, using the hands-free mode
of the phone or send a text message with a predefined text to
a predefined phone number (see Figure 3).

In the first application, the fall detection takes place on the
wireless sensor node and only alarm requests are send via the
Bluetooth link.

The second application utilizes the sensors of the via Blue-
tooth connected INGA wireless sensor node. In this case, all
raw data is transmitted to the smartphone and processed there.
We implemented a fall detection and a depitch algorithm [16].

The third application works as a standalone fall detection
and alerting system which uses the same algorithms as the
second application, but only utilizes the acceleration sensor of
the smartphone.

V. EVALUATION

For the evaluation of our previously described implemen-
tation we used a Motorola Milestone, running Android 2.3.7
and Cyanogen Mod 7.1.5 ROM. First of all, we concentrate on
the battery drain of the smartphone, which we consider most



Figure 3. Android application for WBAN connection and alarm notifications.
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Figure 4. Battery drain of the smartphone for the different use cases. The
"Receive & Process" curves are plotted in detail in Figure 5.

important for a mobile fall detection system. Our systems also
uses the modified INGA [17] sensor node, running Contiki
2.5; and we also measured it’s energy consumption in the
implemented use cases. As mentioned in the abstract, we are
not willing and able to give an estimation of the actual quality
of the different algorithms. But, we can estimate the actual
costs in terms of energy consumption and asses whether to
implement an algorithm on either one device or another.

A. Baseline for Smartphone

As already mentioned in Section I, the baseline for the
smartphone in a realistic use case is hard to tell. The manufac-
turer of the used phone claims a standby time of 380 hours in
UMTS mode – but this surely only applies for an completely
"unused" phone, if ever. During our evaluation no phone calls
occurred and most of the unused system processes have been
shut down. We constantly monitored the state of the battery
with a self-developed application. The "Idle"-curve in Figure 4
shows the results of these measurements.

B. Sensor sampling on node, fall detection on smartphone

The data acquisition by the wireless sensor node has the
advantage that the data can be gathered at one or more
defined positions on the body. Additionally, the advantages
of a fully controllable and programmable sensor, like the
freedom to chose different ranges, speeds and resolutions, can
be used. When just sampling this data and transferring it to a
powerful computer – like a smartphone – complex calculations
can be performed on accurately gathered data. Unfortunately,
this consumes the most energy – by far. We sampled and
transmitted the data of INGAs accelerometer at three different
data rates. As the "Receive & Process"-curves in Figure 4
are very close to each other and are decreasing very fast, we
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raw data from a wireless sensor node at different data rates. The "Idle and
Others"-curves are plotted in detail in Figure 4.
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provided a more detailed view in Figure 5. After less than
5 hours of receiving and processing samples, the battery of
the smartphone is completely empty. And this only applies
for the unrealistic case that there are no other tasks running
on the smartphone.

C. Sensor sampling and fall detection on node

Performing sensor sampling and fall detection on wireless
sensor nodes and just sending alarm notifications via the
Bluetooth link leads to the longest lifetime of the smartphone
in all our use cases. Although the Bluetooth connection was
constantly established, the "FD on INGA"-line in Figure 4
shows only a comparatively small additional battery drain. The
advantages of being able to predetermine the position of the
sensor(s) and to fully configure these sensors apply for this
use case as well. The limited computational power of the 8 bit
microcontroller could be compensated by the utilization of
"intelligent" interrupt based detection algorithms.

D. Sensor sampling and fall detection on smartphone

As smartphones usually do not allow the use of the in-
terrupts of the built-in accelerometers, these accelerometers
have to be constantly polled, which leads to a significant
higher energy consumption. On the other hand, no additional
communication between the smartphone and another device



is needed. Looking at the energy consumption, the pure
smartphone based solution performs as expected. The "FD
on Smartphone"-curve in Figure 4 shows, that this solution
consumes up to twice as much energy, as a fall detection
performed by a wireless sensor node.

E. Energy consumption of the wireless sensor node

As long as a wireless sensor node is involved in the fall
detection, it surely consumes additional energy. This energy is
usually provided by a battery and cannot be neglected. In Fig-
ure 6 the drain of the wireless sensor nodes battery (950mAh)
is presented. The energy consumption behaves similar to the
smartphone. When the battery voltage level drops below 3V
the nodes stops working because INGA’s internal low drop-
out voltage regulator expects voltages higher than 3V – in
this specific use case this happens after ∼ 8 hours when
continuously sampling and sending 64 sample/s. Executing a
fall detection on INGA and sending just emergency events
performs much better than the continuous transmission of data
to a smartphone.

VI. SUMMARY AND CONCLUSION

It was not the intention of this paper to give a qualitative
analysis of different algorithms for fall detection, but where
and how to implement these algorithms. So, performing a fall
detection on a smartphone is not the worst thing to do. How-
ever, the additional power consumption evoked by constantly
polling the accelerometer and performing calculations surely
lowers the lifetime of the system, but, not in a critical way
– if the smartphone is not used for any other purpose than
detecting falls and if an additional fall detection system for
indoor usage is persent.

A smartphone is usually only present at the body of a
person – and by this only able to detect falls or act like
an emergency button – when the person leaves the residence.
When the person is at home, smartphones usually charge in
some electrical outlet. Thus, a smartphone can never be the
one and only solution for an integrated fall detection.

Implementing the fall detection algorithms on wireless
sensor nodes and communicating these events to either a fixed
base station (indoors) or a carried smartphone (outdoors),
combines the benefits of both worlds. Admittedly, the wireless
sensor nodes only have the limited computation power of
an 8 bit microcontroller, but they can take advantage of the
already available "intelligence" of the digital accelerometers,
like interrupt based routines. The sensors can be placed at pre-
defined sites – maybe attached to a belt or weaved in clothing –
and the overall power consumption of the proposed combined
indoor and outdoor fall detection system is comparable low.
Thus, an accurate and secure fall detection can be achieved
with the proposed system.
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