
Multidimensional Transcoding for Adaptive Video
Streaming

Jens Brandt Lars Wolf
IBR

Technische Universität Braunschweig
Mühlenpfordtstrasse 23, 38106 Braunschweig, Germany

{brandt|wolf}@ibr.cs.tu-bs.de

ABSTRACT
Video content providers often offer their video streams at
three or more different quality levels: low, medium and high
quality. These different levels are needed to support differ-
ent target devices. However, this static kind of adaptation
to discrete quality levels cannot meet the requirements of
all existing multimedia devices. Because of the increasing
heterogeneity of Internet-enabled video devices a more dy-
namic and individual adaptation to the requirements of the
consuming device is needed. One approach for video adapta-
tion is the use of video transcoding techniques, where mod-
ifications of the video stream are done in the compressed
domain to save processing power. Many transcoding ap-
proaches for digital video can be found in the literature,
but these focus on adaptation in one single dimension only,
such as temporal adaptation, spatial adaptation or quality
adaptation. To support as many video-enabled devices with
different capabilities as possible, adaptation in more than
one dimension is needed. In this paper we present a multidi-
mensional transcoding approach for MPEG-4 encoded video,
which smartly combines existing transcoding techniques to
enable fine grain adaptation for different video devices.

1. INTRODUCTION
The prominence of digital video on the Internet is rising

constantly. But transmission as well as decoding of digital
video streams still has high resource requirements. To meet
the requirements of different target devices, video content
providers have to offer their video streams at different qual-
ity levels. Due to the increasing heterogeneity of Internet-
enabled video devices a static adaptation cannot meet the
requirements of all devices. Especially when looking at mo-
bile devices, a fine grain adaptation to the capabilities of
the device is mandatory. The possibilities of video playback
with mobile devices are mainly restricted by the limitation
of the following resources: network bandwidth, processing
power, display resolution, memory size and remaining en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’07 Urbana, Illinois USA
Copyright 2007 ACM 978-1-59593-746-9/06/2007 ...$5.00.

ergy. Although mobile video devices are getting more and
more powerful, the processor speed of current PDAs, smart
phones or pocket multimedia players is only about 300 – 600
MHz and their memory size is about 64 MB. Without special
video decoding hardware such devices are often incapable of
decoding and displaying high quality video streams from the
Internet. This problem will remain in the near future, also
since quality demands are rising as well.

Bit Rate Processor Memory Energy
Spatial x x x x
Resolution
Temporal x x x
Resolution
Detail x x x
Resolution

Table 1: Impact of encoding parameters

Table 1 shows the impact of different video coding pa-
rameters i. e., spatial, temporal and detail resolution, on the
resource requirements which the decoding device has to sat-
isfy. In this table as well as in the rest of this work we
focus on block-based video codecs that use motion compen-
sation (MC) and discrete cosine transfer (DCT) for video
compression. Examples of such video coding schemes are
MPEG-1/2/4, H.261, H.263 and H.264. All three parame-
ters that are given in the table directly affect the number
of coded bits in the stream and therefore also affect the re-
source requirements on the decoding device. Especially the
spatial resolution has an impact on all four resources. When
reducing the spatial resolution of a video stream, its bit rate
is reduced, which in turn also reduces the necessary network
bandwidth and processing power to decode the video. Fur-
thermore, because of smaller frame resolutions, the amount
of memory needed to buffer reference frames as well as the
consumed energy of the device are also reduced. Mobile de-
vices often have a small screen resolution, thus the spatial
resolution needs to be tailored to the screen resolution any-
way. Further bit rate reduction can be achieved by reducing
the temporal resolution (frame rate) and decreasing the de-
tail resolution (increasing the quantization factor). Because
of the reduced number of frames and the reduced number of
coded DCT values, both reductions also have an impact on
the processing power needed for decoding. Additionally, all
parameters have an impact on energy consumption. In [10]
it was shown that the energy consumption of video decoding
can be reduced to 75 – 58% by increasing the quantization
level which results in a quality decrease of just 5 – 13%.

In the literature mainly two different approaches for video
adaptation can be found: scalable video coding and video
transcoding. With scalable video coding the video stream
is separated into a base and one or more enhancement lay-
ers. The base layer contains the complete stream in a low
quality and each additionally received layer increases the
quality of the video. If an adaptation is needed, those layers
exceeding the capabilities of the device can be discarded,
either on the device itself or in the network. In our work
we concentrate on single layer video streams, because of the
lower complexity needed for their encoding and decoding
compared to multi layer video streams. Furthermore, most
of the available video streams on the Internet are single layer
videos.

Video transcoding is a well-known mechanism for the adap-
tation of video coding parameters which are defined at en-
coding time. Compared to video recoding, where the video is
completely decoded before it is encoded again, video trans-
coding works in the compressed domain. Thus, processing
time can be saved at the expense of lower flexibility. Sev-
eral specialized transcoding mechanisms exist, but hardly
any of them focuses on transcoding in more than one di-
mension. In this paper we present a novel architecture for
multidimensional transcoding, which we have implemented
for MPEG-4 video streams. This architecture is intended
to be used in our multimedia gateway system to support
adaptive video streaming for mobile clients, which we have
already presented in previous work [2].

The remainder of this paper is organized as follows: In sec-
tion 2 we give an overview of existing transcoding techniques
and related work. Afterwards we present our processing ar-
chitecture for multidimensional transcoding in section 3. In
section 4 we describe our multidimensional transcoding ap-
proach and implementation for MPEG-4 video, based on the
aforementioned architecture. The evaluation of our imple-
mentation is presented in section 5. Finally we conclude this
paper in section 6.

2. VIDEO TRANSCODING
The field of video transcoding has been explored in several

recent studies. Most of them focus on different specialized
transcoding techniques. A comprehensive overview of the
research area dealing with those transcoding techniques is
given in [13] and [7]. However, almost all of the presented
approaches in the literature focus on adaptation of one sin-
gle parameter, such as the three aforementioned, the bit
stream syntax or the semantics of the content. Those cod-
ing parameters can also be interpreted as different dimen-
sions in which the input video can be adapted. To handle
the huge variation of resource constraints and users’ prefer-
ences a multidimensional adaptation is needed. Adaptation
along the spatial dimension is used to tailor the resolution
of a video stream to the display resolution of the requesting
device. This also reduces the memory and processor require-
ments on the device. Adaptation in the temporal dimension
as well as adaptation in the dimension of detail resolution
can be used for further bandwidth reduction.

Due to the compressed nature of digital video, the pixels of
the video frames cannot be manipulated directly. Addition-
ally, the reduction of the frame rate is not trivial, because
of the dependencies between consecutive frames, caused by
motion compensation. In digital video only some frames are
encoded as complete frames i. e., key frames. The major-

ity of the encoded frames use previous and future frames
as reference frames, so that only the differences to those
frames need to be encoded (i. e. P- and B-frames). The
most obvious way to adapt compressed videos is the use of
the cascaded pixel domain transcoder (CPDT), which sim-
ply consists of a cascaded decoder and encoder. In fact, the
CPDT is a video recoder as mentioned before. But a com-
plete decoding and encoding is quite inefficient. Moreover,
the information that is already available from the previous
encoding should be reused for transcoding to enhance the
produced quality of the video. Most video coding standards
such as MPEG video use the discrete cosine transfer (DCT)
to transform each frame from the pixel domain into the fre-
quency domain. In a CPDT this transformation needs to
be performed from the frequency domain and back, which
is computationally very intensive. The main idea of video
transcoding is the avoidance of this complete decoding and
encoding. Mathematically, the DCT is a linear and orthogo-
nal transformation which is distributive with respect to ma-
trix multiplications. To avoid the computation of the DCT
we can take advantage of these characteristics of the DCT
[3]: To manipulate a video block A we need two matrices X
and Y to compute the manipulated block B = X·A·Y . Due
to the linearity of the DCT we have:

DCT (B) = DCT (X·A·Y) = DCT (X)·DCT (A)·DCT (Y)

Thus we can realize every linear pixel manipulation in the
frequency domain. However, in most digital video formats
motion compensation is used to utilize temporal dependen-
cies between frames for compression. These existing depen-
dencies are encoded by motion vectors which are pointing to
a block in a reference frame and by the resulting error block,
i. e. the difference between the current and the referenced
block. Thus, to be able to manipulate a coded block in the
frequency domain we have to compute the inverse motion
compensation (IMC) in the frequency domain, which was
firstly presented in [3] and subsequently optimized in fur-
ther publications, for instance in [12] and [9]. These mech-
anisms were used in several proposed transcoding architec-
tures, such as a frequency domain requantization transcoder
proposed in [1], a frame-skipping transcoder proposed in [5]
or in a spatial resolution downconversion transcoder in [8]
and [6]. The only approach we are aware of that addresses
transcoding in more than one parameter was proposed by
Shanableh et. al. in [11]. They focused on heterogeneous
transcoding of MPEG-1 video into H.261 /H.263 video with
spatial and temporal resolution reduction. However, the re-
duction of each single parameter was treated separately and
no architecture for the combined transcoding of the exam-
ined parameters was presented. In summary, an integrated
approach for multidimensional video transcoding, especially
for mobile devices has not yet been proposed.

In this work we concentrate on transcoding in three dif-
ferent dimensions which we have identified to be the most
important for video adaptation for mobile devices: spatial
resolution, temporal resolution and detail resolution. By
transcoding in these three dimensions we can support fine
grain video adaptation for mobile devices. However, our ap-
proach is not limited to these dimensions but can easily be
extended to support adaptation also in other dimensions,
such as heterogeneous transcoding from one video format to
another.

3. PROCESSING ARCHITECTURE
Starting from the studies of different transcoding mech-

anisms for video adaptation in one single dimension, we
have developed a multidimensional transcoding architecture.
This architecture is based on the idea of smartly combining
one-dimensional transcoders into a transcoder chain, which
in turn forms a multidimensional transcoder. As illustrated
in figure 1, in this architecture a transcoder Ti is a mod-
ule which can consume and produce video frames. Such a
transcoder consumes a frame only if another transcoder or
program module requests a frame from it. In other words,
each transcoder chain needs exactly one active component
which controls the whole transcoding process. In the figure
this is done by the controller, which is also responsible for
the setup and configuration of the whole transcoder chain.
Therefore, each transcoder in the chain can generate events
ei to notify the controller about its current state. In order to
transcode a video stream by the shown chain, the controller
requests a frame from the last transcoder in the chain (T2)
which consumes the frame from T1 which reads the origi-
nal stream from one or more video sources. Examples of
such sources are files, network streams or streams from a
live video source. The frames which the controller requests
from T2 are written to an output stream. The transcoder T2

in the figure is a combination of two other transcoders T21

and T22.

Figure 1: Transcoder Architecture - Overview

The video frames passed from one transcoder to another
are typically not completely decoded, but they may be par-
tially decoded. To indicate the actual coding state of a
frame we have defined the following five states: encoded,
partially decoded, quantized, dequantized and IMC. These
states will be described in detail in the following section. If
two or more transcoders are connected to setup a transcoder
chain, the states of the frames produced by each transcoder
have to match to the frame states, which its successor in the
transcoder chain accepts.

This modular processing architecture provides good flex-
ibility as well as good control of the whole transcoding pro-
cess. During this process, each transcoder can generate
events (ei in the figure) to notify other program modules,
e. g. the controller. Program modules can listen to these
events and can firstly react to and secondly control each
step of the transcoding process. These events are especially
needed to inform the controller about the status of each
frame, so that it can fully control each transcoding step of
the frame.

4. MULTIDIMENSIONAL TRANSCODING
Since the focus of our research is dynamic video adap-

tation for mobile devices, we developed a multidimensional

MPEG-4 transcoder for mobile devices, which uses the pro-
cessing architecture presented in the previous section. Mo-
bile devices often have a small screen resolution, which makes
the use of spatial adaptation mandatory. Fortunately, this
also reduces the bit rate and therefore the required band-
width of the video stream. In order to achieve further re-
duction of the bandwidth of the video we decided to tailor
the frame rate by the use of temporal adaptation and fi-
nally adjust the bandwidth of the stream by changing the
quantization factor. The order in which the video should be
transcoded in the three dimensions is quite obvious: Firstly
those frames which are not needed in the resulting video
should be dropped. Secondly the resulting frames should
be scaled to the designated resolution and finally the DCT
values of the remaining frames should be quantized again.

A simple combination of the existing transcoding mech-
anisms is not efficient. Some steps, such as the inverse
motion compensation (IMC), are needed in all transcoders
and therefore should be computed only once. While some
transcoding mechanisms in the literature may not need the
IMC, we have identified that in the case of multidimensional
transcoding the IMC is always needed. For instance, when
dropping P-frames new motion vectors have to be computed.
Additionally, the error blocks coded in the remaining frames
have to be recalculated by the use of this new motion vec-
tors. Therefore, when working in the compressed domain,
the DCT values of macro blocks of different frames has to
be added. However, in MPEG-4 each macro block may have
been encoded with its own quantization factor, which makes
a direct addition of different macro blocks impossible. More-
over, when changing the DCT values of a frame which is used
as a reference frame, the decoding of the referencing frame
becomes inaccurate, because the encoded error blocks in the
referencing frame were calculated based on the original DCT
values of the reference frame. This inaccuracy is called drift
error and can be avoided by using a drift free loop, which
performs the IMC for each inter-coded block and eliminates
the occurring error from the current block.

Only in the case of B-frame dropping the IMC can be
avoided, because B-frames are never used as reference frames
and therefore can be dropped without any influence on other
frames. Thus, to drop a B-frame we only need to decode the
type of the frame. Afterwards we can compute the IMC for
the remaining frames which removes any temporal depen-
dencies between the frames. However, the motion vectors
are still saved in each frame for future use. Now, we can go
on with dropping P-frames.

When dropping P-frames, motion information gets lost
and motion vectors of subsequent P- or B-frames become
invalid. Thus, we need to define new motion vectors for
the following frames. Instead of searching new motion vec-
tors, we can use one of the mechanisms for redefining motion
vectors described in the literature, which were already men-
tioned in section 2. As the number of frames has already
been reduced we can now reduce the spatial resolution of
the remaining frames by using an existing spatial reduction
method from the literature, e. g. the one proposed in [4].
When downscaling a video frame all motion vectors of this
frame (in case of a P- or B-frame) as well as other motion
vectors which are referencing to this frame (in case of an I-
or P-frame) get invalid, because they are still pointing to
the original region in the reference frame. Thus, also the co-
efficients of the motion vectors have to be downscaled. Ad-

ditionally, we have to compute one new macro block from
several existing macro blocks, because macro blocks have a
fixed resolution (e. g. 16 × 16 Pixel in MPEG video). But
also the number of motion vectors of a macro block is fixed
and we may have to create one downscaled motion vector
by interpolation of several existing vectors. In the case of
MPEG-4 we can benefit from the ability of MPEG-4 to use
four vectors per macro block. For instance, if a video is
downscaled by a factor of two and if each macro block has
exactly one motion vector, we do not need to interpolate
them but can use all of them in the new macro block. After-
wards we have to compute the motion compensation (MC)
by using the newly created motion vectors. Within the MC
we can either use the same quantization factor as before or
a new one for further compression.

4.1 Frame Decoding
For communication between the transcoders in the chain,

we have created a data structure which contains all informa-
tion about the frame as well as its data. The encoding state
of the frame indicates how much of the frame has already
been decoded. Frames in the state encoded are completely
encoded frames, as they are read from the input stream.
After parsing the first few bytes of a frame, we get some
information such as the type of this frame, and its state
changes to partially decoded. When we further decode the
frame, we get the quantized values of the DCT coefficients
and the state changes to quantized. The next step of de-
coding is to dequantize the DCT values, which changes the
state of the frame to dequantized. The final decoding step
needed for transcoding is the computation of the IMC, after
which the state of the frame is changed to IMC. Figure 2
shows the state chart of the frame states.

Figure 2: Frame States

4.2 Transcoder Chain
The complete transcoder chain is shown in figure 3. Not

only are the modules which effectively transcode the video
frames implemented as a transcoder but also those modules
which are needed to pre- and post-process the video frames.
At the beginning of the chain the PartialDecoder reads the
video stream from the input and creates the data structure
for each frame. Only the information needed to identify the
frame type is decoded and saved in the data structure. Be-
cause dropping of B-frames does not affect any other frames,
the BFrameDropper is placed right behind the PartialDe-
coder. It can read the type of a frame and drop those frames
which are identified as B-frames. Afterwards the StreamDe-
coder is used to decode the quantized DCT values as well as
the motion vectors (in the case of intra-coded frames) of each
frame. The Dequantizer computes the inverse quantization
of the DCT values and the IMC module is used to compute
the inverse motion compensation. After the IMC the video
frame contains all macro blocks in the frequency domain

Figure 3: Transcoder Chain

without any temporal dependencies. The PFrameSkipper
can skip P-frames now and the Scaler can reduce the spatial
resolution of the frames. As mentioned before, both of them
has to redefine the motion vectors of the remaining frames.
The MC component implements the drift free loop to avoid
drift errors and computes the motion compensation. There
is no separate requantization transcoder in the chain, be-
cause requantization is already integrated in the drift free
loop of the MC module. After the motion compensation has
been computed, the frames are encoded into a video stream
by the Encoder.

4.3 Implementation
We have created a prototype implementation of our pro-

posed multidimensional transcoder, written in C++. This
implementation is intended to be used for MPEG-4 video
adaptation for mobile devices. For bit stream parsing and
decoding of the video frames we have created a names-
pace called m4v, which contains all MPEG-4 specific classes.
Classes implementing transcoding techniques are placed in
a separate namespace called trc.

The frame-skipping and scaling transcoders are imple-
mented in a way that they are independent of the video
format which they process. Thus, they can also be used for
other video coding formats, such as MPEG-1/2 or H261/3.
To support such video formats, our implementation can be
extended easily by adding new decoder and encoder modules
which are capable of parsing the entire video streams.

The PFrameSkipper skips a frame whenever the controller
requests this. It uses the forward dominant vector selection
presented in [14] to find new motion vectors of following
frames. The HalfScaler uses bilinear interpolation in the
frequency domain as presented in [4]. In our current imple-
mentation we are able to downscale the spatial resolution
by a factor of two. Thus, we have to compute one down-
scaled macro block from four incoming macro blocks. If
each incoming macro block has only one motion vector, we
can simply use those four vectors, each downscaled by a fac-
tor of two, in the downscaled macro block. Otherwise, if
at least one of the incoming macro blocks has already four
motion vectors, we use the vector of the most active block.
The activity of a block is computed by the sum of all DCT
coefficients. The module MC computes the motion compen-
sation by using the redefined motion vectors and may use
the original or a new quantization factor, depending on the
request of the controller.

For testing purposes of our transcoders, we have also cre-
ated a test application, which is a kind of a frontend to our
transcoding architecture implementation. This application,
which is written in Java, can be used to load a reference
video in rawvideo format as well as a source MPEG-4 video.
Furthermore a transcoding chain can be chosen to be used
for transcoding. When starting the test, the source video
is transcoded by the chosen transcoding chain and all three

Figure 4: Screenshot Test Application

 27

 27.5

 28

 28.5

 29

 29.5

 30

 30.5

 31

 0 20 40 60 80 100 120 140

P
S

N
R

Frame Number

Akiyo transcoded (q=7)
Akiyo transcoded (q=6)

Akiyo recoded (q=6)

Figure 5: Akiyo, transcoded vs. recoded

videos (reference, source and transcoded) are displayed on
the screen. Additionally, the PSNR values of each frame are
calculated and displayed in a graph. A screenshot of this
application can be found in figure 4.

5. EVALUATION
For the evaluation of our implementation we selected two

different videos. The first video, which is titled “Akiyo”,
shows a woman presenting some news. The background is
quite static and there is not much motion in this video. The
second one is called “Foreman” and there is more motion
in the video. A foreman is talking into the camera and is
gesticulating with his hands. In the last third of this video,
the camera turns to the right and the shell of a building
in the background becomes visible. Both videos have 300
frames in CIF (352×288) resolution, a group of video object
panes (GOV) length of 30 and a frame rate of 25 fps. They
were encoded to MPEG-4 by the use of the XviD codec and a
fixed quantization level of one (q = 1). The Akiyo sequence
has a bit rate of 512 KBit/s and the Foreman sequence a bit
rate of 1024 KBit/s.

For both test videos we evaluated the PSNR values of the
transcoded version compared to the recoded version of the
sequence. The temporal as well as the spatial resolution were
halved (QCIF, 12.5 fps) and the quantization factor was in-
creased. The recoded version was produced by the use of

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 20 40 60 80 100 120 140

P
S

N
R

Frame Number

Foreman transcoded (q=10)
Foreman transcoded (q=9)

Foreman recoded (q=9)

Figure 6: Foreman, transcoded vs. recoded

the XviD codec and the transcoded version by the use of
our implementation. The PSNR values were computed by
upscaling each decompressed frame of the transcoded and
recoded video respectively and using the uncompressed CIF
frames of each video for reference. Figures 5 and 6 show
the results of the transcoded video compared to the recoded
one for both the Akiyo and the Foreman sequence. In both
cases the PSNR values of the transcoded versions are higher
than those of the recoded version. Because of the medium
amount of motion in the Foreman sequence, the transcoded
version benefits from the reuse of existing motion vectors
and thus the PSNR differences between the recoded and the
transcoded version are significantly higher than those of the
Akiyo sequence. For the transcoded videos two different
quantization factors are shown, because the bit rate of the
transcoded version is a little bit higher than that of the re-
coded video when using the same quantization factor. Thus
to compare the quality of the videos with the same bit rate
we included the PSNR values of the transcoded video with
a higher quantization factor in the figures. Additionally,
we evaluated the achieved quality of our transcoder for the
complete range of allowed quantization factors (q = 2− 31).
In figure 7 the average PSNR values of transcoded and re-
coded versions of the videos are shown. For lower bit rates
our transcoder produces better or comparable PSNR values
for both videos to the XviD codec. There are two outliers in

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

P
S

N
R

Bitrate [KBit/s]

Akiyo transcoded
Akiyo recoded

Foreman transcoded
Foreman recoded

Figure 7: Average PSNR values

the graphs of the transcoded video: at 50 KBit/s (q = 20)
for the Foreman sequence and at 65 KBit/s (q = 5) for the
Akiyo sequence. However, it is not clear whether this is a
bug of our implementation or is caused by the static frame
dropping we are currently using. The runtime performance
as well as the produced frame rate of our implementation,
which was measured on an Intel Centrino platform with 1.7
GHz and 1GB RAM, are shown in table 2. Currently, only
one of the video sequences can be transcoded in real-time
on this platform. However, we have not yet optimized our
implementation so that a comparison with existing codecs
which are highly optimized is not suitable.

Sequence Processing Time Frame Rate
Akiyo 7.092 s 21.15 fps
Foreman 16.273 s 9.22 fps

Table 2: Transcoding Runtime Performance

6. CONCLUSION & FUTURE WORK
In this paper we have presented a new and flexible process-

ing architecture for multidimensional video transcoding. We
have identified three transcoding dimensions which are nec-
essary for fine grain adaptation for mobile devices. Based on
our architecture we have developed an integrated transcoder
which transcodes an incoming video stream within the afore-
mentioned three dimensions. The evaluation of our im-
plementation shows promising results, with slight improve-
ments of the produced quality with regards to PSNR values
of the video frames. At the moment our implementation is
not optimized as other video codecs on the market. Thus,
the processing time needed for transcoding is quite high.
But the evaluation results of the achieved quality are promis-
ing and we will optimize our implementation in the future.
Additionally, by using advanced MPEG-4 features we can
reduce the produced bit rate without affecting the quality
of the stream and thus produce better quality results also for
higher bit rates. Further, we plan to integrate an intelligent
rate control mechanism into the controller in order to con-
trol the quality and bit rate of the transcoded video in the
best possible way. Based on our transcoder implementation
we further plan to evaluate the produced quality not only
in terms of PSNR values but also by the use of subjective
tests with potential users.

7. REFERENCES
[1] P. A. Assuncao and M. Ghanbari. A Frequency-

Domain Video Transcoder for Dynamic Bit-Rate
Reduction of MPEG-2 Bit Streams. IEEE
Transactions on Circuits and Systems for Video
Technology, 8(8):953–967, 1998.

[2] J. Brandt and L. Wolf. A Gateway Architecture for
Mobile Multimedia Streaming. In European
Symposium on Mobile Media Delivery (EuMob06),
Alghero, Italy, Sept. 2006.

[3] S.-F. Chang and D. Messerschmitt. Manipulation and
compositing of MC-DCT compressed video. IEEE
Journal on Selected Areas in Communications,
13(1):1–11, Jan. 1995.

[4] R. Dugad and N. Ahuja. A fast scheme for image size
change in the compressed domain. IEEE Transactions
on Circuits and Systems for Video Technology,
11(4):461–474, April 2001.

[5] K.-T. Fung and W.-C. Siu. DCT-based video
frame-skipping transcoder. In Proceedings of the 2003
International Symposium on Circuits and Systems,
ISCAS ’03, volume 2, pages 656–659, May 2003.

[6] K.-T. Fung and W.-C. Siu. DCT-based video
downscaling transcoder using split and merge
technique. IEEE Transactions on Image Processing,
15(2):394 – 403, Feb. 2006.

[7] T. C. Huifang Sun, Xeumin Chen. Digital Video
Transcoding for Transmission and Storage. CRC
Press, 2005.

[8] Y.-R. Lee, C.-W. Lin, and C.-C. Kao. A DCT-Domain
Video Transcoder for Spatial Resolution
Downconversion. In Proceedings of the 5th
International Conference on Recent Advances in
Visual Information Systems, pages 207–218, London,
UK, 2002. Springer-Verlag.

[9] S. Liu and A. Bovik. Local bandwidth constrained fast
inverse motion compensation for DCT-domain video
transcoding. IEEE Transactions on Circuits and
Systems for Video Technology, 12(5):309–319, May
2002.

[10] H. S. S. Park, Y. Lee. Quality-adaptive requantization
for low-energy MPEG-4 video decoding in mobile
devices. IEEE Transactions on Consumer Electronics,
51(3):999–1005, 2005.

[11] T. Shanableh and M. Ghanbari. Heterogeneous video
transcoding to lower spatio-temporal resolutions and
different encoding formats. IEEE Transactions on
Multimedia, 2(2):101–110, June 2000.

[12] J. Song and B.-L. Yeo. A fast algorithm for
DCT-domain inverse motion compensation based on
shared information in a macroblock. Circuits and
Systems for Video Technology, IEEE Transactions on,
10(5):767–775, Aug. 2000.

[13] A. Vetro, C. Christopoulos, and H. Sun. Video
transcoding architectures and techniques: an
overview. IEEE Signal Processing Magazine,
20(2):18–29, Mar. 2003.

[14] J. Youn, M.-T. Sun, and C.-W. Lin. Motion vector
refinement for high-performance transcoding. IEEE
Transactions on Multimedia, 1(1):30–40, March 1999.

