Column 7: Algorithm Design Techniques

Column 2 describes the "everyday” impad that algorithm design can have on programmers: an
algorithmic view of a problem gives insights that can make aprogram simpler to understand and to
write. In this column we'll study a contribution of the field that is lessfrequent but more
impressve: sophisticated algorithmic methods metimes leal to dramatic performance
improvements.

This column is built around one small problem, with an emphasis on the algorithms that solve it
and the techniques used to design the algorithms. Some of the algorithms are alittle complicated,
but with justification. While the first program we'll study takes thirty-nine days to solve aproblem
of sizeten thousand, the final one solves the same problem in less than a second.

7.1 The Problem and a Simple Algorithm

The problem arose in one-dimensional pattern recognition; I'll describe its history later. The input
isavedor X of Nreal numbers; the output is the maximum sum found in any contiguous subvedor
of the input. For instance, if the inpu vedor is

31 -41 | 59 26 -53 | 58 97 -93 | -23 | 84

! 1

3 7

then the program returns the sum of X[3. . 7], or 187. The problem is easy when all the numbers
are positive—the maximum subvedor isthe eitire inpu vedor. The rub comes when some of the

numbers are negative: should we include anegative number in hopes that the positive numbersto

its sides will compensate for its negative antribution? To complete the definition of the problem,

welll say that when all inputs are negative the maximum sum subvedor is the empty vedor, which
has sim zero.

The obvious program for thistask iterates over all pairs of integers L and U satisfying 1<L<U<N,
for ead pair it computesthe sumof X[L. . U] and cheds whether that sumis greaer than the
maximum sum so far. The pseudocode for Algorithm 1 is

MaxSoFar := 0.0
for L :=1to N do
for U:=L to N do
Sum:= 0.0
for 1 := L to Udo
Sum: = Sum+ X[I]

/* Sum now contains the sumof XL..U */
MaxSoFar : = max(MaxSoFar, Sum

This code is short, straightforward, and easy to understand. Unfortunately, it has the severe
disadvantage of being slow. On the computer | typicaly use, for instance, the ade takes about an
hour if N is1000and thirty-nine daysif N is 10,000, we'll get to timing cetails in Sedion 7.5.

Those times are anecdatal; we get a different kind of feeling for the algorithm's efficiency using the
"big-oh" notation described in Sedion 5.1. The statements in the outermost loop are exeauted
exactly N times, and those in the middle loop are exeauted at most N times in each exeaution of the

outer loop. Multiplying those two fadors of N shows that the four lines contained in the middle
loop are exeauted O(NF) times. The loop in those four lines is never exeauted more than N times, so
its cost is O(N). Multiplying the cost per inner loop times its number of exeautions shows that the
cost of the antire program is proportional to N cubed, so we'll refer to thisas a aubic algorithm.

This example illustrates the technique of big-oh analysis of run time and many of its grengths and
weeknesses. Its primary wegnessis that we still don’'t redly know the amount of time the program
will take for any particular input; we just know that the number of steps it exeautes is O(N’). That
weekness is often compensated for by two strong points of the method. Big-oh analyses are usually
easy to perform (as above), and the asymptotic run time is often sufficient for a bad-of-the-
envelope alculation to dedde whether or not a program is efficient enough for a given application.

The next several sections use asymptotic run time as the only measure of program efficiency. If
that makes you uncomfortable, peek aheal to Section 7.5, which shows that for this problem such
analyses are extremely informative. Before you real further, though, take aminuteto try to find a
faster algorithm.

7.2 Two Quadratic Algorithms

Most programmers have the same response to Algorithm 1: "There's an obvious way to make it a
lot faster.” There aetwo obvious ways, however, and if one is obviousto a given programmer then
the other often isn't. Both algorithms are quadratic—they take O(N’) steps on an input of size N—
and both achieve their run time by computing the smn of X[L..U] ina constant number of steps
rather thaninthe U-L+ | steps of Algorithm 1. But the two quedratic algorithms use very
different methods to compute the sum in constant time.

The first quadratic algorithm computes the sum quickly by noticing that the sum of X[L..U] has
an intimate relationship to the sum previously computed, that of X[L..U-1] . Exploiting that
relationship leads to Algorithm 2.

MaxSoFar := 0.0
forL:=1toNdo
Sum :=0.0
forU:=LtoNdo
Sum := Sum + X[U]
/* Sum now contains the sum of X[L..U] */
MaxSoFar := max(MaxSoFar, Sum)

The statements inside the first loop are exeauted N times, and those inside the second loop are
executed a most N times on each exeaution of the outer loop, so thetotal run time is O(N).

An alternative quadratic algorithm computes the sum in the inner loop by accessng a data structure
built before the outer loop is ever exeauted. The | ™ element of CumArray contains the aumulative
sum of the valuesin X[I..1] , S0 the sum of the valuesin X[L..U] can be found by computing
CumArray[U]—CumArray[L-1] . Thisresultsin the following code for Algorithm 2b.

CumArray[0] := 0.0
forl:=1to N do
CumArray[l] := CumArray[l-1] + X]I]

for U:
Sum := CunmArray[U] - CumArray[L-1]
/* Sum now contains the sumof XL..U */
MaxSoFar : = max(MaxSoFar, Sum

This code takes O(N) time; the analysis is exadly the same & the analysis of Algorithm 2.

The algorithms we've seen so far inspect all possible pairs of starting and ending values of
subvedors and consider the sum of the numbersin that subvedor. Because there ae O(N)
subvedors, any algorithm that inspects all such values must take at least quadratic time. Can you
think of away to sidestep this problem and achieve an algorithm that runsin lesstime?

7.3 A Divide-an~I-Conquer Algorithm

Our first subquadratic algorithm is complicated; if you get bogged down in its detail s, you wontt
lose much by skipping to the next sedion. It is based on the following divide-and-conquer schema:

To solve a problemof size N, recursively solve two
subprobl ens of size approximately N 2, and conbine their
solutions to yield a solution to the conpl ete problem

In this case the original problem deals with avedor of size N, so the most natural way to divide it
into subproblems isto crede two subvectors of approximately cqual size, which well cal A and B.

A B

We then reaursively find the maximum subvectorsin A and B, which we'll call M, and M.

1 MA : : MB

It is tempting to think that we have solved the problem because the maximum sum subvedor of the
entire vector must be either M, or M,, and that is almost right. In fad, the maxinum is either entirely
in A, entirely in B, or it crosses the border between A and B; we'll call that M. for the maximum
crossing the border.

Thus our divide-and-conquer algorithm will compute M, and M, reaursively, compute V. by some
other means, and then return the maximum of the three

That description is almost enough to write ade. All we have left to describe is how we'll handle
small vedorsand how welll compute M. The former is easy: the maximum of a one-element vedor
isthe only value in the vedor or zero if that number is negative, and the maximum of a zeo-
element vedor was previously defined to be zeo. To compute M. we observe that its component in
Aisthe largest subvedor garting at the boundary and readiing into A, and similarly for its

component in B. Putting these fads together leads to the following code for Algorithm 3, whichis
originally invoked by the procedure cal

Answer : = MaxSum(1, N)

recursive function MaxSum(L, U)

if L > U then [* Zero-element vector */
return 0.0
if L = U then /* One-element vector */

return max(0.0, X[L])

M:=(L +U)/2 /* A'is X[L..M], B is X[M+1..U] */
[* Find max crossing to left */
Sum := 0.0; MaxToLeft := 0.0
for | := M downto L do
Sum := Sum + X]l]
MaxToLeft := max(MaxToLeft, Sum)
[* Find max crossing to right */
Sum := 0. 0; MaxToRight := 0.0
for | :=M+1to U do

Sum := Sum + X]l]

MaxToRight := max(MaxToRight, Sum)
MaxCrossing := MaxToLeft + MaxToRight
MaxInA := MaxSum(L,M)

MaxInB := MaxSum(M+1,U)
return max(MaxCrossing, MaxInA, MaxinB)

The mdeis complicated and easy to get wrong, but it solves the problem in O(N log N) time.
There ae anumber of waysto provethisfad. Aninformal argument observes that the dgorithm
does O(N) work on eat of O(log N) levels of reaursion. The agument can be made more precise
by the use of reaurrencerelations. If T(N) denotesthe time to solve aproblem of size N, then
T()=0(1) and

T(N) = 2T(N/2) + O(N).
Problem 11 shows that this reaurrence has the solution T(N) = O(N log N)

7.4 A Scanning Algorithm

We'll now use the simplest kind of algorithm that operates on arrays. it starts at the left end
(element X[1]) and scansthrough to the right end (element X[N]), kegoing tradk of the maximum
sum subvector seen so far. The maximum is initially zero. Suppose that we've solved the problem
for X[l..I—1] ; how can we extend that to a solution for thefirst I elements? We use reasoning
similar to that of the divide-and-conquer algorithm: the maximum sum in the first | elementsis
either the maximum sum in thefirst I- 1 elements (which we'll cdl MaxSoFar), or it isthat of a
subvedor that ends in position | (which we'll call MaxEndingHere).

I MaxSoFar i i MaxEndingHere

Reocomputing Max Endi ngHer e from scratch using code like that in Algorithm 3 yields yet
another quadratic algorithm. We @an get around this by using the technique that led to Algorithm 2:
instead of computing the maximum subvedor ending in position | from scratch, we'll use the
maximum subvedor that ends in position | - 1. T hisresults in Algorithrn 4.

MaxSoFar := 0.0
MaxEndi ngHere := 0.0
for 1 :=1to Ndo
/* lnvariant: MaxEndi ngHere and MaxSoFar are accurate for
X1..1-1] */
MaxEndi ngHer e : = max(MaxEndi ngHere+X[1], 0.0)
MaxSoFar : = max(MaxSoFar, MaxEndi ngHer e)

The key to understanding this program is the variable Max Endi ngHer e. Before the first
assignment statement in the loop, MaxEndi ngHer e contains the value of the maximum subvedor
endingin position | - 1; the assgnment statement modifies it to contain the value of the maximum
subvedor ending in position 1. The statement increases it by the value X[|] so long as doing so
keeps it positive; when it goes negative, it isreset to zero becaise the maximurn subvedor ending
a | isthe empty vedor. Although the code is subtle, it is ort and fast: its run time is O(N), so
well refer to it asalinea algorithm. David Gries g/stematically derives and verifies this algorithm
in his paper "A Note on the Standard Strategy for Developing Loop Invariants and Loops' in the
journal Science of Computer Programming 2, pp. 207-214.

7.5 What Does It Matter?

So far I've played fast and loose with "big-ohs’; it's tirne for me to come clean and tell about the
run times of the programs. | implemented the four primary algorithms (all except Algorithm 2b) in
the C language on a VAX11/750, timed them, and extrapolated the observed run tirnes to achieve
the following table.

ALGORITHM 1 2 3 4
Linesof C Code 8 7 14 7
Run time in microseconds 3.4N° 13N? 46N log, N 33N
Timeto solve a 10° 3.4 secs 13 secs .03 secs .003secs
problem of size 10° 94 hrs 13secs A5 ecs .033secs
10" 39 chys 22 mins 6.1 s£Cs 33secs
10° 108yrs 1.5 days 1.3 mins 3.3%es
10° 108 mil | 5 mos 15 mins 33secs
Max sizeproblem | sec 67 280 2000 30,000
solved in one min 260 2200 82,000 2,000,000
hr 1000 17,000 3,500,000 120,000,000
day 3000 81,000 73,000000 | 2,800,000,000
If N multiplies by 10, time 1000 100 10+ 10
multiplies by
If time multiplies by 10, N 2.15 3.16 10- 10
multiplies by

This table makes a number of points. The most important is that proper algorithm design can make
abig difference in run time; that point is underscored by the middle rows. The last two rows gow
how increases in problem size ae related to increases in run time.

Another important point is that when we're cmparing cubic, quadratic, and linear algorithms with
one another, the constant fadors of the programs don't matter much. (The discusson of the O(N!)
algorithm in Sedion 2.4 shows that constant fadors matter even lessin functions that grow faster
than polynomially.) To underscore this point, | conducted an experiment in which | tried to make
the constant fadors of two algorithms differ by as much as possible. To achieve ahuge constant
fador | implemented Algorithm 4 on aBASIC interpreter on a Radio Shadk TRS-80 Model 111
microcomputer. For the other end of the spedrum, Eric Grosse and | implemented Algorithm 1 in
fine-tuned FORTRAN on a Cray-1 supercomputer. We got the disparity we wanted: the run time of
the abic algorithm was measured as 3.0N° nanoseconds, while the run time of the linear algorithm
was 19.5N rnilliseconds, or 19,500,000N nanoseaonds. This table shows how those expressions
translate to times for various problem sizes.

N CRAY-1, TRS-80,
FORTRAN, BASIC,
CUBIC ALGORITHM LINEAR ALGORITHM
10 3.0 microsecs 200millisecs
100 3.0 millisecs 2.0 secs
1000 3.0secs 20secs
10,000 49 mins 3.2 mins
100,000 35 dhys 32 mins
1,000,000 95yrs 5.4 hrs

The differencein constant fadors of six and a half million allowed the aibic algorithm to start off
faster, but the linea algorithm was bound to catch up. The bre&-even point for the two algorithms
isaround 2500 where eab takes about fifty seconds.

10° _ L century

10° _| __ month

w LT _ hou

w0 | T | seoond

10 | millisecond
10° | | microsecond
10 Cray-1 nanosecond

100 100 10 10 100 10 10

7.6 Principles

The history of the problem sheds light on the dgorithm design techniques. The problem arose in a
pattern-matching procedure designed by UIf Grenander of Brown University in the two-
dimensional form described in Problem 7. In that form, the maximum sum subarray was the
maximum likelihood estimator of a cetain kind of pattern in adigitized picture. Becaise the two-
dimensional problem required too much time to solve, Grenander simplified it to one dimension to
gain insight into its gructure.

Grenander observed that the aubic time of Algorithm 1 was prohibitively slow, and derived
Algorithm 2. In 1977 he described the problem to Michael Shamos of UNILOGIC, Ltd. (then of
Carnegie-Mellon University) who overnight designed Algorithm 3. When Shamos showed me the
problem shortly thereafter, we thought that it was probably the best possible; reseachers had just
shown that several similar problems require time proportional to N | og N. A few days later
Shamos described the problem and its history at a Carnegie-Mellon seminar attended by statistician
Jay Kadane, who designed Algorithm 4 within a minute. Fortunately, we know that there is no
faster algorithm: any corred algorithm must take O(N) time.

Even though the one-dimensional problem is completely solved, Grenander's original two-
dimensional problem remained open eight yeas after it was posed, asthis book went to press
Because of the computational expense of all known algorithms, Grenander had to abandon that
approadh to the pattern-matching problem. Readers who feel that the linea-time algorithm for the
one-dimensional problem is "obvious" are therefore urged to find an "obvious" algorithm for
Problem 7!

The algorithms in this gory were never incorporated into a system, but they il lustrate important
algorithm design techniques that have had substantial impact on many systems (seeSedion 7.9).

Save state to avoid recomputation. This simple form of dynamic programming arose in
Algorithms 2 and 4. By using spaceto sore results, we avoid using time to recompute
them.

Preprocess information into data structures. The CumAr r ay structure in Algorithm 2b
allowed the sum of a subvedor to be mmputed in just a wuple of operations.

Divide-and-conquer algorithms. Algorithm 3 uses a simple form of divide-and-conquer;
textbooks on algorithm design describe more advanced forms.

Scanning algorithms. Problems on arrays can often be solved by asking “how can | extend a
solutionfor X[1. . I - 1] toasolutionfor X[| . . 1] ?° Algorithm 4 stores both the old
answer and some auxiliary datato compute the new answer.

Cumulatives. Algorithm 2b uses a aumulative table in which the | ™ element contains the
sum of thefirst | values of X; such tables are @mmon when dealing with ranges. In
businessdata processing applications, for instance, one finds the sales from March to
October by subtrading the February year-to-date sales from the October yea-to-date sales.

Lower bounds. Algorithm designers sleep pea@fully only when they know their algorithms
are the best possible; for this asaurance, they must prove amatching lower bound. The
linea lower bound for this problem is the subjed of Problem 9; more complex lower
bounds can ke quite difficult.

7.7 Problems

1.

Algorithms 3 and 4 wse subtle ade that is easy to get wrong. Use the program verification
techniques of Column 4 to arguethe crrednessof the ade; specify the loop invariants
caefully.

Our analysis of the four algorithms was done only at the "big-oh" level of detail. Analyzethe
number of max functions used by each algorithm as exactly as possible; does this exercise give
any insight into the running times of the programs? How much spacedoes each algorithm
require?

We defined the maximum subvedor of an array of negative numbersto be zeo, the sum of the
empty subvedor. Suppose that we had instead defined the maximum subvector to be the value
of the largest element; how would you change the programs?

Suppose that we wished to find the subvedor with the sum closest to zero rather than that with
maximum sum. What is the most efficient algorithm you can design for this task? What
algorithm design techniques are goplicable? What if we wished to find the subvedor with the
sum closest to agiven real number T?

A turnpike oonsists of N-I stretches of road between Ntoll stations; each stretch has an
asociated cost of travel. It istrivial to tell the cost of going between any two gations in O(N)
time using only an array of the csts or in constant time using a table with O(N) entries.
Describe adata structure that requires O(N) spacebut allows the st of any routeto be
computed in constant time.

After the aray X[I..N] isinitialized to zero, N of the following operations are performed

forl:=LtoUdo
X[I] := X[1] + V

where L, Uand V are parameters of ead operation (L and U are integers stisfying 1<L<U<N
and Visareal). After the N operations, the values of X[1] through X[N] arereported in order.
The method just sketched requires O(NY) time. Can you find a faster algorithm?

In the maximum subarray problem we ae given an NXNarray of reals, and we must find the
maximum sum contained in any redangular subarray. What is the cmplexity of this problem?
Modify Algorithm 3 (the divide-and-conquer algorithm) to run in linear worst-case time.

Prove that any correct algorithm for computing maxinium subvectors must insped all N inpus.
(Algorithms for some problems may corredly ignore some inputs; consider Saxe's algorithm in
Solution 2.2 and Boyer and Moore's substring searching algorithm in the October 1977
CACM.)

10. Given integers Mand N and the real vedor X[1..N] ,findtheinteger I (I <N-M) such that the

sum X[I]+... +X[I+M] iSneaest zero.

11. What isthe solution of the reaurrence T(N) = 2T(N/2) + CN whenT(1)=0 andNisa

power of two? Prove your result by mathematical induction. What if T(1) =C ?

7.8 Further Reading

Only extensive study can put algorithm design techniques at your fingertips, most programmers
will get this only from atexthook on algorithms. Data Structures and Algorithms by Aho, Hopcroft
and Ullman (published by Addison-Wesley in 1983 is an excellent undergraduate text. Chapter 10
on "Algorithm Design Techniques' is especially relevant to this column.

7.9 The Impact of Algorithms [Sidebar]

Although the problem studied in this column illustrates several important techniques, it'sreally a
toy—it was never incorporated into a system. We'll now survey afew real problemsin which
algorithm design techniques proved their worth.

Numerical Analysis. The standard example of the power of algorithm design is the discrete Fast
Fourier Transform (FFT). Its divide-and-conquer structure reduced the time required for Fourier
analysis from O(N) to O(N | ogN). Because problems in signal processing and time series analysis
frequently processinputs of size N = 1000or greater, the algorithm speeds up programs by factors
of more than one hundred.

In Sedion 10.3.C of his Numerical Methods, Software, and Analysis (published in 1983 ly
McGraw-Hill), John Rice chronicles the algorithmic history of threedimensional elliptic partial
differential equations. Such problems arise in simulating VLS| devices, oil wells, nuclear readors,
and airfoils. A small part of that history (mostly but not entirely from his book) is given in the
following table. The run time gives the number of floating point operations required to solve the
problem on an NxNx N grid.

METHOD YEAR RUN TIME
Gaussian Elimination 1945 N’

SOR |Iteration (Suboptimal 1954 8N°
Paramctcrs)

SOR |Iteration (Optimal 1960 8N* 1og, N
Parameters)

Cyclic Reduction 1970 8N log, N
Multigrid 1978 60N>

SOR stands for "successive over-relaxation”. The O(N) time of Multigrid is within a cnstant
fador of optimal because the problem has that many inpus. For typical problem sizes (N=64), the
speadupis afador of aquarter million. Pages 10901091 0of "Programming Peals" in the
November 1984 Communications of the ACM present datato suppat Rice's argument that the
algorithmic speedup from 1945to 1970 exceeads the hardware speedup duing that period.

Graph Algorithms. In a common method of building integrated circuitry, the designer describes an
eledrical circuit asagraph that is later transformed into a diip design. A popular approach to
laying out the drcuit uses the "graph partitioning’ problem to dvide the entire eledrical circuit into
subcomponents. Heuristic algorithms for graph partitioning developed in the ealy 1970's used
O(N) time to partition a circuit with atotal of N components and wires. Fiduccia and Mattheyses
describe "A linea-time heuristic for improving network partition” in the 19th Design Automation

Conference. Because typicd problems involve afew thousand components, their method reduces
layout time from a few hoursto afew minutes.

Geometric Algorithms. Late in their design, integrated circuits are specified as geometric “artwork”
that is eventually etched onto chips. Design systems processthe atwork to perform tasks sich as
extrading the eledrical circuit it describes, which isthen compared to the circuit the designer
specified. In the days when integrated circuits had N= 1000 geometric figures that specified 100
transistors, algorithms that compared all pairs of geometric figuresin O(N) time auld perform the
task in afew minutes. Now that VLS| chips contain millions of geometric components, quadratic
algorithms would take months. "Plane swee" or "scan line" algorithms have reduced the run time
to O(N | og N), sothe designs can now be processed in a few hours. Szymanski and Van Wyk's
"Spaceefficient algorithms for VLSI artwork analysis' in the 20th Design Automation Conference
describes efficient algorithms for such tasks that use only O(VN) primary memory (a later version
of the paper appeasin the June 1985IEEE Design and Test).

Appel's program described in Sedion 5.1 uses atreedata structure to represent pointsin 3-space
and thereby reduces an O(N) algorithmto O(N | og N) time. That wasthe first step in reducing
the run time of the complete program from a yea to aday.

Programming Peals by Jon Bentley
Addison-Wesley Publishing Company
Realing, Massaadhussetts

April, 1986

