
Coupling Enterprise Systems with Wireless Sensor Nodes:
Analysis, Implementation, Experiences and Guidelines

Christian Decker1), Patrik Spiess2), Luciana Moreira sa de Souza2), Michael Beigl1)3),
Zoltan Nochta2)

1) Telecooperation Office (TecO), University of Karlsruhe, 2) SAP Research, CEC Karlsruhe
76131 Karlsruhe, Germany, 3) TU Braunschweig

1){cdecker, beigl}@teco.edu, 2){patrik.spiess, luciana.moreira.sa.de.souza,
zoltan.nochta}@sap.com, 3)beigl@ibr.cs.tu-bs.de

Abstract. This paper presents an approach for closely coupling enterprise sys-
tems and tiny wireless sensor nodes that are embedded into physical items. Cou-
pling is done by implementing services from the enterprise system on the wire-
less sensor node system and by letting part of the business logic run on the
nodes. The paper analyses concrete application scenarios and discusses implica-
tions of this approach. The discussion is underpinned by implementation and
testing of demonstration applications. The collected experiences lead to four
guidelines a designer of such a system should follow.

1 Introduction

In the last years, we have seen an increased engagement to electronically support busi-
ness processes that involve physical items. In this paper, we explore the approach of
re-locating process tasks from the back-end enterprise system (BES) onto the items.
The execution of these tasks is delegated to physically embedded systems (PES), im-
plemented as tiny, embedded computers, which are directly attached to the items. As a
result, the process tasks run among the items.

In particular, we want to exploit the advantages of in-network processing for data
aggregation and collaboration between the items in the context of electronically sup-
porting business processes. Our approach yields the following benefits:
• Scaling: Relocation of process tasks will definitely unload the BES from process-

ing data streams coming from each single item.
• Real-time action: In-network processing of tasks shortens the notification paths in

case of alerts. Furthermore, alerts can be raised locally at the point of incidence
where immediate action is required.

• Increased degree of freedom: The proposed approach of process re-location is
top-down, i.e. designed, initiated and controlled by the BES. This enables a high
degree of re-usability in many various business processes, instead of relying on
just one fixed in-network processing mechanism residing permanently on the PES.

From a technical perspective, a PES has to provide sufficient computing power to
execute different process tasks, a bi-directional wireless communication interface to
enable a direct communication among the items, and onboard sensors in order to per-
ceive the situation around the items. With wireless sensor network platforms, sufficient

PESs are already available. In this paper, we will show how sensor networks can sup-
port the coupling between enterprise systems and physical items in business processes.
The physical items augmented by a PES running relocated process tasks we call col-
laborative business items – or CoBIs.

The next section anchors our approach and its advantages in three concrete exam-
ples. The requirements for the coupling of business logic of relocated tasks are ana-
lysed in section 3. As a result, section 4 presents an architecture, which couples BES
and physical items running process tasks and section 5 shows the implementation of it
in one concrete example. Experiences we gained from this approach and guidelines to
follow are given in section 6 before we conclude in section 7.

2 CoBIs Scenarios

In this section, we present the results of an application-oriented analysis where our
approach of relocating process tasks is applied. In a research collaboration with BP, we
explore safety issues when handling hazardous chemicals. Wireless sensor nodes that
we attached on chemical drums (Figure 1) execute the relocated process tasks collabo-
ratively in order to detect hazardous situations like an exceeded storage limit, prohib-
ited storage combinations of materials or an invalid storage area. Alerts can be both
raised visually on the drums for notification of nearby workers and communicated to
the BES.

Fig. 1. Left: Drums detecting hazardous situations (Source: BP); Right: Prototype implementa-
tion

The advantage of our approach in this scenario is fast response in dangerous situations.
The in-situ detections and alerts shorten long communication paths for notifications.
Furthermore, relocated processes do not rely on a permanent connection to the BES.
As a result, business applications can also handle very mobile items without being
dependent on a full monitoring infrastructure.

In the second scenario, we explored process tasks on electronic and paper-based docu-
ments within SAP [1]. Electronic documents were managed by SAP’s Record Manage-
ment System (RMS). Their physical counterparts, e.g. legal contracts, were augmented by
a PES called DigiClip, which monitored all handling activities. The requirement was to
keep both documents instances in sync. Relocated process tasks are advantageous because
they enable a permanent monitoring directly on the document in contrast to remote obser-
vation approaches. The coupling of those process tasks back to the enterprise system al-
lows RMS applications to handle highly mobile paper documents in a very similar way like
the electronic ones.

With eSeal [2] we explore an SAP supported supply chain scenario. The terms of deliv-
ery between two parties are transferred as a rule set down to a PES attached to the goods.
Sensor nodes, as an implementation of this PES, execute these rules and establish an elec-
tronic seal reporting any violation of rules in a secure manner. As a result, high load on the
BES is avoided and the coupled system scales well. Further, eSeals’s processes on the
goods guarantee the integrity of the terms of delivery while the goods are in transit, even if
no support by a BES is possible.

3 Business Logic Coupling

From the perspective of a BES, coupling with PESs raises the following questions:
How are the systems communicatively coupled and how is business logic modelled and
distributed to the nodes of a PES? The broad heterogeneity of PES hardware and
communication protocols has led to many different solutions for both problems.
Communication coupling. One could argue that PESs do not need to be connected to
BESs. However, communicatively coupling PES and BES can increase the benefit for
business processes. In the drum scenario described above, the drums detect violations
of storage rules locally without back-end connection (e.g. during transportation), but it
would be useful if violation incidents were reported (even ex-post) to a BES. This
leads to the question, how the coupling should be organized, and particularly, how the
exposed abstraction of the PES to the BES should be designed.

Physically
Embedded System

Service Proxy Layer

…

Supported
Business
Processes

Relocated
Process Tasks (U2)

Real-time
Data (U1)

Process
Control (U3)

?

Service3 Service4

Service1 ServicenService2

Fig 2. Coupling back-end enterprise systems with physically embedded systems using relocated
process tasks

Figure 2 outlines a service-based approach. We assume the software running on each
network node is organized as a set of services. Middleware components (middle box)
create so called service proxies, i.e. run-time representations of the embedded services
that the BES can access just like any other service in the BES. In the top part, you see
three possible ways of using data from service proxies. Real-time data provided by a
service proxy can be used to support the execution of one business process task (U1).
Parts of a business process can be relocated to the PES and the business process can be
executed by using the corresponding service proxies directly (U2) or the proxies can be

used to control which process task to execute next if more than one option is available
(U3). U1 and U3 are straightforward ways of integrating PESs into business processes
(e.g. for integrating RFID tracking data). We believe that U2 is a novel and most bene-
ficial approach for many use cases, especially our application examples. It allows for
management by exception, where the PES only notifies the BES of extraordinary situa-
tions, increasing scalability (the BES has to process less messages) and speed of detect-
ing situations that require action (avoiding latency of control loop between PES and
BES) and does not require a constant connection to the back-end.
Modelling and deployment of business logic and distribution to the PES. For im-
plementing the embedded services that execute the relocated process tasks, one could
write code for a microprocessor or an operating system like TinyOS. However, busi-
ness users prefer tools that abstract consequently from hardware and operating system,
such as interpreted programming languages [3], SQL-like query formats [4], or rules
[5]. If the generation of these higher-level task descriptions is supported by convenient
tools that support e.g. graphical drag and drop modelling, and deployment of embed-
ded services, then business domain experts could model embedded services them-
selves.

4 Coupling Architecture

The technical goal of the architecture designed for CoBIs is to enable the coupling of
relocated process tasks provided by a heterogeneous software and hardware landscape.
We also stress the seamless technical integration into existing service-oriented plat-
forms [6]. The architecture depicted in Figure 3 provides mechanisms for managing the
relocated processes.

Client Side

Middleware

CoBIs Service Iterface

Service Invoker Notification
Broker

Gateway

Message Handling
Gateway
Protocol

Native
Protocol

Service
Repository

Business Application Development Tools

Service
Proxy

Proxy
Factory

Fig. 3. CoBIs relocated process management architecture

Service Design and Implementation. The relocation of a process task starts with
specific design and coding. During the design phase, it is necessary to define a set of
services that collaboratively can provide the functionality required by the business
process. The main output of the design phase is a descriptive model defining services
functionality and interfaces by which the services can be called. We call this descrip-
tive model CoBIs Language (CoBIL). This model is essential for the business applica-

tions because it gives a common interface that allows them to connect to the relocated
process tasks and gives information reflecting technical needs of a given service. The
result of the implementation phase is an executable program code that can either run on
different platforms or on a specific platform, which is stored in the Service Repository.
Service Invocation and Events. The ability to create invocations to and receive events
from the relocated process tasks allows a transparent coupling of relocated process
tasks to the business process being executed in the BES. The CoBIs Service Interface
provides the functionality described in CoBIL to the business application. When the
application makes an invocation, the CoBIs Service Interface forwards the request to
the Service Invoker, which uses the Message Handler component to convert the invo-
cation into the required protocol. The business application can also subscribe to receive
events from the PESs. In this case, when new events are generated they are forwarded
to the Notification Broker component, which will distribute the event among the sub-
scribed business applications.
Message Handling and Gateway Architecture. Due to the heterogeneity of the PESs,
it was important for our architecture to define a common abstraction for all platforms.
This is needed in order to incorporate the relocated services residing on different plat-
forms and to enable uniform management of the services. This is achieved through the
component called Message Handler. This component uses two mechanisms for making
conversions of the PES’s protocol and the BES’s protocol: the platform gateways and
the native handler. These two approaches differ on the layer on which they convert the
protocols. Figure 3 shows service proxies making the translation between service calls
from the MessageHandler component and the platform specific message format. These
proxies represent embedded services to higher layers of the architecture. When the
platform does not provide a gateway, native handlers can be used to make a direct
conversion between the PES protocol and the BES protocol.

5 Implementation

Prototype Implementation Setup. We implemented relocated business process tasks
for the drum scenario from section 2. The drums were equipped with Particle sensor
nodes as a PES for the task of detecting hazardous situations. The prototype implemen-
tation incorporated further a business application for the safe storage of chemicals
supported by a SAP EH&S (Environment, Health and Safety) solution. Each Particle
sensor node implemented services for the detection of the storage limit and incompati-
ble material. All services were previously described in CoBIL documents. Since code
generation support as suggested in section 3 was not available yet, the implementation
of executable program code of a service was carried out manually.
Coupling to Back-end Enterprise System (BES). Service proxies on platform gate-
ways (see Figure 3) couple PES and BES utilizing UPnP interfaces. Therefore, the
relocated process task – not the platform devices – is represented in a platform-neutral
manner. UPnP is standardized and is specifically designed to enable a service-oriented
architecture for embedded systems (www.upnp.org). The UPnP model of state vari-
ables supports the communication with the sensor nodes by generic primitives like
state queries, e.g. the drum’s current storage conditions, or state update, e.g. a storage
parameter for a group of drums. Events from the sensor network, e.g. an alert due to a

hazardous situation, can be directly supported by UPnP’s GENA event system through
subscriptions and notification on the state variables.

The key element in our current implementation is the automatic message translation
between the different components within the architecture. It allows a type-safe and
transparent communication between different PESs and the BES. The figure below
depicts the message transformation sequence.

Fig. 4. Message transformation sequence

Crucial for the transformation are the service description documents in CoBIL. In first
step, the CoBIL document serves as an input for a syntax transformation in the com-
munication between the web services in the EH&S solution and the UPnP service
proxies on the platform gateways. Basically, the transformation strips down WSDL
documents and maps specific identifiers to the correct state variables. This XML-to-
XML transformation generates messages, which can be understood by both, the web
services and the UPnP service proxies. Independently from the underlying PES, this
step can be re-used. The message generation below the platform gateway runs proprie-
tary. For each platform, a manually declared semantic transformation maps state vari-
ables to the platform specific protocol format. In our implementation, the UPnP service
proxies utilize message templates. Several state variables are aggregated into one mes-
sage via a template in order to take low bandwidth and energy constraints of the sensor
nodes into account. Native message handlers in the architecture leave out the syntacti-
cal transformation and proceed directly with the semantic one. However, this binds the
BES services strongly to a specific underlying PES. Due to two-step transformation, an
additional PES like the µNode sensor nodes for an in-situ environmental monitoring as
an extension of the drum scenario was integrated within one day.

6 Experience and Guidelines

During installation and run of the drums scenario, we collected several experiences
both in the practical implementation and in the more general design of the system and
architecture. This section should give an insight on the most important experience that
we made up to now.
Technical problems. First, we gathered several experiences by technically coupling
PES to (existing) BES – in hardware, software, and architecture. We found that enter-
prise and wireless sensor systems follow an almost orthogonal approach: The logic
behind enterprise applications assumes certainty from the inputs and is often not pro-

grammed to make decisions based on uncertain information. Sensor networks on the
other hand come with an inherent uncertainty factor, simply because the technical
conditions make it impossible to provide 100% reliability. In practice, independently
from the technical platform, most unreliability originates from the RF-based network
connection. Minimizing the RF path is therefore a necessary requirement for a success-
ful coupling between PES and BES. Consequentially, mobile ad-hoc network routing
solutions are not an option for most application cases. In our experience, a compromise
is a good solution to bridge this gap: While parts of the enterprise application must be
enabled to deal with unreliable information to a certain degree, from the sensor net-
works the solution with the most reliability should be selected.
Application complexity. In a setting with several BESs and a large number of PESs an
abstraction from the technical solution hides the underlying complexity and enables a
software developer to concentrate on the application logic. In our experience, this ap-
proach fails when a technical problem requires application domain knowledge to be
solved. A chemical container supervision application with dangerous goods cannot
accept a temporary sensor break down, but needs to send out an alarm. This failure in
sensor reading must therefore be accessible to the application to trigger application
specific reactions. In our experience, it is important to identify selected technical situa-
tions and parameters that need to be made available to the application and to enable
applications to understand the nature of this situation.
Application reaction. In many pervasive and ubiquitous computing systems, as well
as in “traditional” enterprise applications, reaction of an input is not computed locally
but done on a central server. Reaction commands are then forwarded back to the actua-
tors in a PES. We found that this approach has several disadvantages. Firstly, reaction
time increases because of the inclusion of several communication and processing steps.
Secondly, the error rate increases, leading to a decrease of performance of the overall
system. Thirdly, due to the involvement of many devices and application modules
system complexity increases. We tried to minimize complexity, communication and
processing steps by keeping processing of system output local if the input causing the
reaction is also local. This strategy reduces both reaction and error handling complex-
ity of the system as a minimal set of devices and functional modules are involved.
Coupling back-end enterprise and physical embedded systems. In our experience, a
large amount of time is spent for defining, describing, and implementing interfaces
between the various parts of a coupled system. We found it advantageous for both the
system itself and the communication between the various developers, to rely on stan-
dards. We also found that using service orientation addresses our application settings
best. For us, UPnP seems to be a natural choice as it is already directly supported by
some components used within the overall system. For some other parts it was quite
simple to integrate them into the UPnP. For instance, the GENA event model from
UPnP could be used without modification to notify higher layers about events in the
sensor network. For other parts integration is more difficult and still up to research:
While some of the PES communicate via exchange of information, the UPnP state
model allows only a RPC semantic for the communication (SOAP). We coupled these
systems via a UPnP gateway, but this reduced some of the information and flexibility
of the sensor network

For our further research and development, we derived guidelines based on our experi-
ence. We are convinced these guidelines will help us to focus our research and to avoid
pitfalls in future work. We found the below four guidelines most important:
• Minimize technical problems. Minimizing technical problems makes a solution

more feasible, more acceptable for users in industrial settings, and gives us the op-
portunity to concentrate on our research task. Especially, stay away from (in prac-
tice) highly unreliable approaches as multi-hop sensor networks.

• Identify critical technical problems and make them visible to the application. Criti-
cal decisions have to be made by the application. Technical problems should not
be shielded since this may lead to improper application’s reactions. Applications
should be able to understand technical problems and provide a solution strategy.

• Keep application reactions local if possible (Local loop). Try to react on an input
or problem with a minimum number of remote systems involved. This way it
minimizes the overall complexity and the number of interfaces between the vari-
ous parts of the system. A good guideline is to keep input/reaction local.

• Use standards for coupling back-end enterprise and physical embedded systems.
Standards are a common ground for developers from various parts of a system and
are therefore well suited as a technical interface between these parts. Service ori-
ented coupling, e.g. UPnP, seems to be a good choice here.

7 Conclusion and Future Work

We presented a novel approach for coupling service-oriented enterprise systems with
physical items in business processes by relocation and execution of process task on
wireless sensor nodes. The process tasks are executed collaboratively among the items,
which we named as collaborative business items – or CoBIs. The usage of CoBIs lead
to shorter communication paths and support business processes, which would other-
wise rely on a permanent connection to the back-end. The experiences from imple-
mented demonstration applications resulted in four guidelines a system designer should
follow. Future research follows these guidelines and addresses in particular appropriate
error handling and resolving strategies within the business application for critical tech-
nical problems occurring in the embedded sensor network. Furthermore, we plan a
large-scale, long-term application trial in a real business environment to deliver de-
tailed insight. Finally, our goal is to build efficient and user-friendly tools for monitor-
ing, management, and support for the whole service lifecycle from modelling and de-
ployment to termination and removal.

References

1. C.Decker, M.Beigl, A.Eames, U.Kubach. DigiClip: Activating physical documents. IWSAWC
2004, In proceedings of the ICDCS 2004, Tokyo, Japan

2. C.Decker, M.Beigl, A.Krohn, U.Kubach, P.Robinson. eSeal - A System for Enhanced Electronic
Assertion of Authenticity and Integrity of Sealed Items. Pervasive 2004, Vienna, Austria

3. P.Levis, D.Gay, D.Culler. Bridging the Gap: Programming Sensor Networks with Application
Specific Virtual Machines. UCB//CSD-04-1343. August 2005.

4. S.Madden, M.Franklin, J.Hellerstein, W.Hong. TinyDB: An Acqusitional Query Processing
System for Sensor Networks. ACM TODS, 2005

5. M.Strohbach, H.-W.Gellersen, G.Kortuem, C.Kray. Cooperative Artefacts: Assessing Real World
Situations with Embedded Technology. Ubicomp 2004.

6. A.Woods. Enterprise Services Architecture, Galileo Press, 2004

