

Fall Detection on the Road

Felix Büsching, Henning Post, Matthias Gietzelt, and Lars Wolf buesching@ibr.cs.tu-bs.de

Personal Emergency Response System (PERS)

Observed behavior 1: Normal usage

Works – since several years

Personal Emergency Response System (PERS) – Non-Usage

Observed behavior 2: Non-usage

- Forgets to wear sender
- Doesn't even know where it is

Fall occurs

No button to press

No alarm

Technische Universität Braunschweig

Personal Emergency Response System (PERS) – Refused Usage

Observed behavior 3: Refused usage

- "The mobile nursing service will come anyway in 2-4 hours"
- "I'll wait here on the floor don't want to bother anyone"

Personal Emergency Response System (PERS) – Anxious Usage

Observed behavior 4: Anxious usage

- "I feel safe I better wear that thing 24/7"
- Many false alarms during nighttime

Bad dream occurs

False Alarm

Button accidentally pressed

Felix Büsching | Fall Detection on the Road | 5

Personal Emergency Response System (PERS) – Avoidance Behavior

Observed behavior 5: Avoidance behavior

- "System works good at home."
- "So, why leave it and enter the unsafe outside?!"

Summary: Personal Emergency Response System (PERS)

- 1. Normal usage
 - OK, this is boring...
- 2. Non-usage
 - Indoors: Fixed Sensors (Cameras, Laser Scanners, etc.)
- 3. Refused usage
 - Additional autonomous fall detection and automatic alarm notification
- 4. Anxious usage
 - Only autonomous fall detection and automatic alarm notification
- 5. Avoidance behavior
 - System that also works "on the road"

\rightarrow Mobile PERS with autonomous fall detection needed... here we go!

Technische Universität Braunschweig

PerFallID [1], iFall [2]

- Systems/Applications for Android Smartphones
- Detect falls with built in sensors
- Report falls via 2/3/4G connection
- Additional location information via GPS

Everybody owns a smartphone!

- Enough processing capabilities for fall detection
- Communication interfaces for alarm messages
 Problem solved?!

[1] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, "Mobile phone-based pervasive fall detection," Personal and Ubiquitous Computing, vol. 14, no. 7, pp. 633–643, 2010.

[2] F. Sposaro and G. Tyson, "ifall: An android application for fall monitoring and response," in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009.

Universität Felix Bi Braunschweig

Felix Büsching | Fall Detection on the Road | 8

Limitations of Smartphones

Position on the body

- Pocket
- Jacket
- Handbag

Battery Lifetime – HTC Dream

- PerFallID: 33.5 hours
- Idle time: 402 hours (according to HTC)
- \rightarrow less than 10% of nominal time
- \rightarrow in reality: depends on usage
- ► → never enough!

One Single Device for Indoor and Outdoor Usage?!

Smartphone?!

- Charging when returning home
 - Not able to detect falls @home
- PSTN better suited for alarm messages
 - 2/3/4G networks are not that stable
- → Smartphone cannot be the single PERS device!

"Pimped" wearable sensor?!

- Adding 2/3/4G communication interfaces
 - Lifetime decreased
 - Cost added

Proposed System: 3 Parts

- One and the same senor for fall detection
- Two systems for emergency calls: Home station & Smartphone

Felix Büsching | Fall Detection on the Road | 11

System for Mobile Fall Detection

Android Smartphone: e.g. Motorola Milestone

- ARM Cortex A8 550 MHz, 256 MB RAM, 512 MB ROM
- Accelerometer, Compass, Light-Sensor
- 3G, Bluetooth

INGA Wireless Sensor Node

- 8-bit Microcontroller @ 8 MHz, 16 kB RAM, 128 kB Flash, SD
- Accelerometer, Gyroscope, Barometric Pressure Sensor
- IEEE 802.15.4 radio, additional Bluetooth radio

On the Road...

Emergency Messages

- Sent by Smartphone
- Via 2/3/4G network

- Obviously not in the Home Station
 Possible solutions
- 1. Sensor sampling and fall detection on smartphone
- 2. Sensor sampling on node, fall detection on smartphone
- 3. Sensor sampling and fall detection performed by node

Evaluation: Energy Consumption of Smartphone

Evaluation: Energy Consumption of Smartphone – R&P Detailed

Evaluation: Energy Consumption of INGA Node

Conclusion

Mobile PERS with Fall Detection is needed to ...

- Cope with "avoidance behavior"
- Handle "refused" and "anxious usage"
 Sensor Node for Data Sampling
- Determined position at body
- One and the same device
- Sensor Node for Fall Detection Algorithms
- Takes advantage of interrupt routines
- No continuous transmission -> low energy
- Thanks for the attention!
- buesching@ibr.cs.tu-bs.de

