
An Overview of µDTN:
Unifying DTNs and WSNs

Georg von Zengen, Felix Büsching, Wolf-Bastian Pöttner, and Lars Wolf
Technische Universität Braunschweig

Institute of Operating Systems and Computer Networks (IBR)
Mühlenpfordtstr. 23, 38106 Braunschweig

Email: {vonzeng | buesching | poettner | wolf}@ibr.cs.tu-bs.de

Abstract—Wireless Sensor Networkss (WSNs) nowadays are
deployed in miscellaneous fields of application. Some use cases
– especially those which include mobility – would benefit from
a communication protocol that handles connection losses by
design instead of assuming a continuous end-to-end connection.
In this work, we describe the implementation of a Delay Tolerant
Network (DTN) protocol for WSNs, that is based on the Bundle
Protocol (BP) specifications. The BP specifies a “store, carry and
forward” network protocol that can be used in scenarios with
changing network topologies and unstable links. With µDTN,
we present a DTN implementation for Contiki OS which is
compatible to Contiki’s network stack and is able to handle
disruptions without packet loss. Furthermore, it is interoperable
with BP implementations running on Linux.

I. INTRODUCTION

DTN has its origins in interplanetary communication, where
usually a continuous end-to-end connection cannot be as-
sumed [1]. In harsh deep-space environments, traditional com-
munication protocols are inappropriate due to several reasons
such as long distances resulting in high latency, which again
makes connection oriented protocols like TCP unmanage-
able, and the absence of a continuous end-to-end connection
requires a different approach than common communication
protocols. The DTN architecture [2] bases on a “store, carry
and forward” concept and is able to compensate these short-
comings. The BP [3] is a specification for an implementation
of this concept.

Looking closer at WSNs, it turns out that some of the
problems are the same for interstellar communication and
communication in WSNs. The unreliable and unpredictable
radio channel is just one problem that can be addressed by
a protocol that is intentionally tolerant to delay or disruption.
Adding mobility to a WSN implies connection losses, tem-
porary separated nodes and split networks. This can either be
handled by an application in combination with more or less in-
telligent routing, or, as in our approach, by the implementation
of a generic DTN protocol for WSNs.

Implementing a well-known protocol such as the BP has
the additional benefit of interoperability with existing BP
implementations for other platforms. This enables seamless
network integration and reduces hassles with new and propri-
etary network protocols.

To overcome the stated problems, this paper presents our
BP implementation for 8- and 16-bit microcontrollers called
µDTN. It is integrated into the Contiki network stack and

sends bundles directly in IEEE 802.15.4 [4] radio frames. It is
based on Contiki OS and is interoperable with IBR-DTN [5]
for Linux.

The remainder of the paper is organized as follows: In
Section II related work regarding DTN-approaches in WSNs
is presented. The architecture and functionality of µDTN for
Contiki is detailed in Section IV, after some design decisions
in Section III. A preliminary evaluation is given in Section V.
Finaly, Section VI concludes the paper and provides the
resources for downloading µDTN.

II. RELATED WORK

Several publications have used DTN techniques in WSN
context, without using the standardized BP. One early example
of such projects is ZebraNet [6], which aims at tracking
wildlife in Kenya. Seal-2-Seal [7] tracks contacts between wild
animals, while LUSTER [8] aims at monitoring environmental
parameters to be used by ecologists. All those projects use a
proprietary delay tolerant communication protocol, whereas
also the BP would have been suitable. These examples show,
that a need for delay tolerant communication in WSNs exist.

Two published DTN implementations for WSN nodes exist.
DTNLite [9] implements DTN concepts on TinyOS, but does
not use the BP. ContikiDTN [10] uses the BP over TCP
Convergence Layer (TCPCL) in IEEE 802.15.4 networks. To
the best of our knowledge, no existing solution for using the
BP in IEEE 802.15.4 networks without the need for existing
layers 3 and 4 is available.

We conclude, that previous DTN implementations for WSN
nodes either did not use the BP or are based on IP for hop-
by-hop communication.

III. DESIGN DECISIONS

In order to make the (comparably) heavy Bundle Protocol
suitable for the limited resources of sensor nodes, we had to
take a number of design decisions.

In contrast to all other approaches, µDTN does not build
upon traditional transport- and network-layer protocols like
TCP/IP. It is located directly above the MAC-Layer and is
designed around the IEEE 802.15.4 convergence layer. The
support of multiple convergence layers has been neglected in
favor of higher performance and code efficiency.

Because of implementation efficiency for wireless sensor
nodes, which are usually limited in processing power and

mailto:vonzeng@ibr.cs.tu-bs.de
mailto:buesching@ibr.cs.tu-bs.de
mailto:poettner@ibr.cs.tu-bs.de
mailto:wolf@ibr.cs.tu-bs.de
http://www.ibr.cs.tu-bs.de

Fig. 1. Block diagram of µDTN’s architecture.

memory, some compromises in compatibility to the Bundle
Protocol specification were necessary: Compressed Bundle
Header Encoding (CBHE) [11] is the only supported variant
of µDTN’s primary block. CBHE leads to smaller bundles
that are easier to process and have less communication over-
head, because here addresses are coded as numbers instead
of strings. In order to further reduce communication and
processing overhead, µDTN uses a slightly modified format
for status and custody reports. Instead of using the (specified)
string-based EIDs, µDTN also uses CBHE-style addresses in
these bundles.

The current version of µDTN does not support fragmen-
tation of bundles. Splitting bundles into fragments the size
of the MTU of IEEE 802.15.4 leads to significant overhead
and has therefore be neglected. We are currently working on
mechanisms for segmentation of bundles between two nodes
to overcome the overhead. Consequently, the current version
can only send bundles that fit into one IEEE 802.15.4 radio
frame.

IV. ARCHITECTURE

µDTN is designed and implemented for the Contiki OS
which offers a significant number of supported hardware
platforms. µDTN uses a modular architecture which allows
configuring different implementations of the various compo-
nents during compile time. This makes the design flexible
and efficient at the same time to cope with the tightly lim-
ited resources of wireless sensor nodes. During the design
and implementation process, we have prioritized the memory
efficiency higher than the actual speed because memory is a
limited resource on most of the Contiki target platforms.
µDTN is split up into different modules as shown in

Figure 1. The “Agent” is the central entity and cannot be
exchanged while other modules may have different implemen-
tations. Interfaces are defined by structs that contain function
pointers so that every module can use its own naming conven-
tion. Modules have to be selected at compile-time, dynamic
loading is not supported at the moment.

Currently, we have interfaces and implementations for the
following modules:

• Discovery: Discovers other nodes to transfer bundles
• Routing: Decides which bundles are send to which nodes
• Storage: Stores bundles on a node
• Redundancy: Checks if a given bundle has been received

before

• Custody: Decides about custody questions, handles cus-
tody communication

• Status Reports: Handles bundle status reports
In the remainder of this section, we will detail information

about the interfaces of the different modules as well as the
currently available implementations.

A. Agent

µDTN is implemented as a single daemon protothread [12]
process that we call “Agent”. This process acts as a central
entity and enables event-based communication between the
different modules of µDTN as well as event-based commu-
nication with applications that want to send and/or receive
bundles. While modules can send events to the agent, the
agent interprets them and calls the appropriate functions of the
interested modules. Also, the agent is responsible to communi-
cate with the underlying layers of the stack to eventually send
and receive radio frames. Due to efficiency considerations, our
implementation supports only one convergence layer building
on the Contiki Netstack interface to communicate with other
nodes.

B. Data Structures

To temporarily keep bundles in RAM a C structure is
used. This structure contains a Contiki MMEM pointer to
the encoded representation of the bundle but in addition also
keeps a copy of the attributes that are used frequently during
processing, routing or storing a bundle. Also, the structure
keeps a table of offsets and lengths of the different attributes
in the primary bundle block to allow for fast random access
to all attributes. This also enables to quickly check whether
an SDNV value has changed its length whenever the value is
changed.

C. Discovery Module

The discovery module is responsible to discover nodes than
can be reached via the IEEE 802.15.4 radio link. Newly
discovered nodes are reported to other modules, so that the
routing module can send bundles to this neighbour. µDTN
currently has two alternative discovery mechanisms.

1) Reactive Node Discovery: Different to most common
BP implementations, µDTN can use a reactive discovery
approach. A node that has bundles to send periodically broad-
casts a beacon to all neighbors. Nodes receiving the beacon
will respond and bundles can be exchanged. This adaptive way
of discovering nodes is expected to be more energy efficient
than traditional periodic broadcasting approaches.

2) IP-ND based Node Discovery: DTN IP Neighbor Dis-
covery (IPND) [13] is a well-known mechanism to discover
nodes in IP-based networks. While the specification is IP-
specific, the employed data format is generic and can be easily
adapted to IEEE 802.15.4-based DTNs. We have implemented
a discovery module that periodically broadcasts IPND-style
packets in IEEE 802.15.4 radio frames to discover other
nodes. When receiving the beacons, the receiver can infer the
originators IEEE 802.15.4 address, the PAN and the EID of
the node.

D. Routing Module
The routing module is responsible to decide which bundles

should be forwarded to which neighbor in range. It is informed
whenever a new neighbor is discovered. Also, it is notified
whenever a new bundle is stored or a stored bundle is deleted.
The routing module usually waits for the discovery of a new
neighbor. Then, the module will decide if one or multiple of
the stored bundles should be forwarded to that new neighbor.
All bundles that should be transmitted are stored in a list and
passed on to the agent as an event. The daemon will then
interpret the event and forward all bundles to the respective
neighbor. For each successfully transmitted bundle, the routing
module receives a callback from the agent to keep track of the
current status of the bundles in the list.

We have implemented a modified version of flooding, in
which bundles are sent to a maximum of n neighbors before
they are deleted. The implementation avoids to send bundles
to nodes from which this bundle was received previously and
avoids sending bundles back to the originator. Bundles that
have successfully been delivered to the destination are deleted
from storage.

E. Storage Module
The storage module is responsible to store a bundle on a

local medium and to read and return the bundle upon request
by the agent. The BP specifies, that the creation timestamp,
the sequence number, the fragment offset and the source EID
of the bundle uniquely identify a bundle. Since comparing
a tuple of this information is time consuming, the storage
module assigns an internal number for each bundle that allows
a more efficient access to this specific bundle. The length of
this number if currently limited to 16 bit to maintain acceptable
speed on most platforms but could be extended to 32 bit (or
even more) depending on the platform.

1) Storage based on CFS: Contiki comes with the Coffee
File System (CFS) [14] which allows to store files on the
flash that is present on most popular sensor nodes. We have
implemented a storage module that stores each bundle in a
separate file of the CFS. In addition, the storage module keeps
a list of currently stored bundles in memory. The list includes
metadata such as the time at which the bundle has been
received, the size of the bundle, the lifetime of the bundle
and the internal number of the bundle that also resembles
the CFS filename. The storage module regularly checks the
lifetime of all stored bundles and eventually deletes a bundle if
the lifetime has elapsed. Bundles that are deleted are signaled
to the agent including a reason for deletion to be used in
the status and custody reports. Upon startup of a node, the
storage module repopulates the list by reading the necessary
information from flash memory.

A storage module based on the FAT filesystem is in prepa-
ration.

2) Storage based on volatile RAM: We have implemented
an additional storage module that stores all bundles in the
RAM of the microcontroller. As for the CFS-based storage a
list with meta information for each bundle is kept in memory.
Each entry of this list now contains a pointer to the MMEM

block in which the full bundle is stored in memory. While
bundles stored in memory will not survive node reboots, write
times to RAM are orders of magnitude faster than in flash.
Storing a bundle to flash with CFS may take around 512ms,
while storing such bundle to RAM takes less than 4ms.

F. Redundancy Module

Since bundles may be duplicated and transported on dif-
ferent paths to the destination, the destination node has to
avoid sending multiple copies of the same bundle to applica-
tions. The redundancy module has the responsibility to decide
whether a bundle should not be delivered to a local service
because it is a duplicate. We have designed this functionality
as a separate module since comparing the tuple of information
that is used to uniquely identify a bundle is time consuming
and can be optimized to specific application requirements.

G. Status Reports Module

Status reports are bundles of a special type that inform nodes
about the status of a bundle. The format of the implemented
status reports deviates slightly from the specification as out-
lined in Section III. This module is responsible to create and
interpret status report bundles and is invoked either by the
agent or by the custody module.

H. Custody Module

The custody module is primarily responsible to create and
interpret the custody reports. Further, the module has to decide
whether a node can become the custodian of a given bundle.
Each node maintains a list with all bundles for which the nodes
is the custodian. Whenever the node accepts custody for a new
bundle, the meta information of this bundle is inserted into the
list. Further, the nodes sets a timer to allow retransmission in
case that no other node wants to take custody for this bundle.

I. Application Programming Interface

The Application Programming Interface (API) can be used
by applications to send and receive bundles. The commu-
nication between applications (services in BP terminology)
in Contiki Protothreads and the agent is realized completely
asynchronously using events. First of all, an application has
to register an endpoint by filling a struct with parameters and
appending the structure to the appropriate event that is sent
to the daemon. After the registration, an application is ready
to receive bundles. Incoming bundles are signaled to the ap-
plication by an event originating at the agent. The application
receives the complete bundle structure and has to extract the
relevant information. To send a bundle the application has to
allocate a bundle structure and then use various API functions
to fill in the necessary fields and attributes of the bundle.
The API also allows adding custom blocks to the bundle
while intermediate daemons that do not understand the block
typically forward the block. Finally, the application sends an
event to the daemon with the bundle structure appended and
the daemon will then take care of storing and transmitting the
bundle.

A M B

Fig. 2. Node M is moving between the communication radii of nodes A and
B. In a DTN, node M could store, carry and forward bundles between A and
B.

V. EVALUATION

We have performed extensive evaluation with µDTN, but
have to omit detailed results due to space limitations. The
application-layer throughput of µDTN on INGA with a bundle
payload size of 80 bytes is 47.58 kbit/s. Furthermore, we have
measured the round-trip round-trip to be 23.13ms in a single-
hop scenario in the university laboratory.

The evaluation of the disruption tolerant use case was
performed in the Cooja Simulator. We designed a scenario
as shown in Figure 2: Nodes A and B are placed in a
setting, where they could not directly communicate with each
other. Using BonnMotion [15], a third node (node M) moved
between these nodes and so was able to collect and deliver
packets from A to B and vice versa. Movement time was
60 seconds for one direction, connection time (M in A’s or
B’s communication radius) was 15 seconds in each case.
We used the “CSMA” MAC layer and the “nullrdc” RDC
implementation. Further, a fixed bundle creation frequency of
0.07Hz has been configured to avoid overloading the memory
of the nodes. The full µDTN stack including discovery and
routing as outlined in Section IV is used. The result of this
simulation is, that in all 3 simulation runs µDTN was able to
deliver all 1000 packets generated by the sender. We conclude,
that µDTN can handle network disruptions without loosing
application data. We have also evaluated interoperability with
IBR-DTN and found, that bundles can be transmitted in both
directions. More evaluation results can be found in [16].

VI. CONCLUSION

In this paper we presented µDTN, a BP implementation
for Contiki. We have outlined the design decisions as well
as the architecture of µDTN. While certain aspects are not
completely compliant with the protocol specification, basic
interoperability is possible.

The evaluation has shown µDTN’s ability to cope with
disruptions in the network. Furthermore we have seen, that
the throughput is acceptable and improvements are planned.
Further evaluation (in a testbed using INGA [17]) – which was
omitted due to space reasons – showed, that µDTN is able to
sustain 0% packet loss even in networks with very high link
losses.

The µDTN implementation is under open-source license and
can be downloaded at:
http://www.ibr.cs.tu-bs.de/projects/mudtn/.

ACKNOWLEDGMENTS

The Lower Saxony research network “Design of Environ-
ments for Ageing” acknowledges the support of the Lower
Saxony Ministry of Science and Culture through the “Nieder-
sächsisches Vorab” grant programme (grant ZN 2701).

REFERENCES

[1] Kevin Fall. A delay-tolerant network architecture for challenged
internets. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
SIGCOMM ’03, pages 27–34, New York, NY, USA, 2003. ACM.

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss. Delay-Tolerant Networking Architecture. RFC 4838
(Informational), April 2007.

[3] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050
(Experimental), November 2007.

[4] The Institute of Electrical and Electronics Engineers, Inc. Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs). IEEE 802.15.4-2006, September 2006.

[5] Sebastian Schildt, Johannes Morgenroth, Wolf-Bastian Pöttner, and Lars
Wolf. IBR-DTN: A lightweight, modular and highly portable Bundle
Protocol implementation. Electronic Communications of the EASST,
37:1–11, Jan 2011.

[6] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with ZebraNet. SIGOPS
Oper. Syst. Rev., 36(5):96–107, October 2002.

[7] A. Lindgren, C. Mascolo, M. Lonergan, and B. McConnell. Seal-2-
Seal: A delay-tolerant protocol for contact logging in wildlife monitoring
sensor networks. In Proc. of MASS 2008, 29 2008-oct. 2 2008.

[8] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,
W. Kang, J. Stankovic, D. Young, and J. Porter. LUSTER: wireless
sensor network for environmental research. In Proc. of SenSys ’07,
pages 103–116. ACM, 2007.

[9] Rabin Patra and Sergiu Nedevschi. DTNLite: A Reliable Data Transfer
Architecture for Sensor Networks. Technical Report CS294–1, Berkeley,
2003.

[10] Max Loubser. Delay Tolerant Networking for Sensor Networks. Master’s
thesis, Swedish Institute of Computer Science, 2005.

[11] S. Burleigh. Compressed Bundle Header Encoding (CBHE). RFC 6260
(Experimental), May 2011.

[12] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.
Protothreads: simplifying event-driven programming of memory-
constrained embedded systems. In Proceedings of the 4th international
conference on Embedded networked sensor systems, SenSys ’06, pages
29–42, New York, NY, USA, 2006. ACM.

[13] D. Ellard and D. Brown. DTN IP Neighbor Discovery (IPND). IETF
Draft, 2010.

[14] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt. Enabling
Large-Scale Storage in Sensor Networks with the Coffee File System.
In Proceedings of the 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN 2009), San Francisco,
USA, April 2009.

[15] Nils Aschenbruck, Raphael Ernst, Elmar Gerhards-Padilla, and Matthias
Schwamborn. Bonnmotion: a mobility scenario generation and analysis
tool. In Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques, SIMUTools ’10, pages 51:1–51:10,
ICST, Brussels, Belgium, Belgium, 2010.

[16] Wolf-Bastian Pöttner, Felix Büsching, Georg von Zengen, and Lars
Wolf. Data Elevators: Applying the Bundle Protocol in Delay Tolerant
Wireless Sensor Networks. In Proceedings of the 9th IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2012),
2012.

[17] Felix Büsching, Ulf Kulau, and Lars Wolf. Demo: INGA - An
Inexpensive Node for General Applications. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’11,
Seattle, WA, USA, 2011. ACM.

http://www.ibr.cs.tu-bs.de/projects/mudtn/

	Introduction
	Related Work
	Design Decisions
	Architecture
	Agent
	Data Structures
	Discovery Module
	Reactive Node Discovery
	IP-ND based Node Discovery

	Routing Module
	Storage Module
	Storage based on CFS
	Storage based on volatile RAM

	Redundancy Module
	Status Reports Module
	Custody Module
	Application Programming Interface

	Evaluation
	Conclusion
	Bibliography
	References

