
Buffer Feedback Scheduling: Runtime
Adaptation of Ubicomp Applications

Christian Decker1, Michael Beigl2, Till Riedel1, Albert Krohn1, Tobias
Zimmer1

1Telecooperation Office (TecO), University of Karlsruhe
2Distributed and Ubiquitous Computing (DUS), University of Braunschweig
{cdecker,riedel,krohn,zimmer}@teco.edu, beigl@ibr.cs.tu-bs.de

Abstract. In this paper we propose an operating system design for
Ubicomp applications that are implemented on embedded sensor plat-
forms. The OS provides support for both periodic sensor sampling and
sequential appliation logic. Core component is a lightweight real-time
runtime system guaranteeing predictable real-time behavior of periodic
sampling processes. The design utilizes a novel method, called buffer
feedback scheduling (BFS), to adapt the system under unpredictable
workload. Processes are automatically coordinated and expensive hard-
ware accesses are reduced when the feedback indicates that the results
do not contribute to the application. Real-time behavior is guaranteed
throughout the entire runtime. Theoretical analysis and implementation
in a Ubicomp application study on the Particle Computer sensor plat-
form demonstrate a significant performance step-up when utilizing BFS.

1 Introduction

Within Ubicomp, small, battery powered embedded sensor devices are a state-
of-the art technology for detecting activity and situation information on an ob-
ject or in the environment. Adding embedded sensor devices to things converts
“dumb” and passive objects to smart and reactive subjects. A first example of
such an object was the Mediacup[1], a coffee cup with embedded tiny sensor
electronics. The cup was able to recognize conditions within the cup - e.g. if cup
is full, coffee is cold etc. - and to react accordingly - e.g. reporting to the coffee
machine the coffee consumption status. In general, embedded sensor systems
are able to process raw sensor information to high-level situation information di-
rectly on the object and to trigger reactions. Software performing such processes
must be able to handle

– periodic sampling of sensor information - e.g. the amount of liquid in a cup,
– processing of sensor information - e.g. to conclude on liquid status,
– reaction on events - e.g. to trigger further actions like start a new brew.

The quality of typical applications on embedded sensor systems is highly de-
pendent on the correct recognition of situations. It requires the correct periodic



execution of the sensor sampling since those samples provide the information
basis for the recognition. Fragmented sets of sensor information would otherwise
require an additional resource intensive pre-processing for the applications. An
OS supporting applications on embedded sensor devices must therefore be able
to handle two general sets: Periodic processes and data-driven processes. This
paper will introduce an OS concept that enables optimized coordination between
the two process sets through feedback scheduling. It will contribute to the qual-
ity of the data processing and recognition algorithms and therefore provides an
optimal basis for Ubicomp applications on embedded sensor devices.

The paper is organized as follows: In section 2, we analyze the behavior of
Ubicomp applications on embedded sensor systems. Therefrom, we derive our
system design in section 3. Section 4 and 5 introduce the formalization and the-
oretical model of feedback scheduling. The paper demonstrates the new system
design in an implementation in section 6 and a case study in section 7 of the
Remembrance Camera - a multi-sensor application for an embedded sensor plat-
form. It follows a view on related work before the paper concludes in section 9.

2 Ubicomp Application Analysis

This section will briefly analyze typical Ubicomp applications based on expe-
riences collected with several Ubicomp applications. It allows us to derive re-
quirements for an OS approach supporting such applications. We found that
applications like MediaCup, DigiClip[2], eSeal[3] and AwareOffice[4] incorporate
continuous sensor perception of environmental conditions and activities - e.g.
movements patterns - with data processing for context and in-situ recognition.
Only periodically acquired sensor data and their processing enable accurate, de-
tailed reaction in a timely fashion, especially in very mobile settings where an
overarching processing back-end is not permanently available. For such applica-
tions, we conclude on the following common characteristics:

– the complete application runs on an embedded sensor device
– inputs are obtained from multiple, periodically sampled sensors
– data-driven processing implements context recognition and reaction

While periodic sensor samplings are under control of the developer, data-driven
processing depends on acquired sensor input. An example is a rule-based ex-
pert system: The number of cycles to evaluate the rule base and each single
rule’s evaluation runtime depends on the facts coming in. The overall runtime
behavior is not known at the design time and sensor samplings from unpre-
dictable environmental conditions consequently cause a highly dynamic data
processing behavior. An appropriate OS concept for Ubicomp applications has
to separately support the different natures of periodic and data-driven processes.
Runtime management of both is a primary design goal. Therefore, we derive the
following requirements: Firstly, periodic sensor sampling is required to be guar-
anteed without any interference. This is usually referred to as a non-preemptive
real-time scheduling. Interference or interruption while accessing hardware might



have fatal consequences, e.g. deadlocks, distorted sampling, and assertion vio-
lations. Secondly, since data processing is highly varying, coordination between
periodic and data processing parts needs runtime support. Thirdly, the appli-
cation’s runtime behavior needs to be adapted to the current data-dependent
computation effort through feedback into the scheduling process.

3 System Design

Based on the application analysis, we decompose a Ubicomp application in a pe-
riodic part - responsible for the access to the sensor hardware - and an application
logic part. This separates the two concerns: periodic sensor data acquisition and
data processing. At the lower layer of our system design (figure 3) services acquire

Fig. 1. System design of a Ubicomp application on a wireless sensor node

the sensor data. Services are executed periodically and encapsulate the access to
the sensor hardware. Services are non-preemptive, i.e. once started a service runs
to completion. A service cannot be called by another service or any other part
of the application logic. Hence, a runtime system is responsible to drive services.
Independent from application logic, the runtime system is required to strictly
guarantee that services are executed according to a given period. This imposes
real-time constraints on the services. The higher layer of the design comprises
data-driven client functions that process input data from periodic services. A
client is bound to one service via an intermediate buffer. Clients may form com-
plex applications structures by calling other client functions that are not bound
to a service. Clients are non-periodic, but run due to the availability of data. The
buffers between the two layers decouple periodic processes from the data-driven
application logic. Consequently, buffers form a data-based platform abstraction
for the application.



Our system design yields the following advantages: The system clearly sepa-
rates periodic processes from data driven processes. Independent, periodic real-
time services guarantee a steady data acquisition process of the environment.
Data-driven application processes can be seamlessly combined through buffers
forming a data-based abstraction. Finally, the design eases the application de-
velopment since periodic tasks can be delegated to services and let the developer
focus on the actual application logic.

4 Formalizing the System

The runtime system should guarantee periodic execution of all services. As a
consequence, real-time scheduling is applied. In this section will introduce ter-
minology and formal background. Services are equivalent to non-preemptive real-
time tasks. We use the term service, because we want to emphasize their role as
mediators between the hardware platform and the application.

A periodic service si is described by tuple (Ci, Ti) (Ci: computation time, Ti:
period). Ci is assumed to be the service’s worst-case execution time (WCET)
and known in advance. Di = Ti is the deadline of each service, i.e. a service
has to run to completion before its next period begins. Services should not be
preempted by other services. A service execution begins at a first arrival time
ai,0 and is repeated every period at ai,n = nTi. If no arrival time is given, the
set of services Sp is said to be non-concrete. From every non-concrete set any
concrete one, where services are associated with arrival times, can be generated.

Client functions fj consume the data produced by the services. They poll the
buffers and continue their execution due to the availability of data. Decoupling
through buffers makes the clients independent from periodic services and allows
preemption by services. The clients’ computation time is unknown. Their mini-
mum period is T f =

∑
j Cf

j , where Cf
j is the jth client’s unknown computation

time.

Problem Formulation. From the highly dynamic computation times of clients
two problem cases arise. The first case is data dropping. This situation appears
in an overload situation where the clients’ computation times become larger. As
a consequence, a client cannot serve its buffer until the next service execution
begins. The previously sampled data from the associated service is then not
processed and consequently dropped. In figure 2 service si produces data for
long running client fj . The client is interrupted and finally misses to process its
buffer content. The problem is avoided if the condition ∀i, j :

∑
j Cf

j < T f ≤ Ti

holds. Otherwise, the service with the minimum period will recur before its buffer
content could be processed. The second problem case is client idling (figure
3). When clients’ computation times decrease, they access the buffers several
times until new values are provided by services. The idle case can be avoided
for any client by fulfilling the following condition: ∀i, j : T f ≥ Ti >

∑
j Cf

j .
Consequently we state the following problem:



Fig. 2. Data drop: Sampling no.3 is not processed due to large computation time of fj

Fig. 3. Client idling:fj processes samplings no.1&2 repetitively until a new value arrives

Problem 1. In unpredictable environments, where computation time Cf
j is un-

known and highly dynamic, find periods Ti of the real-time services, that follow-
ing conditions hold:

1. ∀i, j : mini {Ti} = T f >
∑

j Cf
j (period adaptation)

2. ∀i : si finishes at latest at its deadline Di = Ti (preserve real-time)

The varying computation times of the clients require an adaptation of the ser-
vices’ periods. Our approach is to expand and compress a service period accord-
ing to the change of the client computation time. An additional component - a
controller - performs this adaptation during the system’s runtime.

5 Buffer Feedback Scheduling

Data drop and client idling can be efficiently measured at the buffers between
the periodic services and the clients. Each buffer is annotated by a single bit,
which flips between 1 and 0 when the service and the client alternately access it.
The bit remains in its current state, if a service or a client repeatively access the
buffers in a non-alternating sequence. In this case, a counter is incremented for
data drops and idling periods respectively. The counter values are fed back in the
runtime system where a controller adapts the services’ periods for the scheduler.
Therefore, we call this adaptation method buffer feedback scheduling (BFS). The
goal of BFS is to keep both counters at 0. The figure 4 depicts the basic principle
of the BFS. The problem statement from section 4 requires, that the period
adaptation preserves the real-time capability of the system. As a consequence,
we firstly analyze the scheduling behavior under adaptation. Secondly, for the



Fig. 4. Buffer drives 1-bit automaton. Feedback on idling and drops via counters.

feedback adaptation itself, we have to close the loop between the actual buffer
performance and the service period and synthesize an appropriate controller for
implementing the period adaptation.

5.1 Scheduling Analysis

Scheduling of real-time tasks is a well-investigated research topic. This section
will extend this research by our approach of adapting service periods. We show,
that this does not alter any statements about schedulability and the schedule.
Consequently, period adaptation does not impose any scheduling overhead and
is therefore well-suited for resource-constrained sensor node platforms.

The authors in [5] proved two conditions that are sufficient and necessary for
scheduling a set of non-concrete, non-preemptable periodic tasks. Our considera-
tions in section 4 show that this can be directly applied to our service approach.
We will formulate all results using the term services instead of tasks. With the
prerequisite that the set of periodic services Sp = {(C1, T1), (C2, T2), ..., (Cn, Tn)}
is sorted in non-decreasing order, i.e. Ti ≥ Tj if i > j, conditions from [5] are

(1)
∑

i
Ci

Ti
≤ 1

(2) ∀i, 1 < i ≤ n; ∀L, T1 < L < Ti : L ≥ Ci +
∑i−1

j=1

⌊
L−1
Tj

⌋
Cj

The condition (1) requires that the processor is not overloaded. The inequality in
the condition (2) provides a least upper bound for processor demand, which can
be realized in the interval L. As a consequence, we state the following corollary.

Corollary 1. If the set of periodic services Sp = {(C1, T1), . . . , (Cn, Tn)} is
schedulable according to condition (1) and (2), then the new set
S∗p = {(C1, T1 + k), . . . , (Cn, Tn + k)}, where each period is increased by a con-
stant time k, is schedulable according to condition (1) and (2).



To prove the corollary, we first prove the following lemma.

Lemma 1. If g(k), h(k) are two linear functions with ∂g
∂k = ∂h

∂k and ∀k, k > 0,
then g(k)

h(k) is monotonic.

Proof. We prove this lemma constructively utilizing derivation ∂
∂k

g(k)
h(k) . Let g(k) =

k + x and h(k) = k + y, then ∂
∂k

g(k)
h(k) = y−x

(x+k)2 . For x, y > 0 and x < y,
∂
∂k

g(k)
h(k) > 0 and therefore g(k)

h(k) is monotonically increasing. For x, y > 0 and

x > y, ∂
∂k

g(k)
h(k) < 0 and therefore g(k)

h(k) is monotonically decreasing. For x, y > 0

and x = y, ∂
∂k

g(k)
h(k) = 0 and therefore g(k)

h(k) is simultanously monotonically in-
creasing and decreasing.

Proof. First, we prove condition (1) of corollary 1:
From Ti + k > Ti it follows directly that Ci

Ti
> Ci

Ti+k∀k, k > 0. As a result∑
i

Ci

Ti+k <
∑

i
Ci

Ti
≤ 1.

We now prove condition (2): Note, that k is also applied to L in this condition,
so that the constraint changes to ∀L, T1 + k < L + k < Ti + k. It is enough to
focus on the expression

⌊
L−1
Tj

⌋
for the following cases:

Case 1:(L− 1 < Tj) Increasing the periods Tj by a constant k leads to follow-
ing: ∀k, k > 0 : limk→∞ L−1+k

Tj+k = 1−, i.e. for all k with k > 0, the expression
L−1+k
Tj+k converges to 1 from the left side. With lemma 1, it converges mono-

tonically increasing. As a result,
⌊

L−1+k
Tj+k

⌋
= 0 for all k > 0.

Case 2:(L− 1 > Tj) Increasing the periods Tj by a constant k leads to follow-
ing: ∀k, k > 0 : limk→∞ L−1+k

Tj+k = 1+, i.e. for all k with k > 0, the expression
L−1+k
Tj+k converges to 1 from the right side. With lemma 1, it converges mono-

tonically decreasing. As a result,
⌊

L−1+k
Tj+k

⌋
<

⌊
L−1
Tj

⌋
for all k > 0.

Case 3:(L− 1 = Tj) Increasing the periods Tj by a constant k leads to
⌊

L−1+k
Tj+k

⌋
=⌊

L−1
Tj

⌋
for all k > 0.

As a result we find (properties on Sp, i, L as stated in condition (2)): L ≥ Ci +∑i−1
j=1

⌊
L−1
Tj

⌋
Cj ≥ Ci +

∑i−1
j=1

⌊
L−1+k
Tj+k

⌋
Cj ,∀k, k > 0 meaning S∗p is schedulable.

In the last step we have to prove that the schedule will not change after the
transition from Sp → S∗p . According to Jeffay et al. in [5], the non-preemptive
earliest deadline first (EDF) scheduling algorithm will schedule any concrete set
generated from an unconcrete one. We apply this to the set S∗p and state the
following corollary:

Corollary 2. If the unconcrete sets of periodic services Sp and S∗p are schedu-
lable according to condition (1) and (2) and the EDF algorithm has created a
schedule schedSp out of a concrete set generated from the unconcrete Sp one,
then the same schedule is also valid for S∗p , i.e. schedS∗p = schedSp .



Proof. At the end of a service execution the global time is t = ai,n−1 + Ci. EDF
selects then a service sj with the closest deadline, i.e. sj must fulfill the following
condition: ∀j, n : t < minj,n {aj,n + Tj}. Remember that we set Di = Ti. The
absolute deadline of the nth instance of sj is D′

j,n = aj,n + Tj and therefore the
EDF condition becomes to t < minj,n

{
D′

j,n

}
. In S∗p , the absolute deadline of s∗j

is D∗′
j,n = aj,n +Tj +k. Therefore, t < minj,n

{
D∗′

j,n

}
= minj,n {aj,n + Tj + k} =

minj,n {aj,n + Tj}+k. Since k = const., EDF selects the same service as it would
do for Sp and we obtain schedS∗p = schedSp

.

To conclude, we have proven that a period adaptation preserves the real-time
behavior of the system. It guarantees that condition (2) of the problem formu-
lation holds. It even does not impose any overhead because corollary 2 proves
that adaptation will not alter the schedule. This is the fundament for controller
synthesis in the following section.

5.2 Controller Synthesis

The controller is responsible for the services’ periods adaptation. The adaptation
is required to hold mini {Ti} = T f from condition (1) of the problem formulation.
Figure 5 shows the placement of the controller within the runtime system. The

Fig. 5. Feedback controller within the runtime system

controller is triggered by non-zero drop and idle counters from the buffers. It then
starts to measure the actual client period T f and adapts the services’ periods
according to condition (1). Afterwards, it notifies the dispatcher for computing
the new arrival times of the services before the real-time scheduler enqueues them
for the next execution. In detail, the controller will compute the new period T ′i
as follows:

T ′i = Ti + k with k = T f −min
i
{Ti} (expansion, drop counter > 0) (1)



T ′i = max{Tmin, Ti−k} with k = min
i
{Ti}−T f (compr., idle counter > 0) (2)

The constant Tmin marks the lower bound of the period for that the scheduling
analysis guarantees that all services will hold their deadlines. In case of com-
pression, the periods should never set below this bound.

5.3 Controlled Buffer Feedback Scheduling

In this section we will compare the controlled BFS system with the non-controlled
system under variable client workloads. The results were achieved through simu-
lations using the Ptolemy II framework1. We vary the clients’ computation times
by applying step loads - a sudden change of the computation time. The behavior
is investigated for both step-up and step-down loads in both the controlled and
non-controlled case. Results are compared using the following definition of the

accumulated data drop ratio: DropRatio(t) =
∑

t
dropCounter(t)∑

t
serviceExecutions(t)

. We define

the cumulative idle ratio as the time spent for idling in relation to the runtime of

the system: IdleRatio(t) =
∑

t
idleCounter(t)·clientT ime(t)

t . In both figures 6 and 7

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Time units

Service period
Client computation time
Data drop ratio

Fig. 6. Non-controlled step-up behavior.
Service period remains constant and the
drop ratio increases.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Time units

Service period
Client computation time
Data drop ratio

Fig. 7. BFS-controlled step-up behavior.
Service period is expanded and the data
drop decreases.

the step load occurs at time 2 and changes from 0.05 to 0.3. The services’ peri-
ods are initially set to 0.1. The system was previously analyzed according to the
conditions in section 5.1 in order to ensure that services will hold their deadlines.
When the step occurs, the drop ratio increases shortly afterwards. In the non-
controlled case, the service period remains at 0.1, data drop occurs causing an
increasing drop ratio. In this example, the services run 6 times until one date is
processed by the clients. As a result, the drop ratio will asymptotically approach
0.83. On the other side, the controlled BFS system adapts to the new situation
1 http://ptolemy.berkeley.edu/ptolemyII/



and expands the services period. It reaches the final period of 0.35 at 4.7 time
units. The reaction to the step is delayed because the measurement of T f firstly
starts after the first data drop is detected. Since the step occurs at an arbitrary
point in time, the T f -measurement is biased due to the overlap of the original
and the increased clients’ computation times. This causes the overshot. Maxi-
mum drop ratio in this example is 0.24 and is reached at time 3.4 and decreased
afterwards. For comparison: At the same time the non-controlled system had a
drop ratio of 0.31. Although, there is no data drop anymore, the drop ratio is
still positive, but approaching 0. This is due to the drop ratio definition because
it represents the accumulated drop ratio throughout the entire runtime. The

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Time units

Service period
Client computation time
Client idle ratio

Fig. 8. Non-controlled step-down behavior.
Service period remains constant and idle ra-
tio increases.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Time units

Service period
Client computation time
Client idle ratio

Fig. 9. BFS-controlled step-down behavior.
Service period is compressed and idle ratio
decreases.

figures 8 and 9 depict the client idling in the non-controlled and controlled case.
The step-down from 0.3 to 0.05 is applied at time 2. In the non-controlled case,
the idle ratio increases shortly after the step and remains increasing. According
to the chosen parameters, the system executes 6 times the clients before a new
value is produced by the services. In this example, the idle ratio will asymptoti-
cally reach 0.71. In the controlled BFS system idling is handled by compression
of services’ periods. There is no undershot of the period because services should
keep a minimum period of 0.1 to be still real-time schedulable (see equation
(2)). Although the BFS controller denotes idling very early, reaction is delayed
because the services were already scheduled and had to wait until their next pe-
riod. Meanwhile, the idle ratio grows up to 0.12. The system has then adapted
and the idle ratio decreases. However, it is still positive because it represents the
cumulative idling ratio.

6 Implementation

We implemented the real-time runtime system and the BFS controller on the
Particle Sensor platform [6]. The implementation was carried out using the Small



Devices C Compiler (SDCC) for the PIC18 platform. Services contain parameters
like their period, arrival time, states (ready, waiting), pointers to their output
buffers and service functions. Latter actually implement the service functionality.
The runtime system manages all services in two queues for waiting and ready
services. A service is waiting, if it has not yet reached its arrival time. Once it has
reached it, the scheduler enqueues it in the ready queue according to the EDF
policy. The dispatcher brings a service to its execution by calling the service
function of the first service in the ready queue. When no service is ready, the
control is given to the clients for data processing. The buffers manage the access
automaton and provide feedback for the BFS controller which is triggered as
soon as dropping or idling is detected. Dispatcher, scheduler and BFS controller
all work on a 32bit time format of the Particle’s real-time clock. The accuracy
is limited by the 32kHz clock to about 31 microseconds. The tables 1 and 2 list
the memory footprint and the computation effort of the runtime system.

Component ROM RAM

Scheduler 5.556 kB (4.2%) 0.161 kB (4,0%)
Dispatcher 3.600 kB (2.7%) 0.052 kB (1.3%)
Queue 2.498 kB (1.9%) 0.022 kB (0.6%)
Controller 1.870 kB (1.4%) 0.021 kB (0.5%)
Byte-Buffer 34 bit
Service 104 bit

Sum 13.524 kB (10,5%) 0,256 kB (6.4%)
excl. services
and buffers

Table 1. Memory footprint of the runtime system

Function Cycles

Dispatcher

insert waiting, 5 services 1250
getTime 670
timeGreater 140

Scheduler

schedule EDF, 4 services 1903
compareDeadlines 421

BFS Controller

Compression, 5 Services 7371
Expansion, 5 Services 6481
Table 2. Computation effort in
cycles on the PIC18f6720

7 Case Study: Remembrance Camera

The Remembrance Camera can be considered as a typical example for an em-
bedded sensor system in Ubicomp. The Remembrance Camera is a camera-based
device that is worn by a person throughout the day as a personal wearable de-
vice and automatically takes pictures of interesting events experienced from that
person. The camera consists of two components: An embedded sensor board for
recognition of activities and for data processing and a miniature digital cam-
era to record pictures under control of the sensor board. We used the Particle
Computer platform as a typical candidate of an embedded sensor system with
ultra-low power consumption for continuous monitoring of activities through
sensors. Low power design was required because of usability since the camera
should be of a very small outline and able to operate throughout the day without



battery recharging. The sensor hardware is attached to a small digital camera,
the Apitek PenCam, and can be worn in a shirt’s pocket or on a necklet (total
size about 4.5x4x15 cm, see figure 10). The aim of the Remembrance Camera

Fig. 10. Remembrance Camera
(with Particle sensor node)

Fig. 11. Remembrance Camera recognition
architecture

system is to enable a person to recall all important events of a day using taken
pictures. Rather than having a continuous recording of all pictures of events -
which would require a user to scan through a lot of pictures - we liked to present
only the most important pictures of the day to the user based on a recogni-
tion of important events of a day. This recognition was performed stand-alone
by the camera device using sensors and activity recognition methods. At syn-
chronization points pictures and recognition information could be uploaded and
viewed on a PC. Events are detected through sensor recognition methods using
embedded sensor hardware, sensor detection firmware and higher-level activity
recognition and fusion methods (see figure 11). Acceleration, light, microphone
and temperature sensors are used as inputs. These sensors are connected to sen-
sor services performing the periodic sampling of sensor data. Sensors are used
as input to the data processing clients performing the recognition algorithms.
The recognition in each of the clients uses a rule-based expert system[7]. It op-
erates on a ring-buffer of time-stamped sensor data acquired by sensor services
and performs various operations under varying computation times depending
on sensor input. As a consequence, the periods of clients are different due to
variations of the sensor data. Output of the clients, listed in table 3, is finally
used by the main application for recognizing the person’s situation (table 4).
The Remembrance Camera main application uses a change in the situation to
detect an important event, which then triggers the camera to take a picture.
The complete system is written in C and embedded on the Particle sensor node
(CPU:PIC18F6720@20MHz, 4kRAM, 128kFlash).



Sensor ser-
vice

Client output (Ac-
tivity)

acceleration shock, calm/excited

light inside/outside a
building

temperature inside/outside a
building

microphone loud, talking, silence
Table 3. Sensors on the Particle platform
and extracted information

Situation Inputs Activi-
ties

working {calm, inside, si-
lence}

meeting {inside, talking}
running {shock, outside}
standing (outside) {outside, calm}
work pauses {shock, inside}
work interruptions {excited, inside,

talking or loud}
Table 4. Situations and activities used by
the main application for taking a picture

Scheduling performance using the BFS controller. The Remembrance
Camera application is sensitive to continuous and regular sensor detection. Miss-
ing information or large delays within the recognition affects the application and
may lead to misinterpretation of the situation. Handling such exceptions requires
more time and memory intensive algorithms that would have exceeded the plat-
form’s performance. Therefore, it is important for the quality, that the recogni-
tion runs on a frequent basis and that (almost) no samplings are dropped. This
is achieved by the BFS controller. In figure 12 we have included a scheduling

1 2 3 4 5 6 7

Clients

Microphone

Light

Accleration

Temperature

Time [s]

Drop Idle Oszillation

Step:0.05−>0.2 s

Stable

New period:0.33 s

WorkingWorking Work interruption, strong changes in the situation, camera takes pictures

Fig. 12. Scheduling trace of BFS controlled services when situation changes from work-
ing to work interruption

trace for the detection of a situation change from working to work interruption.
The situation recognition is handled by the processing clients while the sensor
input is provided by the sensor services. All services run every 0.18 seconds (s) -
the initial service period. The new situation work interruption arising at time 2s



leads to a higher effort for recognition. For this reason, the clients’ computation
time increases from 0.05s to 0.2s and therewith the clients’ period. As a result,
services run faster than data processing, data drop occurs and the system starts
to adapt the period of the services. After 3.7s the BFS controller stabilizes the
new period at 0.33s. Figure 13 depicts the progression of the period adaptation

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

P
er

io
d 

[s
]

Services’ period
Clients’ period

Fig. 13. BFS controlled services’ and
clients’ periods during the adaptation. Af-
ter adaptation the situation recognition
(clients) runs with period 0.33s.

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]
P

er
io

d 
[s

]

Services’ period
Clients’ period

Fig. 14. Non-controlled services’ and
clients’ periods. The situation recognition
(clients) runs with period 0.72s more than
twice as slow as in the controlled case.

in more detail. When the clients’ period change, the services’ period follows until
both reach their final period of 0.33s. During the adaptation the periods over-
shoot the correct ones. This is compensated by the reverse reaction. As a result,
the periods are temporarily unstable causing an oszillation until the final value
has been stabilized. Nevertheless, the scheduling analysis in section 5.1 shows
that the real-time contraint is never violated. Figure 14 shows both periods when
the controller is disabled: Clients, which are responsible for the Remembrance
Camera’s situation recognition, are called more seldom - every 0.72s. As a re-
sult, we find that when utilizing the BFS controller the clients are executed more
than twice as often as in the non-controlled case. For the Remembrance Camera
application, the BFS controller yields a significant performance step-up.

User study. The overall quality of the Remembrance Camera application is
highly dependent on underlying technical constraints, especially the expert sys-
tems that itself is very dependent on quality of the scheduling and operation of
the sensor services. We evaluated the overall quality in a small initial user study
and will report a short excerpt of this study. In the study 7 persons from 20
to 50 years, all of them with only minor knowledge of computer systems, were
asked to carry the Remembrance camera during the daytime. Candidates were
interviewed 3 days after performing the test on the value of the system. Among
the questions there were 1) if they think the system performs as expected, es-



pecially if it draws a good picture of the day and if the collection of pictures
contains unnecessary information and 2) if they found the information useful. All
candidates found that the system draws a good picture of the day while almost
half of them mentioned that there are unnecessary pictures taken while the day.
All users agreed that the information is useful and most of them would wish to
use the system on a daily basis. Although overall this is a very good result for
the Remembrance Camera application, we were curious to see why half of them
found unnecessary information among the pictures. From an additional analysis
we found that in these cases the person was in a home environment all the day
and not in an office environment like the other users. A more in depth analysis
revealed that our initial expert system was not trained to this environment and
therefore performs non-optimal. We therefore assume, that the underlying sensor
service and scheduling system performed optimal like in the cases with persons
in the office environment and that our service scheduling approach provides a
good basis for activity recognition systems like the Remembrance Camera.

8 Related Work

Besides of our work other scheduling approaches are already implemented on
embedded sensor systems. OSs like TinyOS[8] and SOS[9] incorporate non-
preemptive FIFO schedulers, where tasks are sorted in order of their calling
by the application logic. The system is kept responsive to various inputs by de-
ferring procedure calls that are invoked through periodic processes. Several OSs
for microcontrollers like FreeRTOS[10] and XMK[11] guarantee preemptive real-
time scheduling. However, none of these approaches copes with the dynamic
nature of data processing on sensor devices. WCETs need to be specified in
advance leading to a static runtime behavior for dynamic workloads. Further-
more, decomposing the application in periodic-only tasks is generally not suited
for data-driven processing. Our approach of separation of periodic and data-
driven processes preserves the sequential semantic of the application. Varying
processing loads are handled dynamically by feedback scheduling. Stankovic et
al. investigated feedback scheduling for real-time OSs[12]. The model was com-
pletely periodic and adapted the computation time of the tasks according to
service levels. In contrast, Buttazzos elastic task model [13] is closer to our ap-
proach since it compresses and expands tasks periods in order to handle over-
and underutilization of the system. Apart from purely periodic modelling, the
system is limited to preemptive tasks. With buffer feedback scheduling (BFS)
we have extended this feedback control research on data driven processes with
no a-priori knowledge on the computation times.

9 Conclusion and Outlook

In this paper we presented a new OS concept for supporting Ubicomp applica-
tions on embedded sensor systems utilizing adaptation through feedback schedul-
ing. Adaptation can accurately modify parameters, e.g. service periods, in order



to automatically coordinate processes and achieve a better performance under
uncertain or unknown conditions. Our approach - buffer feedback scheduling
(BFS) - modifies service periods and especially addresses dynamic and unpre-
dictable workloads caused by the data processing parts of an application. BFS
achieved a significant performance step-up for an Ubicomp applicaion allowing
a two times faster recogition rate. BFS automatically coordinates periodic and
data-driven processes based on runtime information and does not rely on any
a-priori specification of the coordination behavior.

Future work includes research on new controllers incorporated in the run-
time system. Feedforward controllers are an interesting option, because they act
preventively before the system runs in a data drop or idling situation. The sys-
tem would change from reactive to proactive enabling a distributed coordination
between diverse applications on embedded sensor systems within a network.

Acknowledgments

The work presented in this paper was partially funded by the EC through the
project CoBIs (contract no. 4270) and by the Ministry of Economic Affairs of
the Netherlands through the project Smart Surroundings (contract no. 03060).

References

1. Beigl, M., Gellersen, H.W., Schmidt, A.: Mediacups: experience with design and
use of computer-augmented everyday artefacts. Computer Networks 35(4) (2001)

2. Decker, C., Beigl, M., Eames, A., Kubach, U.: Digiclip: Activating physical docu-
ments. In: 4th IEEE IWSAWC. (2004) 388–393

3. Decker, C., Beigl, M., Krohn, A., Robinson, P., Kubach, U.: eseal - a system for
enhanced electronic assertion of authenticity and integrity. In: Pervasive. (2004)

4. Zimmer, T., Beigl, M.: AwareOffice: Integrating Modular Context-Aware Appli-
cations. In: 6th IEEE IWSAWC. (2006)

5. Jeffay, K., Stanat, D.F., Martel, C.U.: On non-preemptive scheduling of periodic
and sporadic tasks. In: Proceedings of 12th IEEE RTSS’91. (1991) 129–139

6. Decker, C., Krohn, A., Beigl, M., Zimmer, T.: The particle computer system. In:
ACM/IEEE Information Processing in Sensor Networks (IPSN). (2005) 443 – 448

7. Fischer, M., Kroehl, M.: Remembrance camera. Term Thesis (2006)
8. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System

architecture directions for networked sensors. In: ASPLOS. (2000)
9. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating

system for sensor nodes. In: Proceedings of MobiSys ’05, New York, NY, USA,
ACM Press (2005) 163–176

10. Barry, R.: FreeRTOS - a free RTOS for small embedded real time systems.
http://www.freertos.org/ (2006)

11. Shift-Right Technologies: eXtreme Minimal Kernel (xmk) - a free real time oper-
ating system for microcontrollers. http://www.shift-right.com/xmk/ (2006)

12. Stankovic, J.A., He, T., Abdelzaher, T., Marley, M., Tao, G., Son, S., Lu, C.:
Feedback control scheduling in distributed real-time systems. In: Proceedings of
RTSS’01. (2001)

13. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control.
In: Proceedings of IEEE RTSS ’98, Washington, DC, USA, IEEE Computer (1998)


