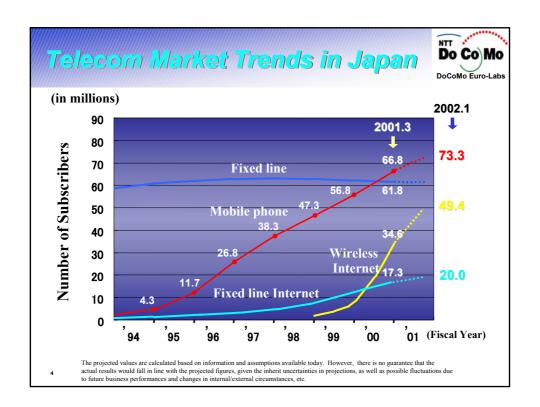
Mobile Terminal Technologies: Trends and Future Developments

KiVS Summer School on Mobile Computing, Dagstuhl 2002 Dr. Christian Prehofer DoCoMo Eurolabs, München

Content



- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

Content

- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

Nultimedia

Business Use

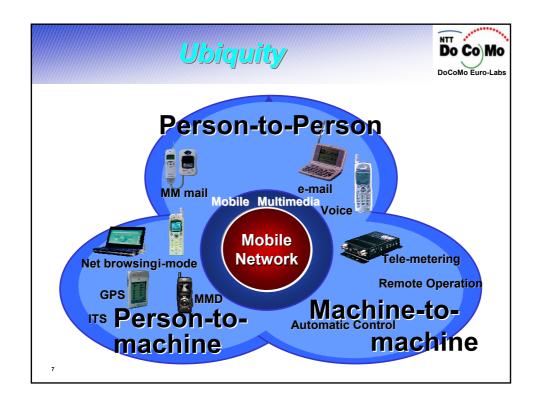
- Database / Data Center
- Electronic Commerce (Business Transactions)
- GPS Data Search

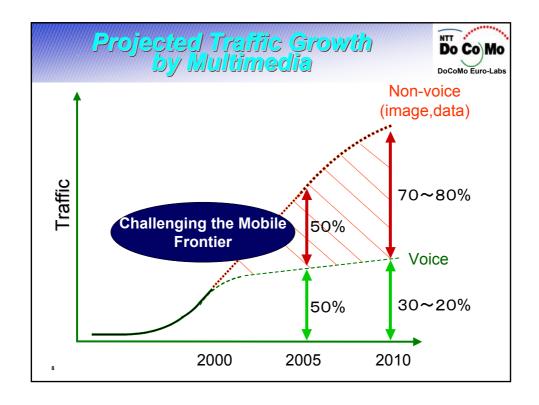
<u>Mobile Multimedia</u> <u>Network</u>

Personal Use

Public Use

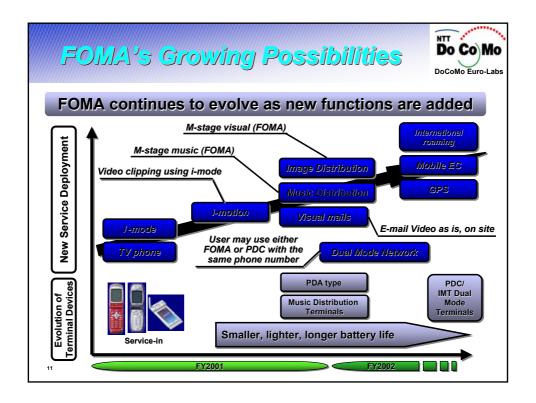
- Electronic Newspaper / Book
- Interactive TV
- Electronic Commerce (Shopping)
- Remote Health Care System
- Remote Health Care System for the Elderly
- Communication System during a Disaster
- Remote Monitoring System
- Intelligent Transport System


(ITS)

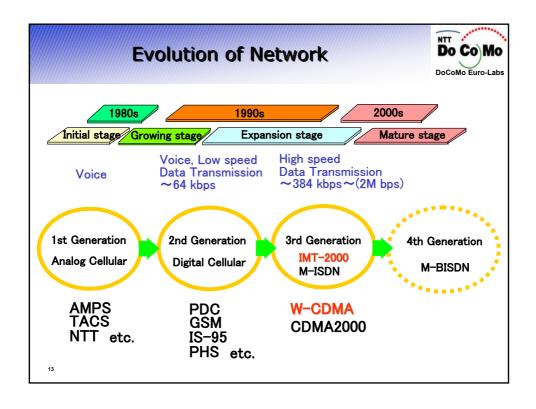

Potential Demand for Wobile Wultimedia

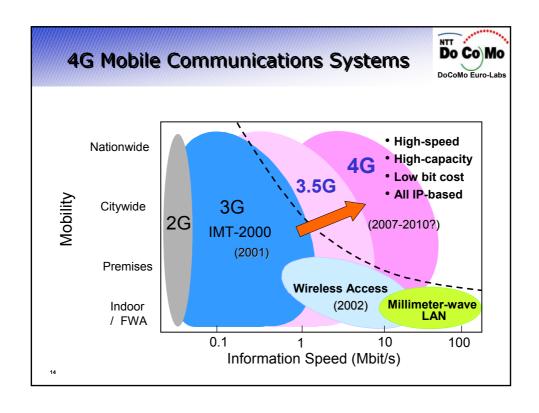
(2010) Number of sub./units (million	
People	120
Automobiles	100
Bicycles	60
Portable PCs	50
Motorcycles, boats, vending machines, etc.	10
Pets (dogs and cats, etc.)	20
TV, Set Top Box	90
Digital Camera, Video Camera	50
Refrigerator	40
Parcels (3 billion / 100 turn)	30
Total	570

Forecast by DoCoMo based on "Trends in Household Consumption" by Economics Planning Agency, and published finaterial by Japan Pet Food Manufactures Association, etc.

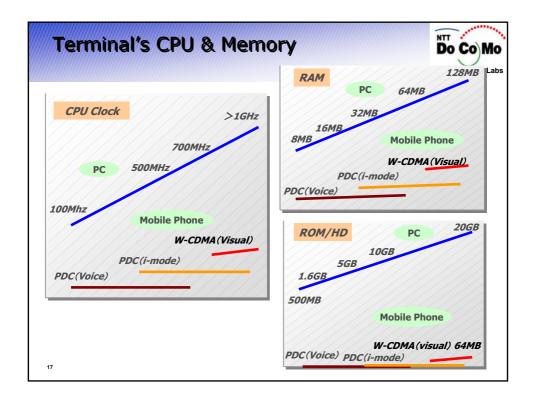


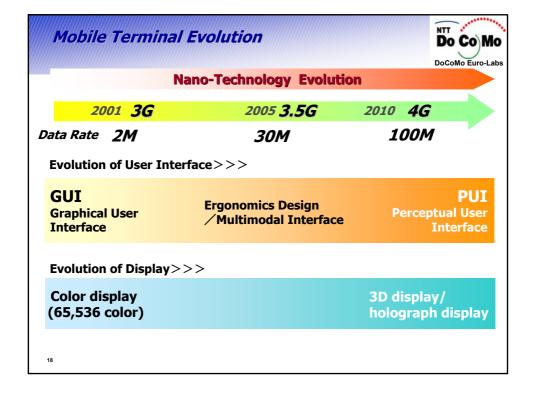
Content




- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

4G Requirements


- Huge Multimedia Traffic Handling
- Diversified Radio Access
 - Cellular, wLANs, ad-hoc networks, ...
- Seamless Service
 - Network seamless
 - Terminal seamless
 - Context seamless
- Advanced Mobility Management
- Application Service Support


15

Content

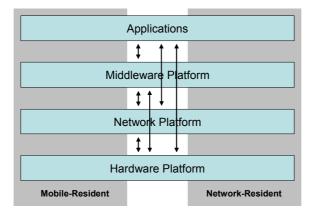
- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

Content

- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

19

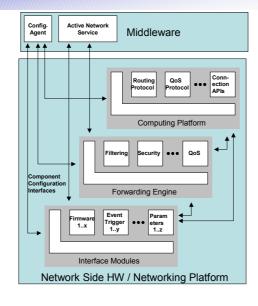
System Concepts for Future Mobile Networks



- SW platforms for fast service creation
- Separate evolution of components
 - access, core, MW, radio
- Programmable components
- Integrated networking services
 - All-IP networking as basis
- ➤ More flexibility and programmability is the key

Future Mobile Systems Architecture

Abstraction Layers & Inter-layer communication



21

Programmable Mobile Terminal Model Applications MEXE Standards e.g. Java Middleware Visim, e.g. Mative RT Operating System Native OS Real time support Native RT Operating System Native RT Operating System

Programmable Network Element Model

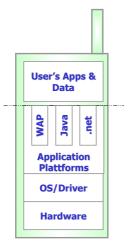
Active Network Service Components

Reliable OS Support for Active Network

Programmable L2 / L3 Switching / Routing Engine Dedicated HW OS Kernel Module

3G/2G Air If. wLAN Module Wired/Optical Network If.

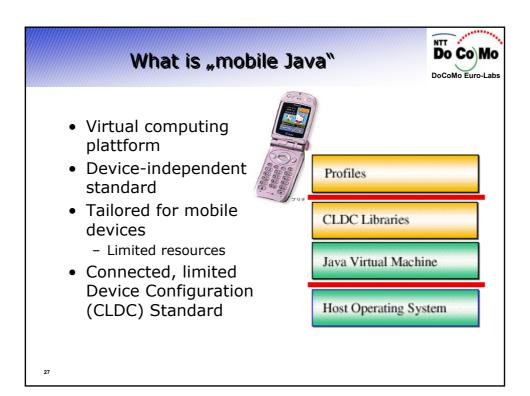
23

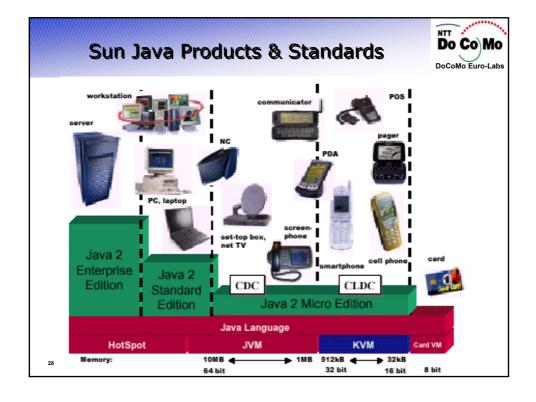

Content

- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

Mobile Execution Environment(s) (MEXE)

Goals of MExE Standardization (3GPP)


- Execution plattforms for mobile applications
- · Security framework for SW download
 - PKI based trust model
- Security domain concept for applications
 - Operator domain
 - Manufacturer domain
 - Third party
 - Untrusted
- Trusted Apps. have access rules for APIs
 - E.g. application in operator domain can access SIM card


2

Content

- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

CLDC Configuration

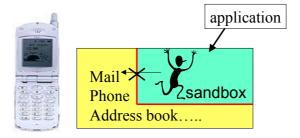
- J2ME Connected, Limited Device Configuration
 - specification, reference implementation (KVM),
 Technology Compatibility Kit (TCK)
- intended for devices with following characteristics:
 - 160 kB to 512 kB total memory
 - 16 or 32 bit processor
 - limited power, often battery operation
 - intermittent connectivity to low-bandwidth network
- CDC (Connected Device Configuration)
 - intended for larger devices

29

Scope of CLDC

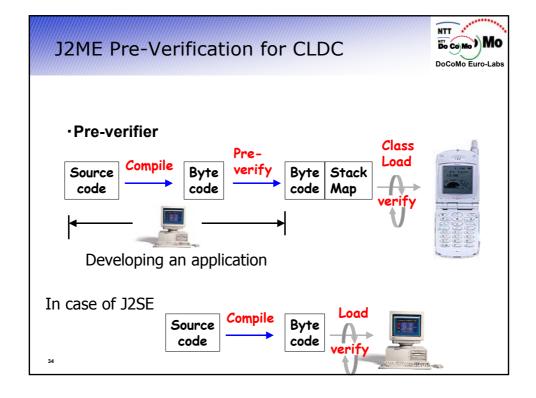
- Java language and VM features
 - subsetting J2SE
- Core Java libraries subsets
 - -java.lang
 - -java.io
 - -java.util
 - -javax.microedition.io Networking
- Security
- Internationalization
- Unsupported functions:
 - floating point, user defined classloader, thread group, weak reference

CLDC versus J2SE Java Virtual Machines


- No floating point support
- No finalization
- · Limited error handling
- No Java Native Interface (JNI)
- Pre-verifier for .class files
 - No user-defined class loaders
 - No weak references
- No support for reflection

31

Security Model of J2ME/CLDC


 Security model is a sandbox model in JDK1.0 and not a fine grain model in Java2.

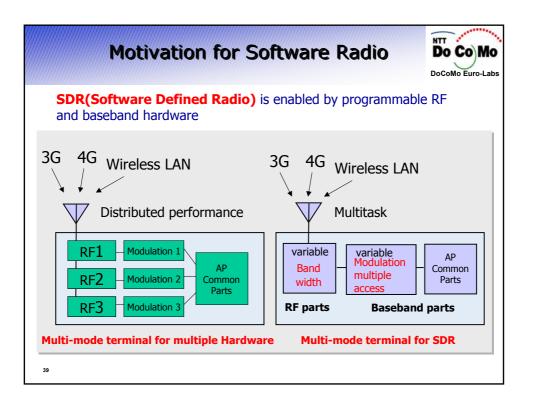
J2ME/CLDC Security

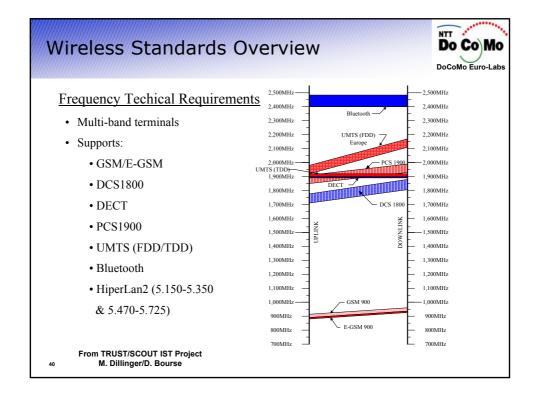

- Low-level virtual machine security
 - server-side pre-verifier attaches stackmaps to classfiles
 - client-side verifier checks classfiles
 - more efficient than traditional verifier
- Application-level security
 - no traditional security manager
 - no user-definable class loader
 - no user owned native functions
 - no manipulation of standard Java libraries
- End-to-End Security
 - Left to the network operators and device manufacturers

Profiles: DoJa vs. MIDP

- 2 Standards for Mobile Device Profiles (in 2001)
 - DoJa (NTT DoCoMo)
 - MIDP Mobile Information Device Profile (SUN etc)
- Tun on top of CLDC
- Targeted at mobile phones and pagers
- Device Profiles cover GUI and utilities
 - MIDP addresses GUI, persistency, networking, security,, timers
 - · look & feel is based on WML
 - DoJa Look & Feel is similar to C-HTML (I-mode)
- Additional profiles in preparation
 - Games, 3D graphics, RPC, ...

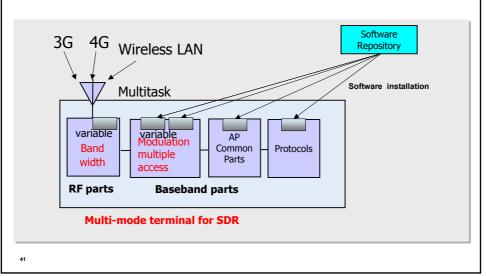
Programming Mobile Devices is Different ...

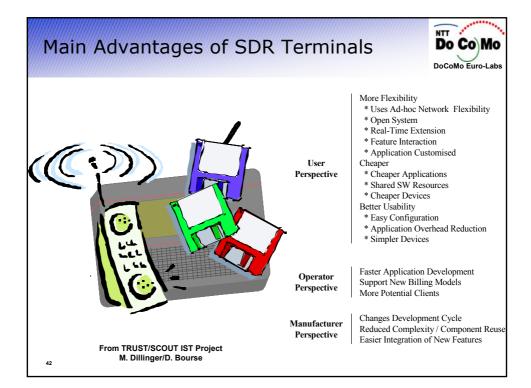

- Limited memory (RAM)
- Persistent storage limited
- Large varitey of display & input techniques
- Networking is a must
- Security is essential
- How to deploy code over the air?


37

Content

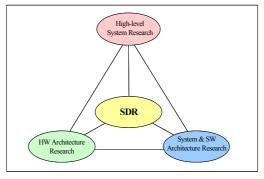
- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies





What is Software Radio?

• Reconfiguration by installation of new software

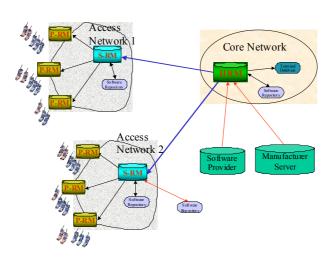


SDR is a multi-disciplinary research effort

SDR Research

- · Business Models
- · Regulatory Issues
- User Perspectives
- RRM and Spectrum Mngt
- System Level Issues
- Enabling Technologies

SDR Research (WWRF BoV 01)

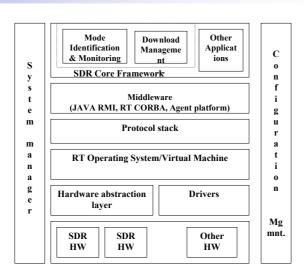

NB: SDR Research Slides are based on WWRF Book of Vision SDR Chapter

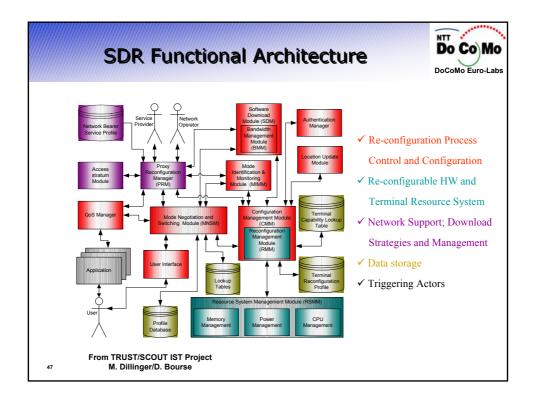
43

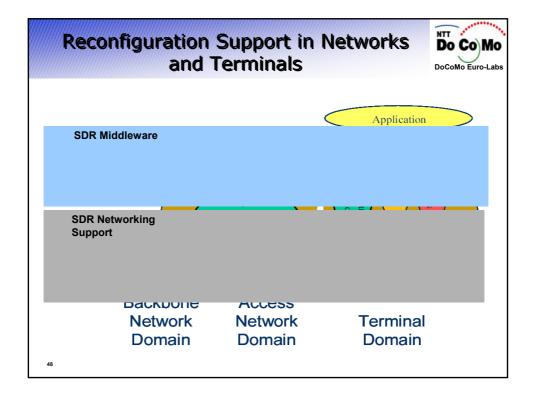
Architecture for Network Centric Reconfiguration

• Reconfigurations are controlled by the network

Network centric Reconfiguration




- Advantages
 - Operator can control the terminal capabilites & services
 - Operator can install new end-to-end protocols
 - Optimal usage of network resources and radio spectrum
 - Can be triggered by network or terminal side
- The key requirements
 - Secure and reliable distribution of software
 - Integration with user profiles, applications and billing
 - Distributed execution of software updates for scalability
 - Note: execution of reconfiguration & fallback is local
- Alternative: Terminal controlled reconfiguration
 - User is in charge of software updates


45

SDR Terminal Architecture (Layers)

SDR Middleware for Reconfiguration

Design goals

- Abstraction from network topology and terminal diversity; End-to-end model
- Flexible and extensible wrt services, terminals and network infrastructure
- Easy support with other system parts (applications, billing, etc)

Responsibilities

- Negotiation wrt terminal capabilities, network resources, user profiles
- Resource and service control decisions
- Mobility and location control
- Interfaces to applications, user profiles, billing, etc

49

SDR Networking Support for Reconfiguration

Design goals

- Topology aware, distributed functionalities
- Stable and robust network services; optimized for specific network technology
- Resource and mobility aware
- Real time support

Responsibilities

- Real-time software update support, including fallback
- Distributed download infrastructure,
- QoS and mobility management, triggers to middleware
- Roaming support

European Project SCOUT Partners

- + Cellular 3G
- + University of Portsmouth
- + German Regulator

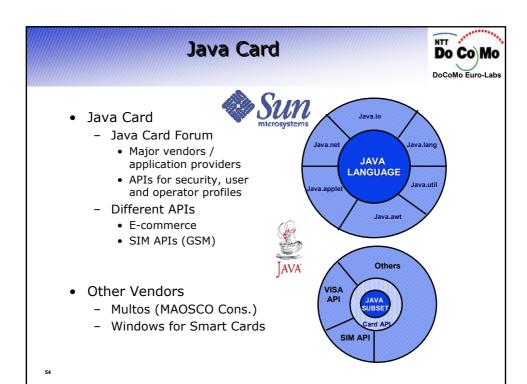
http://www.ist-scout.org Markus.Dillinger@icn.siemens.de Didier.Bourse@crm.mot.com

Content

- Market and technology trends
 - Mobile market in Japan
 - 3G Systems and future directions
 - Mobile terminal technologies and trends
- System concepts and technologies
 - System architecture and programmability
 - Mobile Execution Environment (MExE) Standard
 - Java2 ME Middleware platform
 - Software defined radio
 - SIM card technologies

SIM Card Technology

- Computer on a chip
 - microprocessor,
 - ROM, e.g. 48 K
 - Flash EEPROM, e.g. 32 K
 - RAM, e.g. 5 K


NO: display, keyboard, power

- Specifications/Standards
 - ISO
 - ETSI GSM
 - 3GPP for UMTS

- Card represents operator
- Security critical applications
 - Authentication
 - E-commerce
 - ...
- User data (phone book etc)

DoCoMo Euro-Labs

Dr. habil. Christian Prehofer

Project Manager & Senior Researcher

DoCoMo Communications Laboratories Europe GmbH

Munich, GERMANY

Telephone: +49 89 5682 4 223

e-mail: prehofer@docomolab-euro.com

http://www.docomolab-euro.com