
Institute of Operating Systems
and Computer Networks

A Sub-Microsecond Clock Synchronization Protocol for
Wireless Industrial Monitoring and Control Networks

Georg von Zengen and Keno Garlichs and Yannic Schröder and Lars C Wolf

Authors post-print published on 2020-07-22
Originally published in 2017 IEEE International Conference on Industrial Technology (ICIT) Special Sessions
Publisher version available at http://ieeexplore.ieee.org/document/7524540/?arnumber=7524539
DOI: 10.1109/ICIT.2017.7915545

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other users, including reprinting/ republishing this material for advertising or promotional purposes,
creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Abstract:
Wireless networks are getting more and more important to industrial process monitoring in control.

One of the key challenges in these domains is clock synchronization. Needed to be able to link data ga-
thered on different devices in the network. More recently the idea of wireless closed loop controllers rose.
With that even more precise clock synchronization is needed. In this paper we propose a protocol capable
of sub-microsecond synchronization and clock drift compensation. The proposed protocol is inspired by
the widely used PTP but was optimized for wireless networks. Our real world evaluation indicates, that
clock drift is a serious challenge in networks utilizing modern microcontrollers. We also show that our
approach is capable of mitigating that drift to reach a competitive degree of synchronicity.



A Sub-Microsecond Clock Synchronization Protocol
for Wireless Industrial Monitoring and Control

Networks
Georg von Zengen, Keno Garlichs, Yannic Schröder, Lars C. Wolf

Institute of Operating Systems and Computer Networks
Technische Universität Braunschweig

Email: [vonzengen, garlichs, schroeder, wolf]@ibr.cs.tu-bs.de

Abstract—Wireless networks are getting more and more impor-
tant to industrial process monitoring in control. One of the key
challenges in these domains is clock synchronization. Needed to
be able to link data gathered on different devices in the network.
More recently the idea of wireless closed loop controllers rose.
With that even more precise clock synchronization is needed. In
this paper we propose a protocol capable of sub-microsecond
synchronization and clock drift compensation. The proposed
protocol is inspired by the widely used PTP but was optimized
for wireless networks. Our real world evaluation indicates,
that clock drift is a serious challenge in networks utilizing
modern microcontrollers. We also show that our approach is
capable of mitigating that drift to reach a competitive degree of
synchronicity.

I. INTRODUCTION

Monitoring got more important in all industrial processes
over the last years. The reasons to monitor the processes
are manifold and reach from quality assurance to processes
optimization. Timestamps are the link between different mea-
surements and therefore they are essential to put measurements
of different sensors in relation to each other. The synchronized
time is also needed to determine at which time an event took
place.

In controlling, a synchronized time source is even more
important and the synchronization must be more precise.
Without it, different machines are not able to cooperate and
may destroy their work pieces. Clock synchronization needs to
be even more precise when closed loop controllers are spread
on different networked machines. To allow such systems, sub-
microsecond clock synchronization is mandatory.

To tackle the challenge of synchronizing the clocks of
different networked machines, different protocols were de-
signed in the past. One of the most widely used ones is
the Network Time Protocol (NTP) [1]. It is used all over
the Internet and based on an hierarchical structure of time
servers where each server receives the reference time from its
parent and publishes it to its children. Due to this structure it
scales well but the precision of the synchronization suffers on
every hierarchical layer of the structure. Therefore, Precision
Time Protocol (PTP) [2] was developed to provide a more
precise synchronization for smaller non hierarchical networks.
In wired networks PTP reaches a synchronization precision of
up to 60ns.

In recent years the idea of wireless monitoring in factories
rose to prominence [3], [4], [5], [6]. Due to this trend, clock
synchronization needs to be able to work in wireless network
as well. The most recent ideas go even further, i.e. to wireless
networked closed loop controllers.

That led to the development of wireless sub-microsecond
synchronization protocols [7], [8], [9]. Most of these Protocols
assume the hardware clock of the devices to be accurate in
frequency. Thus, many of them do not handle clock drifts
between different network nodes at all [7], [9] The assumption
of accurate hardware clocks can not be held for modern micro-
controllers like the STM32 series by ST Microelectronics [10].
These controllers often have an internal Phase Locked Loop
(PLL) to multiply the frequency of an external oscillator and
use this signal to clock their CPU. This is done to achieve
higher frequency with cheap oscillators. Another reason is
the ability to change the frequency during operation. The
challenge introduced by cheap oscillators is the higher error
they have in their frequency. This error leads to a rapid drifting
of the clocks of the devices in one network.

In this paper we present a PTP-based protocol optimized
for wireless networks. We clearly focus on the accuracy
of the clock synchronization to enable wireless closed loop
controllers in process and factory automation. To give the
reader a background, we briefly describe PTP and other related
work in Section II. In Section III we introduce the optimiza-
tions and adjustments we made to PTP. We also propose a
method to compensate the drift of clocks introduced by cheap
crystal oscillators. After the description of our approach to
wireless sub-microsecond clock synchronization we discuss
the evaluation and its results in Section IV. These results
show the competitiveness of our approach even with relatively
inaccurate and cheap crystal oscillators. Section V concludes
this paper and gives an outlook to our future work.

II. RELATED WORK

In this section we give a brief overview of sub-microsecond
synchronization protocols for wireless networks. Further we
describe PTP briefly to give the reader a background for the
remainder of this paper.



A. Precision Time Protocol

PTP is a time synchronization protocol aiming at Local
Area Networks (LANs) and providing microsecond accuracy,
other than NTP which is used in the Internet and provides
millisecond accuracy. It is standardized as IEEE 1588/IEC
61588 [2]. Although the protocol does not limit the medium to
Ethernet, almost all implementations use it. But there are also
working implementations using IEEE 802.11 for example [11].
When the protocol is started, the Best Master Clock (BMC)
algorithm is started. Every node announces the capabilities of
its clock in order to choose the best one among them as the
master clock.

The messages exchanged to synchronize the clocks between
the master and its slaves are depicted in Figure 1. The master
occasionally multicasts a SYNC message to each slaves. The
slave then records the reception timestamp t1 as early and
close to the hardware as possible. To do this, either a hardware
timestamping unit inside the Network Interface Controller
(NIC) can be used if available, or this can be done in software
in the Medium Access Control (MAC) layer. The master has
to prepare the message and write the actual timestamp into the
SYNC message at that time. Due to processing time, medium
access, and propagation delay, sending timestamp t0 is not
precise. To mitigate this issue, a FOLLOW_UP message is
sent afterwards. It contains the exact sending time as it has
been recorded by the hardware or, if not available, by the
Interrupt Service Routine (ISR) processing the TX-complete
interrupt. The choice between hardware timestamping (if avail-
able) and software timestamping has a large impact on the
possible precision. According to [12], software only solutions
reach a precision of 5 to 50µs, while hardware supported
implementations reach a typical precision of ±60ns. Having
now acquired both timestamps t0 and t1, the slave can cal-
culate its offset to the master. Yet, this has the error of the
propagation delay τprop which has to be subtracted in order
to get the correct value. To determine τprop, the slave sends
a DELAY_REQUEST message to the master. This answers
with the reception timestamp t3 in the DELAY_RESPONSE.
Now knowing all the relevant information and assuming a
symmetric delay, the slave calculates its propagation delay to
the master. Both Ω and τprop are noted and the slave can
correct its clock to be in sync with the master. Where Ω is the
offset of the slave’s clock.

B. Glossy

Glossy is an efficient network flooding protocol proposed
by Ferrari et al. [9]. Due to its special flooding mechanisms it
also brings a synchronization protocol. The idea in Glossy is
to forward certain packets as fast as possible without further
processing. Thus, the time a node needs to forward a packet
is constant and the error added in a multihop network can
be predicted. Another advantage of constant packet processing
times is the ability to transmit the packets by different nodes at
the same time. This is only true if all nodes transmit the same
data. Due to this ability there is no need for a MAC for this
packet, this eliminates the delay introduced by clear channel

Master Slave

SYNC(t0)

FOLLOW_UP(t0)

DELAY_RE
Q

t0 t0
τprop
t1

Ω = t1 − t0 − τprop

t2

t3

t4τprop = t1−t0+t3−t2
2

DELAY_RESP(t3)

Figure 1. Messages exchanged in PTP

assessments. Ferrari et al. do not propose a protocol for
clock synchronization but an implicit synchronization based
on packets transmitted for other reasons. In their evaluation
Glossy was able to synchronize a network with 8 hops with a
mean signed deviation of 0.4µs.

Although Glossy seems to be an elegant approach to clock
synchronization in wireless networks it suffers from some
conceptional disadvantages. Due to the elimination of clear
channel assessments it is not able to coexist with other network
in the same area and frequency. Another disadvantage is the
need of precise crystal oscillators to meet 0.5µs slot with all
nodes that should transmit the same packet.

C. TPSN

TPSN [13] was one a the first time synchronization proto-
cols designed for wireless networks. It works in two phases:
in a first the fixed hierarchical structures is build up across the
whole network. In the second phase a two-message protocol
is used to synchronize the nodes pairwise among the edges.
Thus, the synchronization propagates through the network.
In comparison to Glossy, TPSN uses unicast messages, not
broadcast, to synchronize the pairs. The authors state that
TPSN synchronizes a network with a precision of 20µs, which
does not meet the sub-microsecond barrier.

III. CLOCK SYNCHRONIZATION

In this section we describe our optimization to PTP and
the design decisions that led to them in detail. As our main
goal was to meet the requirements of wireless networked
closed loop controllers, we focused on the synchronization
accuracy of our protocol. To do so, we had to put other
possible goals out of focus. In our case we decided to assume
multihop capabilities as less important. The main reason
was the transmission range of our transceiver (the DW1000
[14]) of up to 250m. It is quite unlikely that a closed loop



controller is spread over more than 250m and still needs a
sub-microsecond synchronization.

PTP was originally designed to work in wired LANs and
supports software timestamping as well as hardware time-
stamping of packets in the NIC. Since our transceiver supports
timestamping of received packages, we adopted PTP to our
requirements and thereby achieved an improved performance.

The master occasionally multicasts a SYNC message to its
slaves. The slave then records the reception timestamp t1
utilizing the timestamping support of the DW1000 to achieve
the maximum accuracy. The master has to prepare the message
and write the actual timestamp into the SYNC message at
that time. For traditional NICs the sending timestamp t0 is
not precise. To mitigate this issue, traditional PTP transmits a
FOLLOW_UP message that contains the precise transmission
timestamp t0.

Master Slave

SYNC(t0)

FOLLOW_UP(t0)

DELAY_RE
Q

t0 t0
τprop
t1

Ω = t1 − t0 − τprop

t2

t3

t4τprop = t1−t0+t3−t2
2

DELAY_RESP(t3)

Figure 2. MoRT-Stack’s clock synchronization protocol, the red
FOLLOW_UP message is removed because it is not necessary due to precise
timestamps.

Our adoption is optimized in the way that no FOLLOW_UP
message is needed. By utilizing the DW1000 delayed transmis-
sion feature, we can already write the exact sending timestamp
into the SYNC message. To do so it needs to be ensured
that t0 is far enough in the future to finish all necessary
preprocessing of the SYNC message until t0. This timestamp is
precise due to the fact that the clock triggering the transmission
is running inside the DW1000 and all computation needs be
done beforehand [14]. In Figure 2 the removed FOLLOW_UP
message is marked in red and dashed.

Having now acquired both timestamps t0 and t1, the slave
can calculate it’s offset Ω to the master.

Ω = t1 − t0 − τprop (1)

Where τprop still needs to be determined in the way originally
intended in PTP.

A. Master Selection

As in our setup all nodes have the same clock accuracy we
needed a different way to select a clock master in our network.
Therefore, the nodes start listening for SYNC messages for
a certain time. If a node does not receive a SYNC message
during that time, it starts transmitting SYNC messages and
is therefore the master. If it received a SYNC message it is
a slave and uses the information in that message. A conflict
resolution algorithm was implemented to assure the correct
behavior, even if multiple nodes are started at the same time
and therefore all decided to become the new master. This can
happen, for example, if a larger machine is powered on and
with it all its various network nodes at the same time. The
current solution is to just favor the node with the lowest MAC
address.

For hardware platforms with an accurate watch crystal the
operation frequency could be measured against that crystal
to determine the accuracy of operation frequency. That way
PTP’s Best Master Clock algorithm could be implemented as
a more elaborated solution.

B. Drift Compensation

As we show in Section IV our STM32 microcontroller
suffers from a low cost crystal oscillator. Thus, the nodes’
clocks will drift apart. To mitigate the drift, we designed a drift
compensation that does not require any extra communication
between the nodes. All synchronization clients measure the
time span (∆TRx) between the reception of two SYNC mes-
sages. Which is the time between two instances of t1 from
Figure 2. Equation (2) gives the this time span with n as a
SYNC message interval counter.

∆TRx = t1(n) − t1(n− 1) (2)

To calculate the drift to the clock master, the client compares
∆TRx with the time span between the transmission time-
stamps (∆TTx) of the SYNC messages.

∆TTx = t0(n) − t0(n− 1) (3)

Where t0 is the transmission time stamp as in Figure 2 and
n in the SYNC message interval counter. The difference (∆T )
between ∆TRx and ∆TTx gives the drift of the two clocks
over the SYNC message interval. A ∆T closer to zero means
less drift between the clocks.

∆T = ∆TRx − ∆TTx (4)

IV. EVALUATION

In this section we evaluate our clock synchronization pro-
tocol. All experiments were performed in the setup shown in
Figure 3. For the evaluation Node0 was defined as the master
to have reproducible results. Node0 toggles the states of one
of its GPIOs with 1Hz. The GPIO is wired to an interrupt
input at Node1 and Node2. Node0 takes a timestamp every
time it toggles the state of the GPIO and transmits it via
Universal Asynchronous Receiver Transmitter (UART) to a
logging PC. Node1 and Node2 take a timestamp every time



their interrupt is triggered by the GPIO. They also transmit
theses timestamps via UART to the PC. All communication
needed to synchronize the clocks of the nodes is wireless. We
chose a wired GPIO trigger signal to minimize the delay and
jitter a wireless triggering might have.

Node 0 Node 1 Node 2

GPIO

UART

GPIO

UART

GPIO

UART

PC

Figure 3. Measurement setup used to evaluate the clock synchronization

A. Ground Truth

The first experiment measures the drift of Node1 and
Node2 relative to Node0 without any synchronization. We
performed this experiment to have a measurement that shows
how the clock behave without synchronization and to be able
to evaluate the gain in precision our protocol brings. The
results of these experiment are shown in Figure 4. There are
two many observations from this experiment: the drifts of the
nodes vary from each other but are constant over time. In our
experiment we measured a relative clock error of 1.6µs/s
for Node1 and 2.8µs/s for Node2. These results show that

1,000 2,000 3,000

−10

−5

0

5

Measurement duration in s

C
lo

ck
of

fs
et

in
m
s

Node1
Node2

Figure 4. Clock dirft measurement without synchronization. The clock of
Node1 dirfts by 1.6µs/s,the one of Node2 by 2.8µs/s.

the drift compensation presented in Section III-B is needed to
synchronize the clock in a µs range without a SYNC message
interval below one second.

B. Clock Synchronization without Drift Compensation

In this experiment we used a synchronization interval of one
second. As Figure 5 shows the drift is still notable but it is
around zero. The measurements form a saw-tooth like shape.

This is due to the fact that every SYNC message brings the
clocks in sync and afterwards they are again drifting apart. The
overlapping of the saw-tooth signal is due to the low sampling
rate of 1Hz. We only show a five minute slice of the half hour
experiment to make the figure more clear. For the same reason
we left out Node2. The mean absolute offset of the synchro-

350 400 450 500 550 600

−1

−0.5

0

Time in s

C
lo

ck
of

fs
et

in
µ
s

Node1

Figure 5. Exemplary five minutes slot of the 30 minute clock drift mea-
surement with clock synchronization. The drifting clocks are still notable by
saw-tooth like shape of the measurements

nization is 0.54µs for Node1 and 0.33µs for Node2. As the
mean absolute offset is below one microsecond our system
is able to synchronize drifting clocks in a sub-microsecond
manner. The Standard Deviation (SD) of the offset is 0.41µs
for Node1 and Node2. Although these results might look
competitive to other clock synchronization protocols [9], they
still suffer from the drift of the clocks. That means, tasks near
to the SYNC message are better synchronized than tasks more
far away from that message.

C. Clock Synchronization with Drift Compensation

To overcome the clock drift challenge we proposed a drift
compensation in Section III-B In this experiment we evaluate
the performance of this compensation. As Figure 6 shows,
there is no more slope in the clock offset, therefore the clock
drift is compensated by our proposed drift compensation. This
result is supported by smaller mean absolute offsets: 0.19µs
for Node1 and 0.22µs for Node2.

V. CONCLUSION

In this paper we proposed an optimized version of the PTP
for wireless networks. We also present a drift compensation
for our clock synchronization protocol. In contrast to most
other approaches, ours does not rely on accurate clocking of
the CPU. The evaluation shows that our approach is able to
synchronize clocks up to a accuracy of 0.19µs. That shows,
our approach is competitive to other approaches even with
inaccurate hardware clocks.



350 400 450 500 550 600

−1

−0.5

0

0.5

Time in s

C
lo

ck
of

fs
et

in
µ
s

Node1

Figure 6. Exemplary five minutes slot of the 30 minutes clock drift
measurement with clock synchronization. The drifting clocks are compensated
and most measurements lie on a horizontal line near zero.

Although the results of our evaluation are already compet-
itive to other protocols we plan to investigate deeper into the
outliers we observed during our evaluation. With these outliers
removed we plan to integrate this synchronization protocol in
a much bigger network for wireless closed loop controllers.

REFERENCES

[1] D. L. Mills, “Network Time Protocol (NTP),” Internet Requests
for Comments, RFC Editor, RFC 958, September 1985. [Online].
Available: http://www.rfc-editor.org/rfc/rfc958.txt

[2] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEC 61588:2009(E),
pp. C1–274, February 2009.

[3] T. O’donovan, J. Brown, F. Büsching, A. Cardoso, J. Cecı́lio, J. D.
Ó, P. Furtado, P. Gil, A. Jugel, W.-B. Pöttner, U. Roedig, J. S.
Silva, R. Silva, C. Sreenan, V. Vassiliou, T. Voigt, L. Wolf, and
Z. Zinonos, “The GINSENG System for Wireless Monitoring and
Control: Design and Deployment Experiences,” ACM Transactions on
Sensor Networks, vol. 10, no. 1, pp. 4:1–4:40, Dec. 2013. [Online].
Available: http://doi.acm.org/10.1145/2529975

[4] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, and M. Nixon,
“WirelessHART: Applying Wireless Technology in Real-Time Industrial
Process Control,” in IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2008, pp. 377–386.

[5] R. Steigmann and J. Endresen, Introduction to WISA. ABB, July 2006.
[6] ISA100 Standards Committee, “ANSI/ISA-100.11a-2011 Wireless sys-

tems for industrial automation: Process control and related applications,”
2011.

[7] R. Lim, B. Maag, and L. Thiele, “Time-of-flight aware time
synchronization for wireless embedded systems,” in Proceedings of
the 2016 International Conference on Embedded Wireless Systems
and Networks, ser. EWSN ’16. USA: Junction Publishing, 2016,
pp. 149–158. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2893711.2893732

[8] M. Lévesque and D. Tipper, “A survey of clock synchronization over
packet-switched networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 4, pp. 2926–2947, 2016.

[9] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Information Process-
ing in Sensor Networks (IPSN), 2011 10th International Conference on,
April 2011, pp. 73–84.

[10] STMicroelectronics, “RM0090 Reference manual: STM32F405/415,
STM32F407/417, STM32F427/437 and STM32F429/439 advanced
ARM R© -based 32-bit MCUs,” http://www.st.com/web/en/resource/
technical/document/reference manual/DM00031020.pdf last accessed:
24.04.2016, October 2015.

[11] J. Kannisto, T. Vanhatupa, M. Hännikäinen, and T. D. Hämäläinen, “Pre-
cision Time Protocol Prototype on Wireless Lan,” in Telecommunications
and Networking-ICT 2004. Springer, August 2004, pp. 1236–1245.

[12] A. Dreher and D. Mohl, “Präzise Uhrzeitsynchronisation - IEEE 1588
(White Paper),” Hirschmann Automation and Control GmbH, Neckarten-
zlingen, Germany, Tech. Rep., 2005.

[13] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st international conference
on Embedded networked sensor systems. ACM, 2003, pp. 138–149.

[14] D. Ltd., “DW1000 User Manual - How to use, configure and program
the DW1000 UWB transceiver,” http://www.decawave.com/support/
download/file/nojs/629 last accessed: 10.11.2015, 2015.


