
Utilizing Hardware AES Encryption for WSNs

Felix Büsching, Andreas Figur, Dominik Schürmann, and Lars Wolf

Technische Universität Braunschweig,
Institute of Operating Systems and Computer Networks (IBR)
Email: {buesching | figur | schuerm | wolf}@ibr.cs.tu-bs.de

Abstract. Encryption is essential in many WSN applications. Several
encryption frameworks exist which are mostly based on software al-
gorithms. However, nearly every up-to-date radio transceiver chip is
equipped with an integrated hardware encryption engine. With this Poster
we show the benefits of utilizing an integrated hardware encryption en-
gine in comparison to pure software-based solutions.

1 Introduction

In most Wireless Sensor Network (WSN) applications data is recorded by wire-
less sensor nodes and then transmitted via a radio link (e.g. to a sink). While in
wildlife monitoring or similar scenarios the data may be transferred in plain text
and unencrypted, in other scenarios there is the demand for a reliable and secure
transmission of confidential data. Especially in Body Area Networks (BAN),
where vital parameters are recorded and transmitted, which are by definition
personal, it is obvious that this data should not be easily accessible by a third
party. Encryption – in general, and if implemented correctly – can ensure a
certain degree of security and therefore may help to conserve privacy and keep
confidental data secret.

One of the first implementations of link layer security in wireless sensor net-
works was TinySec [1] for TinyOS. It utilized the Skipjack algorithm which is
vulnerable to several cryptanalysis attacks [2]. In a footnote, which was added
later to their paper, the authors had to admit that AES would also be a vi-
able choice with similar performance like Skipjack. Even TinySecs successor
MiniSec [3] and another implementation called TinyKey [4] are based on Skip-
jack instead of using widely accepted and standardized block ciphers like AES.

ContikiSec [5] provides security for the operating system Contiki, utilizing a
software AES implementation.

2 AES Implementations for WSNs

One of the major challenges for encryption in WSNs is the limited computational
power of common wireless sensor nodes. Common sensor nodes are based on 8
or 16 bit microcontrollers, which are running at 4 to 8MHz. Also the available
memory (RAM and ROM) and (in most scenarios) the energy is limited. One

	 33	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

mailto:buesching@ibr.cs.tu-bs.de
mailto:figur@ibr.cs.tu-bs.de
mailto:schuerm@ibr.cs.tu-bs.de
mailto:wolf@ibr.cs.tu-bs.de
http://www.ibr.cs.tu-bs.de

major design goal of AES was the opportunity to run it even on weak processors,
therefore, it is surely possible to implement AES on such microcontrollers.

To get a deeper understanding of AES performance and cost issues, we imple-
mented the mentioned algorithms and hardware drivers for INGA [6], a low-cost
node consisting of an Atmel ATmega microcontroller and an Atmel AT86RF231
radio transceiver.

Simple Software Implementation. We implemented the original AES algo-
rithm in a straight forward way. The block size and the key length were fixed to
128bit. Only ECB and CBC Mode were implemented.

Advanced Software Implementation. The authors of [7] have shown that
there is still potential for improvements, thus, we improved our simple implemen-
tation by a lookup table, which needs another 1563 bytes of program memory.

Reference Assembler Implementation. To compare our C implementations
for Contiki with a software reference, we utilized RijndaelFast1, an optimized
assembler implementation for the Atmel ATmega family (without integration in
Contiki). We see this external implementation as a theoretical limit, knowing
that this performance could never be reached when using an operating system
like TinyOS or Contiki.

Hardware Implementation. Most of the current available radio transmitters
have an integrated hardware AES unit. These units can usually be addressed by
special registers via SPI bus. When using an operating system like Contiki or
TinyOS, the corresponding hardware drivers have to be implemented – we did
this for Contiki running on INGA.

3 Evaluation

The software algorithms as well as the hardware-based approach were evaluated
on INGA, running Contiki. We measured encryption throughput, application
layer throughput and code size of the considered solutions.

Encryption Throughput. In Figure 1 the average achievable pure encryption
throughput is shown. The optimized software solution (SW-AES-2) uses an ad-
ditional lookup table in comparison to SW-AES-1 and, hence, is nearly twice as
fast in all categories. The optimized assembler implementation outperforms both
of the Contiki implementations, but, it is not working with any other software. A
huge difference between the hard- and software implementation can be seen. The
hardware utilization, which again runs under Contiki, outperforms any software
implementation by far.
1 http://point-at-infinity.org/avraes/

	 34	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

http://point-at-infinity.org/avraes/

Application Layer Throughput. To see the impact of the usage of a hard-
ware encryption engine, we measured the UDP throughput between two nodes:
without encryption, with hardware support and with our two software AES im-
plementations. As can be seen in Figure 2 while software AES significantly cuts
down the throughput, with hardware AES nearly the "normal" throughput can
be achieved.

Code Size. Table 1 gives the code size of all implementations. Functions and
data add to the overall needed Flash memory. It is easy to see that the utilization
of the hardware AES module on the radio also saves an substantial amount of
RAM and ROM.

1,
75

5.
5

41
3.

9

40
.6

28
.1

1,
75

5.
5

30
0.

2

38
.2

11
.0

1,
08

5.
6

41
3.

9

40
.6

28
.1

1,
08

5.
6

30
0.

2

38
.0

11
.0

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

HW-AES ext. AES
(Assembler)

SW-AES-2 SW-AES-1

Th
ro

ug
hp

ut
 (k

bi
t/

s)

ECB encryption

ECB decryption

CBC encryption

CBC decryption

Fig. 1: Encryption throughput of INGA

44.9

61.6

95.7
105.5

42.9

58.4

88.1
97.3

21.6
24.7 28.7 28.7

17.7 19.8 22.0 22.5

0

20

40

60

80

100

120

64 128 512 1024

Th
ro

ug
hp

ut
 (k

bi
t/

s)

UDP Payload (byte)

No encryption

HW-AES

SW-AES-2

SW-AES-1

Fig. 2: UPD throughput

	 35	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Table 1: Code size (bytes) of all three implementations
RAM ROM

Data Functions
SW-AES-1 32 522 2514
SW-AES-2 32 2058 2462
HW-AES 0 0 518

4 Summary and Conclusion

We have shown that utilizing the hardware for AES operations outperforms
any software implementation. Although this result was expected, our evaluation
demonstrates the significant gains which can be achieved, thus, if a hardware
AES unit is present it should be utilized in any case. The implementation for
Contiki and INGA is available for download at: http://www.ibr.cs.tu-bs.de/
projects/inga/.

References

1. C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture
for wireless sensor networks,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems, ser. SenSys ’04. New York, NY, USA: ACM,
2004, pp. 162–175.

2. E. Biham, A. Biryukov, O. Dunkelman, E. Richardson, and A. Shamir, “Initial ob-
servations on skipjack: Cryptanalysis of skipjack-3xor,” in Selected Areas in Cryp-
tography, ser. Lecture Notes in Computer Science, S. Tavares and H. Meijer, Eds.
Springer Berlin Heidelberg, 1999.

3. M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure sensor network
communication architecture,” in Proceedings of the 6th international conference on
Information processing in sensor networks, ser. IPSN ’07. New York, NY, USA:
ACM, 2007, pp. 479–488.

4. R. Doriguzzi Corin, G. Russello, and E. Salvadori, “Tinykey: A light-weight archi-
tecture for wireless sensor networks securing real-world applications,” in Wireless
On-Demand Network Systems and Services (WONS), 2011 Eighth International
Conference on, jan. 2011.

5. L. Casado and P. Tsigas, “Contikisec: A secure network layer for wireless sensor
networks under the contiki operating system,” in Proceedings of the 14th Nordic
Conference on Secure IT Systems: Identity and Privacy in the Internet Age, ser.
NordSec ’09, Berlin, Heidelberg, 2009.

6. F. Büsching, U. Kulau, and L. Wolf, “Architecture and Evaluation of INGA - An In-
expensive Node for General Applications,” in Sensors, 2012 IEEE. Taipei, Taiwan:
IEEE, oct. 2012, pp. 842–845.

7. S. Didla, A. Ault, and S. Bagchi, “Optimizing AES for embedded devices and wire-
less sensor networks,” in Proceedings of the 4th International Conference on Testbeds
and research infrastructures for the development of networks & communities, ser.
TridentCom ’08, ICST, Brussels, Belgium, Belgium, 2008.

	 36	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

http://www.ibr.cs.tu-bs.de/projects/inga/
http://www.ibr.cs.tu-bs.de/projects/inga/

