Impact of Adaptation Dimensions on Video Quality

Jens Brandt, Lars Wolf

Institute of Operating Systems and Computer Networks Technische Universität Braunschweig

14th IEEE International Symposium on Consumer Electronics, June 07-10, 2010, Braunschweig, Germany

Scope

- Video adaptation for mobile devices
- Compressed domain video transcoding

Problem

• How to adapt a video stream to meet a certain bit rate?

Approach

- Analysis of the produced quality
- Three main adaptation dimensions

Video Adaptation for Mobile Devices

- Screen \Rightarrow Frame size (resolution)
- Processor ⇒ Frame size, frame rate and detail resolution
- Memory ⇒ Frame size
- Network \Rightarrow Bit rate

Video Adaptation for Mobile Devices

- Screen ⇒ Frame size (resolution)
- Processor ⇒ Frame size, frame rate and detail resolution
- Memory ⇒ Frame size
- Network \Rightarrow Bit rate
- \Rightarrow The bit rate of a video stream mainly depends on the
 - spatial,
 - temporal, and
 - detail

resolution of the stream.

How to Adapt?

- Which dimensions should be adapted?
 - Reduce the temporal resolution and keep the detail quality?
 - Reduce the detail quality while keeping the frame rate?
 - Reduce the spatial resolution while keeping the detail quality?
 - . . .
- How much should each dimension be adapted?
 - As much as needed by the device?
 - Further than needed to keep another resolution higher?
 - . . .
- \Rightarrow Several different combinations exist
- \Rightarrow Which one produces the best quality?

Spatial Adaptation

- Meet a display resolution as well as a certain bit rate
- Reducing the spatial resolution also reduces the bit rate
- Additional bit rate reduction by reducing the detail resolution
- Three possibilities for the spatial target resolution:
 - **1** The target resolution is higher than the display resolution.
 - 2 The target resolution is the same as the display resolution.
 - Interstation of the second state of the sec
- \Rightarrow Which target resolution produces the best quality?

Temporal Adaptation

Detail Adaptation

Conclusion

Evaluation Process

- 10 video sequences
 - Resolution: CIF, 264×216 pixels and QCIF
 - Bit rate: 40 kbit/s 480 kbit/s
- Evaluation of average Y-PSNR values
 - Target resolution: CIF and 264×216 pixels

Temporal Adaptation

Detail Adaptation

Conclusion

Results - Spatial Adaptation

- Similar results for all test sequences, also for higher resolutions
- \Rightarrow Resolution reduction other than needed is not beneficial

Temporal Adaptation

- Bit rate reduction by reducing the frame rate of a stream
- Which frame rate produces the best quality?
- PSNR values are not sufficient for quality evaluation
 - Interpolation of missing frames produces poor PSNR values
 - PSNR values of remaining frames do not reflect visual quality
- \Rightarrow User interviews
 - Four test sequences
 - Encoded at different frame rates
 - Presented on a mobile device in changing order
 - Participants should chose a preferred version

Test Sequences

- Encoded at 5, 12, and 24/25 frames per second (fps)
- Constant bit rate of 180 kbit/s
- Fixed spatial resolution (fit to 320×240 pixels)
- Duration of 75 and 90 seconds

Results - Temporal Adaptation

50 non-expert participants with ages between 21 and 59 years

- Dominance of 12 fps as the preferred rate
- No clear dominance for high amount of motion and scene cuts
- Good grades on average for the preferred version
- $\Rightarrow\,$ Users accept lower frame rates to get more details per frame

Detail Adaptation

- High detail quality is important for users of mobile devices
- Reduction of the detail quality reduces the bit rate
- Is there a maximum detail quality?
- \Rightarrow User interviews
 - Test sequence encoded at different bit rates
 - Pairwise presentation on a mobile device
 - Participants should chose a version they liked more

Results - Detail Adaptation

Percentages of 41 people preferring version A over B:

		Version A		
		500 kbit/s	700 kbit/s	1500 kbit/s
Version B	300 kbit/s	87.80 %	85.37 %	90.24 %
	500 kbit/s		70.73 %	73.17 %
	700 kbit/s			60.98 %

- $\bullet~78.04\,\%$ of the users preferred the higher bit rate.
- 23.57% of all comparisons were chose randomly.
- $\bullet\,$ In 60.34 % of these cases the users chose the higher bit rate.
- \Rightarrow The higher quality is still noticeable
- $\Rightarrow\,$ There is no upper bound for the quality level below 1500 kbit/s

Conclusion

- Spatial dimension
 - Quality evaluation at different spatial resolutions
 - \Rightarrow No benefit from resolution reduction other than needed
- Temporal dimension
 - Subjective quality tests on a mobile device
 - \Rightarrow Users preferred lower frame rates
- Detail dimension
 - Subjective quality tests on a mobile device
 - \Rightarrow No upper bound observable

Combined Adaptation

- Spatial dimension
 - Spatial downscaling to the screen resolution of the client
- ② Temporal dimension
 - Reduction of the frame rate if necessary
- Oetail dimension
 - Reduction of the detail resolution to fine tune the bit rate

Questions?

Jens Brandt brandt@ibr.cs.tu-bs.de

Combined Adaptation

- i) adaptation in the detail dimension
- ii) adaptation in the temporal and detail dimension
- iii) adaptation in the spatial and detail dimension
- iv) adaptation in the spatial, temporal and detail dimension

Spatial Adaptation

Temporal Adaptation

Detail Adaptation

Conclusion

Test Sequences

Jens Brandt, Lars Wolf

Conclusion

Spatial Adaptation - Akiyo and Foreman Sequence

Spatial Adaptation for Higher Resolution Sequences

Jens Brandt, Lars Wolf

Results

Percentages of 41 people preferring version A over B:

		Version A		
		500 kbit/s	700 kbit/s	1500 kbit/s
Version B	300 kbit/s	87.80 % (36)	85.37 % (35)	90.24 % (37)
	500 kbit/s		70.73% (29)	73.17 % (30)
	700kbit/s			60.98 % (25)

For all six comparisons, $78.04\,\%$ of the users chose the higher bit rate.

Percentages of 41 people randomly chose one version:

		Version A		
		500 kbit/s	700 kbit/s	1500 kbit/s
Version B	300 kbit/s	7.32% (3/1)	9.76 % (4/2)	9.76 % (4/2)
	500 kbit/s		34.15 % (14/9)	39.02 % (16/10)
	700 kbit/s			41.46 % (17/11)

In 23.57 % of all comparisons the user randomly chose the preferred version. In 60.34 % of these cases the users intuitively chose the version with a higher bit rate.

