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Abstract:
Modern cars are already able to park in parking spaces adjacent to streets. Soon autonomous cars will

be able to navigate themselves through parking garages to find a parking lot assigned to them. Indoor
localization is essential to qualify cars and parking garages to perform this operation. Currently the relia-
bility of many indoor localization schemes suffers from non-line-of-sight propagation paths. We present
a position estimation algorithm for indoor localization systems based on phase measurements of elec-
tromagnetic signals. Our algorithm is designed to detect and exclude measurements originating from
these non-line-of-sight paths to reduce their harmful influence on the localization.
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ABSTRACT
Modern cars are already able to park in parking spaces ad-
jacent to streets. Soon autonomous cars will be able to
navigate themselves through parking garages to find a park-
ing lot assigned to them. Indoor localization is essential to
qualify cars and parking garages to perform this operation.
Currently the reliability of many indoor localization schemes
suffers from non-line-of-sight propagation paths. We present
a position estimation algorithm for indoor localization sys-
tems based on phase measurements of electromagnetic sig-
nals. Our algorithm is designed to detect and exclude mea-
surements originating from these non-line-of-sight paths to
reduce their harmful influence on the localization.

1. INTRODUCTION
In future parking garages cars will drive autonomously

from a drop-off point to their designated parking lot and
back. During parking times electric cars may drive to special
lots with charging capabilities and back to normal lots when
fully charged to allow other autonomous cars to charge their
batteries as well [9, 5]. For autonomous driving operations
inside the parking garage the car needs to know its own
position for navigation. Further, the parking garage must be
aware of the position of all cars present to distinguish empty
from occupied lots. In parking garages Global Positioning
System (GPS) is not accurate enough to serve the needs of
the described application. Also it can be unavailable due to
attenuation of the signal by structural elements.

Further, indoor localization can be useful when guiding
customers through a shopping mall. In this scenario small
shops connected to a big hallway will result in many Non-
Line-Of-Sight (NLOS) connections between fixed reference
nodes with known positions (anchors) and mobile nodes
(tags) carried by customers.

Therefore, we present an indoor localization system to
overcome the disadvantages of GPS. Unlike other indoor
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localization solutions our system is optimized to detect and
handle often challenging NLOS measurements.

Our system utilizes phase difference measurements to de-
termine the distance between nodes [2]. In this work we
concentrate on how to estimate the position of a tag after
measuring its distance to multiple anchors.

Other systems include NLOS measurements in their calcu-
lations by accounting for possible distance offsets and higher
errors [6]. Phase measurements of NLOS connections cannot
be included into distance estimations due to unpredictable
reflections and refractions in different materials.

The proposed algorithm was tested in the Microsoft In-
door Localization Competition 2015 [1]. The system ranked
9th out of 23 competitors with an average distance error of
1.63 meters over 20 tested locations.

After giving a short overview of related work in Section 2
we present our map based approach to detect and mitigate
NLOS measurements in Section 3. Afterwards, we describe
the evaluation at the competition in Section 4.

2. RELATED WORK
Many indoor localization systems are prone to harmful

influences of NLOS conditions. Especially in radio-based
approaches the exact propagation path is often unknown
resulting in wrong distance measurements and ultimately in
wrong position estimates [8, 4].

Jung et al. detect NLOS conditions by using a known
map of the environment for Time of Arrival (ToA) mea-
surements in Ultra Wide Band (UWB) networks [6]. In
ToA approaches the propagation path is critical as reflec-
tions prolong the time of flight and therefore the measured
distance.

The algorithm proposed by Sathyan et al. returns mul-
tiple solutions from a ToA measurement [7]. Thereby the
probability of the Line-Of-Sight (LOS) measurement being
among the results increases. However, this approach fails
when no LOS is available and all results are based on NLOS
paths.

3. NLOS-AWARE APPROACH
The proposed algorithm is designed to localize a mobile

node even in challenging environments like parking garages.
It is based on measured distances to deployed anchor nodes.

Distances are calculated from phase shift measurements
of a radio signal. The measurement is done by the At-
mel Ranging Toolbox (RTB) [2]. This software is designed



Figure 1: Output of our software with shadow map
of anchor AN 8 (gray area). Both axes in cm

to use the Phase Difference Measurement Unit (PMU) of
the IEEE 802.15.4 radio transceiver AT86RF233. The RTB
reports a measured distance and a Distance Quality Fac-
tor (DQF). The DQF indicates the quality of the measure-
ment and can be used to classify good and bad measure-
ments by applying a cut-off value. Measurements may be
bad if the radio channel is disturbed by other services like
IEEE 802.11. Phase measurements are prone to errors due
to NLOS-conditions. If the electromagnetic wave is reflected
at a surface or refracted while passing through an object
its phase is shifted. A reflection results in a phase shift
of 180° while a refraction results in an unknown phase shift
that depends on the refractive index of the object. Both phe-
nomena can occur simultaneously resulting in unpredictable
phase shifts.

Our localization algorithm uses a known 2D map of the
deployment area to detect NLOS-conditions and impossible
locations for the mobile node. We use a grid based ap-
proach comparable to a particle filter with particles aligned
on a fixed grid. The grid can be represented as a matrix
M enabling the use of optimized math libraries for comput-
ing the solution. Each element in this matrix represents a
square cell in the deployment area. The size of M can be
configured based on the needed accuracy and available com-
putational capabilities. The 2D map of the environment is
represented by a second matrix E of the same size as M .
Each element of E indicates one of two special conditions
for this cell of the environment:

NLOS obstacle: No LOS is possible through this cell
and the mobile node cannot be located here (red areas in
Figure 1). This condition is used to indicate walls.

Positioning blocked: A LOS is possible but the mobile
node cannot be positioned here (green areas in Figure 1).
This condition is used for restricted areas like atriums. In
a parking garage this would indicate sidewalks or staircases
as these are invalid locations for a car.

Shadow maps Si are computed for each anchor ai. Each
shadow map is a boolean matrix that indicates LOS of all
cells to the anchor node. Figure 1 shows the shadow map as
an overlay (gray area) over the deployment area.

Figure 2: Anchor node consisting of three INGA
sensor nodes with a coin for scale

Our battery powered anchor nodes consist of three INGA
sensor nodes [3] and therefore feature three directional an-
tennas, see Figure 2. The predominant directions of the an-
tennas are 22.5° apart. Thus we can divide the area covered
by each anchor node into three sectors. A distance value is
measured for every sector individually.

The algorithm computes a probability for each cell that
the mobile node is located in it. To do this, for each anchor
a temporary matrix Ti is allocated. For each antenna sector
an arc is drawn at the measured distance between the an-
chor and the mobile node. By using arcs and sectors we can
reduce ambiguities that would arise when using full circles
to mark possible locations. Drawn arcs can be configured
to represent a specific probability distribution of distance
measurements in the deployment area. Each arc is further
weighted with the reported DQF of the measurement as a
higher value indicates a better measurement result. The
shadow map Si is now used to remove impossible measure-
ments for anchor ai. The probability of every cell in Ti

marked as NLOS in Si is set to 0. Ti now contains the prob-
abilities for the mobile node being in each cell based on the
measurements from anchor ai. The results in Ti are now
added to the overall probabilities in M .

To find the most probable position for the mobile node the
environment map E is taken into account. The probability
of every cell in M not marked as normal cell in E is set to
0. By finding the maximum value in M the most probable
location of the tag is computed. The indices of this cell in
M correspond to the coordinates of the tags position in the
deployment area. Figure 3 shows the final values of M color
mapped as an overlay of the deployment area. In this exam-
ple the tag is most likely located at the point (-3500, 2400)
which translates to 35 and 24 meters, respectively.

4. EVALUATION
Our algorithm was tested in the Microsoft Indoor Local-

ization Competition [1]. The evaluation area had a size of
roughly 2000m2 (50 x 40 m) and consisted of an empty room
and a big hallway with features like structural columns,
beams, escalators and a staircase resulting in many NLOS



Figure 3: Relative probabilities of a tag’s position
in the deployment area. Both axes in cm

connections (see Figure 1). The area was not empty during
measurements, but conference attendees and other compet-
ing teams were using the space as well. However, other
system were turned off during the evaluation.

The competing systems were categorized by their need for
additional infrastructure. Every contestant that deployed
extra hardware was categorized as infrastructure-based and
was allowed to deploy 10 units. As we deployed anchor nodes
our system was infrastructure-based. All other systems were
infrastructure-free and were only allowed to use a mobile
device for localization. However, the supplied conference
WLAN could to be used as reference.

As a CAD file of the evaluation area was available prior
to the event we were able to generate the needed map of the
environment E beforehand. Only small adjustments were
needed at the venue due to inaccuracies in the provided file.

The evaluation consisted of two days. On the first day all
teams were allowed to set up their systems during a 7 hour
time window. On the second day 20 previously unknown
positions were marked down in the area. Each team had
to locate every point and report its measured position to
the referee. From these measurements the average distance
error was calculated for each team.

Figure 4 shows the official results of the competition with
infrastructure-free submissions marked in green. Our system
(red) achieved an average distance error of 1.63 meters.
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