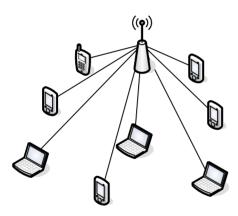
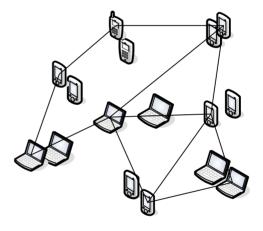
Towards a novel transport protocol for wireless mobile ad hoc networks

■ 1st E-Next WG1 TF Meeting in Wireless Mobile Ad-Hoc Networks


Georgios Parissidis ETH Zurich parissid@tik.ee.ethz.ch

Outline

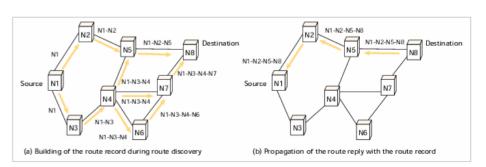
- Wireless mobile networks
- Background knowledge
- Problem statement
- Our Approach-evaluation methodology
- Expected results


Wireless mobile networks

Infrastructure-based

- Wi-Fi hotspots. Access to the Internet
 (Airports, train stations, universities, city centres)
- Home use.

Infrastructure-less (ad hoc)


- Inter-vehicular and disaster networks.
- In-building networks.

Background knowledge
Problem Statement
Our Approach-evaluation methodology
Expected results

Background knowledge

Routing protocols for mobile ad hoc networks (single-path, multi-path)

- Single-path routing protocols
- Proactive (Routing information maintained for every pair of nodes, updated in constant time intervals.)
 - DSDV, OLSR
- Reactive (On-demand)
 - AODV,DSR
- Hybrid (Combination of proactive and reactive)
 - ZRP

Wireless mobile networks

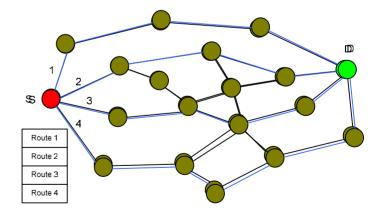
Background knowledge
Problem Statement
Our Approach-evaluation methodology
Expected results

Background knowledge

Routing protocols for mobile ad hoc networks (cont.)

Multi-path routing protocols

o AOMDV: Ad hoc On demand Multi-path Distance Vector (ICNP '01)


o MP-DSR: Multi-path Dynamic Source Routing (LCN '01)

SMR: Split Multi-path Routing (ICC '01)

o MSR: Multi-path Source Routing (ICC '01)

Desirable properties of a multi-path routing protocol:

	AOMDV	MP-DSR	SMR	MSR
Multiple complete paths:	Yes	Yes	Yes	Yes
Loop-free paths:	Yes	Yes	Yes	Yes
Node-disjoint paths:	Yes	Yes	Yes	Yes
Complete routes known:	No	Yes	Yes	Yes
Simultaneous use of paths:	Yes	Yes	Yes	Yes

Wireless mobile ad hoc networks

Background knowledge
Problem Statement
Our Approach-evaluation methodology
Expected results

Background knowledge

- Multi-path vs Single-path routing protocols
- P. Pham, "Performance analysis of reactive shortest path and multi-path routing mechanism with load balance." (INFOCOM '03)
- Y. Ganjali, "Load Balancing in Ad Hoc Networks: Single-path Routing vs. Multi-path Routing." (INFOCOM'04)
 - + Load balancing
 - + Maintenance of multiple routes from a sender to a destination
 - In general more routing overhead.
 - More complex algorithms

Background knowledge

Wireless mobile ad hoc networks

Background knowledge

Problem Statement

Our Approach-evaluation methodology Expected results

Single-path routing and TCP

Lower layer feedback control.

- 1. G. Holland, "Analysis of TCP performance over mobile ad-hoc networks". (MOBICOM '99)
- 2. K. Chandran, "A Feedback Based Scheme for Improving TCP Performance in Ad Hoc Networks." (PCS '01).
- 3. Jian Liu, "ATCP: TCP for mobile ad hoc networks" (IEEE J-SAC '01).

Time-out due to un-ack's, RTO freezes

4. T. Dyer, "A comparison of TCP performance over three routing protocols for mobile ad hoc networks." (Mobihoc' 01

Out of order delivery of data/ack's indication of route failure.

- 5. F.Wang "Improving TCP performance over mobile ad-hoc networks with out-of-order detection and response"
- Stefano Basagni, Marco Conti et al: "Mobile Ad Hoc Networking", July 2004, Wiley-IEEE Press.

Multi-path routing and TCP

Multi-path routing detrimental to TCP Performance

1. Haejung Lim, "TCP Performance over Multipath Routing in Mobile Ad Hoc Networks", (ICC '03).

Duplication of data, copy on each path. Improves TCP performance in a very lossy environment

2. Ye, Z "Effects of Multipath Routing on TCP Performance in Ad Hoc Networks", (GLOBECOM '04).

Problem Statement

- TCP and Single-path routing
 - Stale routes due to mobility. Nodes remain inactive during route reestablishment.
 - Low performance.
- TCP & Multi-path routing comprises several problems:
 - Average round trip time (RTT) estimation is not accurate under multi-path routing.
 - Window-based: Packets going through different paths may arrive at the destination out of order and trigger duplicate ACK's.
- A "novel transport protocol" (AMPT)
 - that exploits multi-path routing,
 - tailored for wireless mobile ad hoc networks,

Expected results

- Multi-path routing protocols
 - Quantitative comparison of Multi-path routing protocols.
- 2. AMPT- Ad hoc Multi-Path Transport protocol
 - Design and development of the AMPT protocol.
- 3. Implementation of the AMPT protocol

Our Approach-evaluation methodology

Multi-path routing protocols

- Quantitative comparison of Multi-path routing protocols:
- Efficiency.
- Network overhead.
- Robustness.

Parameters, simulation model

- Network size: Dimensions, # of nodes.
- Radio/MAC: IEEE 802.11 standard.
- Mobility: Node's speed (1,10, 20 m/s), relative motion (random waypoint, Uniform Mobility Model).
- Traffic load: 1,5, 25 flows, bursty / non-bursty traffic.
- Transmission/Interference range (250m/ 500m).

Expected results

Our Approach-evaluation methodology

AMPT- Ad hoc Multi-Path Transport protocol

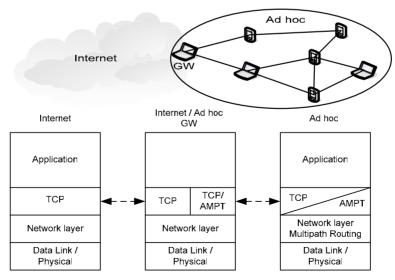
A transport protocol tailored for mobile ad hoc networks and multi-path routing:

- Maximize throughput
- Minimize end-to-end delay

Design space:

Sender-based transmission scheme.
 End-to-end transport services, flow control, congestion control, congestion avoidance, fairness.

Scheduling of packets over multiple routes.
 Round Robin, Priority queuing, WFQ.


Wireless mobile networks Background knowledge Problem Statement

Our Approach-evaluation methodology Expected results

Our Approach-evaluation methodology

2. AMPT – design goals (cont.)

- Access to the Internet and interconnection over heterogeneous network environments.
 - TCP / AMPT converter

Wireless mobile networks Background knowledge Problem Statement

Our Approach-evaluation methodology Expected results

Our Approach-evaluation methodology

AMPT vs TCP.

 Throughput: simulation (various scenarios: sparse/dense populated networks, mobility models)

3. Implementation of the AMPT protocol.


- Testing with users
- Setup of a large scale test-bed
- Validation of simulation results

Expected results

- Quantitative comparison of multi-path routing protocols.
- Design-development of the AMPT protocol.
- Implementation of the AMPT protocol.

Discussion

Thank you for your attendance

