CASP – Cross-Application Signaling Protocol

Henning Schulzrinne
August 27, 2002
Overview

- Protocol properties
- Message delivery
- Transport protocol usage
- Message forwarding
- Message format
- Next-hop discovery
 - Scout protocol
- Mobility and route changes
- Protocol heritage
What is CASP?

- **Generic signaling service**
 - establishes state along path of data
 - one sender, typically one receiver
 - can be multiple receivers → multicast
 - *can* be used for QoS per-flow or per-class reservation
 - but not restricted to that

- avoid restricting users of protocol (and religious arguments):
 - sender vs. receiver orientation
 - more or less closely tied to data path
 - router-by-router
 - network (AS) path
CASP network model – on-path

- CASP nodes form CASP chain
- not every node processes all client protocols:
 - non-CASP node: regular router
 - omnivorous: processes all CASP messages
 - selective: bypassed by CASP messages with unknown client protocols
CASP network model – out-of-path

- Also route network-by-network
- Can combine router-by-router with out-of-path messaging
CASP protocol structure

- **client layer** does the real work:
 - reserve resources
 - open firewall ports
 - ...

- **messaging layer**:
 - establishes and tears down state
 - negotiates features and capabilities

- **transport layer**:
 - reliable transport

- **scout protocol**:
 - UDP
 - IP router alert
CASP messages

- Regular CASP messages
 - establish or tear down state
 - carry client protocol

- Scout messages
 - discover next hop

- Hop-by-hop reliability
- Generated by any node along the chain
Most signaling messages are small and infrequent

but:
- not all applications → e.g., mobile code for active networks
- digital signatures
- re-"dialing" when resources are busy

Need:
- reliability → to avoid long setup delays
- flow control → avoid overloading signaling server
- congestion control → avoid overloading network
- fragmentation of long signaling messages
- in-sequence delivery → avoid race conditions
- transport-layer security → integrity, privacy

This defines standard reliable transport protocols:
- TCP
- SCTP

Avoid re-inventing wheel → see SIP experience
CASP transport protocol usage

- One transport connection → many M- & C-layer sessions
- may use multiple TCP/SCTP ports
- can use TLS for transport-layer security
 - compared to IPsec, well-exercised key establishment
 - not quite clear what the principal is
- re-use of transport →
 - no overhead of TCP and SCTP session establishment
 - avoid TLS session setup
 - better timer estimates
 - SCTP avoids HOL blocking
Message forwarding

- Route stateless or state-full:
 - stateless: record route and retrace
 - state-full: based on next-hop information in CASP node

- Destination:
 - address → look at destination address
 - address + record → record route
 - route → based on recorded route
 - state forward → based on next-hop state
 - state backward → based on previous-hop state

- State:
 - no-op → leave state as is
 - ADD → add message (and maybe client) state
 - DEL → delete message state
Message format

- No M-layer distinction between requests and responses
 - just routed in different directions
 - client protocol may define requests and responses

- Common header defines:
 - destination flag
 - state flag
 - session identifier
 - traffic selector: identify traffic "covered" by this session
 - message sequence number
 - response sequence number
 - message cookie → avoid IP address impersonation
 - origin address → may not be data source or sink
 - destination address or scope
Message format, cont'd

- Limit session lifetime
- Avoid loops → hop counter
- Mobility:
 - dead branch removal flag
 - branch identifier
- Record route: gathers up addresses of CASP nodes visited
- Route: addresses that CASP message should visit
Capability negotiation

- CASP has named capabilities
 - including client protocols

- Three mechanisms:
 - discovery: count capabilities along a path
 - "10 out of 15 can do QoS"
 - record: record capabilities for each node
 - require: for scout message, only stop once node supports all capabilities (or-of-and)

- avoid protocol versioning
Next-hop discovery

- Next-in-path service
 - enhanced routing protocols → distribute information about node capabilities in OSPF
 - routing protocol with probing
 - service discovery, e.g., SLP
 - first hop, e.g., router advertisements
 - DHCP
 - scout protocol

- Next AS service
 - touch down once per autonomous system (AS)
 - new DNS name space: ASN.as.arpa, e.g., 17.as.arpa
 - use new DNS NAPTR and SRV for lookup
 - similar to SIP approach
Next-hop discovery

- scout messages are special CASP messages
- limited < MTU size
- addressed to session destination
- UDP with router alert option → get looked at by each router
- reflected when matching CASP node found
Mobility and route changes

- avoids session identification by end point addresses
- avoid use of traffic selector as session identifier
- remove dead branch
The weight of CASP

- CASP state = transport state + CASP M-state + client state
- M-state = two sockets
- transport state = $O(100)$ bytes \rightarrow 10,000 users consume 1 MB
Conclusion

- CASP = unified infrastructure for data-affiliated sessions
- avoid making assumptions except that sessions want to "visit" data nodes or networks
- not just mobility, but also mobility
- protocol framework in place
 - but need to work out packet formats
CASP properties

- **Network friendly**
 - congestion-controlled
 - re-use of state across applications

- **transport neutral**
 - any reliable protocol
 - initially, TCP and SCTP

- **policy neutral**
 - no particular AAA policy or protocol
 - interaction with COPS, DIAMETER needs work

- **soft state**
 - per-node time-out
 - explicit removal

- **extensible**
 - data format
 - negotiation
CASP properties, cont'd.

- Topology hiding
 - not recommended, but possible

- Light weight
 - implementation complexity
 - security associations (re-use)
 - may not need kernel implementation