A File System for Resource Abstraction in Ubicomp

Till Riedel, Christian Decker, Albert Krohn, MicHegeigl, Tobias Zimmer

Telecooperation Office (TecO)/University of Karlbei
{riedel,cdecker,krohn,beigl,zimmer}@teco.edu

Abstract. This poster proposes a file system as an absiradtiyer for a
uniform way of accessing any system resource ognlegs sensor nodes. Even
functions and libraries can be represented andssedein this uniform way
allowing developers a novel way to design and immglet applications. A
lightweight implementation on our Particle Compytéatform is described and
performance measurements prove small overheaégource access.

1. Introduction

In ubiquitous computing environments tiny, netwatlgensor nodes are embedded in
a variety of objects. Application programs on tloeles utilize many resources such
as different sensors, actuators like LEDs and sgrsaknemory for data storage and
the wireless communication interface. Other contmmnal functionalities like
algorithms are encapsulated in libraries. Variopgraaches were developed to ease
the development of applications on wireless sensales. Still, developers struggle
with the diversity of different resources and thadrticular access methods, because
hiding resources behind numerous APIs only shifts¢ problems. We propose a file
system, which provides a uniform name space anesaamodel for all resources. An
implementation on our Particle computer platforttpi¥particle.teco.edu) proves the
feasibility of an implementation for sensor nodesl erformance measurements
prove small overhead when accessing resourcesgitbis abstraction layer.

2. Uniform Resource Access

In general two kinds of resources can be identifiditect resources represent the
hardware on the platform, like sensors. Mediatesbueces abstract functional units
that access other resources for further processingessing either kind through a
uniform interface enables us to abstract from ieidif boundaries like hard- and
software, or remote and local resources, as thegheaof an audio sensor in Fig. 1
shows. The system programmer can add, modify anek rdevice driver functionality
transparently. At the same time an application nbay developed without any
knowledge about the underlying system. Inspired thg “/proc” file system
introduced by Plan 9 [3] the Particle File Syste?h dllows to represent operating
system functionality along with file storage, d@scand remote resources within in a

common name space. Software can access any shametiomality in a system
through the stream-oriented functions “read”, “@ltjit‘'open” and “close”.

myProg.c: myProg2.c:
[..]
read (open("/dev/audio”),buf,sizeof(buf)) read (open("/audiolib/audiovolume"),buf,sizeof(buf))
[1. getfile descriptor ¢
Name space ‘ /audiolib /audioVolume ‘ Name space
2. read sampled data -"’table"". ‘ readVol () ‘ writeVol() ‘ ""table"".
/dev/audio : /dev/audio
readMic() ‘ writeMic () readMic() ‘ writeMic()
4; Software Software
3.sample Hardware # Hardware
‘ Microphone ‘ Microphone

Fig. 1. Reading a sensor directly (left) and via a mediagsource (right)

Name Spaces. The abstraction of name spaces provides an inguitiray of
addressing any resources. Hierarchical name spmoes to be an adequate means to
categorize any resources independent of its inteem@mesentation. Textual natural
language resource identifiers specify a path ifte hame space that uniquely
identifies a resource. Internally this resource t@nrepresented by a fixed size
machine-readable address pointing to an arbitrapleamentation. New parts of the
name space can be built into the existing hierardaythe “mount” command. This
enables us to extend the system to react to dynaetiings and reflect a global
context. All resource access is implicitly sengtito such changes as “open” binds
resources in an ad hoc manner.

Streams. Stream primitives have proven to be a scalablepaweerful abstraction
for accessing resources. Streams consist of a0p#® functions “read and “write”
as well as a state to enforce sequential accesdolvid that such semantics fit most
if not all resources in our system. Streams magkavother streams to collect or to
pass on data for further processing. This stackingfreams can extend to a flexible
mechanism for selection and aggregation of datah B&ream end again is mounted
into the file system's name space as a mediatedings By adding an understanding
of a standard output stream to the local contextawfh stream, we can construct a
dynamic pipelining mechanism without mounting oaieging the stream drivers. The
stream data is transparently pushed towards theoktite pipeline by writing to the
standard output, which is connected to the nexlipip stage.

3. Implementation and Application

Once a name is resolved to an address by callirg,apfile descriptor is associated
with the stream. The file descriptor table providesached call indirection to the
driver function. The driver provides this “read”datwrite” functionality as well as an

initial stream state when called by “open”. Passambitrary stream functions to

“mount“ a volatile resource may be instantiatede Tevice driver for special files
will associate the function pointers and the reseupath with a unique resource
address. Calling “open“ on such the resource’s palihcopy “read“ and “write” to
the “file descriptor table* and instantiate a stnea

Necessary name resolution is done via a flattereel data structure. Each tree
element consumes only 2 byte of memory. Encodingliaih type information into
the resource address allows us to dispatch theatodriver. Being able to address
213 distinct resources medium size storage cannbegrated directly into the
addressing scheme. The flash driver translatesrstrsemantics to sequential page-
based file structures on a 4-MBit flash chip. Ipgarts append-only sequential files
that can be used as persistent storage.

The file system serves as a runtime environmentpfeagrams running on the
particle platform. Especially many existing progsamritten in the C programming
language rely on this functionality by using the fidctionality of the standard C
Libraries. The functions “fprintf” or “getchar” arexamples. We can provide full
support for arbitrary resource access using suelarst functions. A program call to
“printf” e.g. will pass the data to the current retard output, which may be a
communication channel via a network protocol as wsla mediated resource, that
does further processing.

Although our system is primarily designed for siifyihg resource access within
the nodes accessing the file system via a telntetvgg allows interactive access to
particle computer sensor nodes with any telnehtliBy accessing the file system on
the particle computer the telnet gateway runs “etadie” resources and passes the
resulting output to the telnet console.

The command line/bin/head -n200 /voltage/log | /binffilter -u2 4000“ would
for example select voltages below 1000mV within tingt 100 2byte samples from
the sensor log file. This processing is done bst fipening the resources “bin/filter*
and “bin/head“ denoting each file descriptor inp@pé stack. The pipe’'s bottom
element defaults to an RF connection back to theetegateway. Writing the
command line arguments to each file descriptoralies the pipe. After receiving
the command line the streams await further datee Standard output is set within the
context of each pipe element's “write* function twz popping the uppermost stack
element. When “/bin/head” starts outputting dataiit be passed through the pipe by
subsequently calling all elements of the remaifipige stack".

Using the same server on the Particle via an ftevegsy allows us to program
Particle nodes via a standard Internet by writingaty code via a file handle into the
program memory. The ftp gateway also allows a tlireapping of the resource
hierarchy on the sensor node to an URI schemenfpiother resource. Ftp “get” and
“put” commands can be directly translated to tledistem’s “read” and “write”.

4. Performance

If we want to use the file system as a resourcerfate on the particle itself
performance becomes a predominant issue. Afteriiagothe name the actual
overhead for using the file system for resourceesgds basically reduced to a call
indirection for calling read and write functions dite descriptors via a function

pointer. Additional overhead is only generated bgging length and state arguments
to the driver function in. As shown in Table 1 weeasured a minimum of 93
processor cycles for a file system resource acoess PIC18 processor. This
compares to 26 cycles when calling a static intexf&8oth values relate to compiler-

generated code reading a one byte of instantlyablaisensor data.

Tablel. Call overhead of file system sensor read.

Operation Cycles PIC18F6720

Table look up for function and state 19 cydles 3.8 us
Function pointer call 36 cyclgs 7.2 s
Accessing Parameters 10 cycles 2 us
Writing the buffer via parameter 25 cycles 5us
Returning 13 cycles 2.6 us|
Overhead of file system read 93 cycles 18.6 ps
Overhead of simple Library call 26 cycles 5.2 us|
Relative overhead 67 cycles 13.4 ps

The semantics of synchronous message passing atgliooperative scheduling
avoiding any scheduling overhead. All internal camioation cost between
functional units is thus reduced to the call ovathmentioned above.

The sequential access to the page based flash meraoslates well to the stream
semantics. When writing data to the flash througingle file system stream the page
allocation and buffering mechanism achieves minibhatking times. Write overhead
is only generated by the inferior erase strategyithnecessary to keep the file system
consistent. Reading the flash needs no allocatichimposes no additional overhead
on the application.

5. Conclusion

We believe that file system functionality provesite a powerful tool to decouple
layers of software and hardware. The hierarchieathe space and the standardized
I/O system can be used to express many high lésttactions as system resources,
while keeping the performance penalty for indinge@tcessing hardware small. The
file system strives to reduce design time, whileximi&ing the design space of the
Particle Computer platform.

6. References

1. Decker, C., Krohn, A., Beigl, M., Zimmer T. TRarticle Computer System. Proceedings of
the ACM/IEEE Fourth International Conference onomfiation Processing in Sensor
Networks (IPSN) 2005, Los Angeles, USA.

2. Decker, C., Beigl, M., and Krohn, A.. A file $gm for system programming in ubiquitous
computing, LNCS 3432, 2005.

3. Presotto, D., Trickey, H., Thompson, K., Winwtom, P. and Pike, R.. The use of Name
Spaces in Plan 9. Operating Systems Review 27, 1999

