
SDJS: The Duck Hunter Problem in Wireless

Sensor Networks

Albert Krohn, Tobias Zimmer, Michael Beigl, Christian Decker, Till Riedel

Telecooperation Office
Vincenz-Priessnitz-Str.3

76131 Karlsruhe
{krohn, zimmer, michael, cdecker, riedel}@teco.edu

Abstract. Synchronous Distributed Jam Signalling (SDJS) is a new
transmission scheme targeted to highly mobile and ad hoc wireless sys-
tems. It is based on the synchronous, parallel and superimposing emission
of jam signal on the physical layer. SDJS is intended to be implemented
as a feature on top of existing standards. It enables those system with the
ability to fast estimate statistical parameters. This paper presents how
to use SDJS to estimate the parameter number of devices in a mobile
wireless ad hoc network. This new approach can increase the speed of
the estimation by a factor of 1000. The whole process is also independent

of the number of nodes involved.

Keywords: wireless sensor network, distributed estimation

1 Introduction

In pervasive and wearable computing, devices often work together wirelessly and
spontaneous. The devices are highly mobile which requires adequate and very
flexible connection methods and data exchange. The high mobility leads as well
to fast changing communication parameters such as the number of devices work-
ing together, their position etc. For a network protocol it is important to update
those parameters fast and accurately to achieve optimal performance. With tra-
ditional approaches that use control messages to inquire or inform nodes about
changing conditions, sensor values etc. a considerable amount of bandwidth and
therefore energy is used; especially when inquiring information from a large
group of nodes. This makes such methods inappropriate for highly varying set-
tings. The method we propose instead allows to collect information in a time
of a single packet. This new approach enables networked nodes to estimate and
exchange condition parameters via RF communication in a very efficient way.
As an example, we will now explain how to retrieve the number of active nodes
in a setting with the help of SDJS [1]; but SDJS can be used for many other
applications such as sensor fusion or RFID scenarios [2].

2 Synchronous Distributed Jam Signalling

The Synchronous Distributed Jam Signalling is a transmission scheme that dif-
fers significantly from typical radio communication. Instead of communicating
encoded (digital) data it transfers information by sending jam signals on the
physical layer in a given order. The SDJS method allows to estimate parameters
based on sensing the received signals and to parallely send information and thus
largely reducing transmission time compared to traditional approaches.

Fig. 1. SDJS scheme

SDJS always starts with a broadcasted start signal (a normal broadcasted
data packet) that all participants receive. After this start signal, a known number
of SDJS-slots follow. For our example, each station selects a random slot to send
a jam signal or try to detect possible jam signals from other stations. Jam signals
from different devices can superimpose on the channel. This transmission scheme
could be interpreted as an ON/OFF keying with reception during off-times.

For the SDJS scheme, two binary vectors are important. First a transmission

vector carrying a binary one at time positions where the node will send a jam
signal or a zero where the device will listen and not send. The second vector is
the reception vector which carries the result after a SDJS scheme. It carries a

one on time positions where the node transmitted or received a jam signal and
a zero on slot positions where it did not send nor find any signal from remote
stations.

Figure 1 shows the activity flow of a SDJS scheme. To illustrate SDJS, we
depict the example of a 7 slots long SDJS scheme (transmission and reception
vector are 7 bits long) with one positions randomly set. The devices (A,B and C)
are participating in a network cell and are SDJS enabled. They perform normal
data exchange at times before t1 which is marked with packets named “data”.
At t1, station B sends out a broadcast packet with the information to start
the SDJS scheme. It contains information on the SDJS scheme and reserves the
channel until t6. After the successful emission of this start signal (t2), all stations
prepare a SDJS transmission vector (interpreted from left to right). Device A has
1000000, device B 1000000 and C has 0010000. These transmission vectors can
be found in figure 1 as black and grey cells during the SDJS scheme. The SDJS
slot length is t4− t3. The SDJS reception vector is represented as zeros and ones
in the SDJS black and grey cells. After the preparation of the SDJS transmission
vector, each device follows the SDJS scheme. During the transmissions of jam
signal in the SDJS slots, the transmission vector are binary “OR”ed. During slot
t3− t4, both stations A and B send a jam signal which C can detect. It therefore
places a one on the first position of its reception vector. After the SDJS process,
all stations should carry the same reception vector 1010000.

3 The Duck Hunter Problem

This known problem from standard math literature can – with some extension in
the derivation – find an new application in SDJS. We explain the corresponding
term in []-brackets :
a given number of duck hunters k [number of devices] are waiting for a flock
of ducks [number of SDJS slots s] to appear. They all are experienced hunters
and therefore always kill a duck when they aim at it. They all have a just one
bullet. Suddenly, the ducks appear and all hunters immediately aim at a random
duck and shoot [transmit a jam signal]. They don’t have the time to discuss who
of them will aim at which duck. Therefore, a number of ducks will be killed
[received number of jam signals s]; some of them even by two or more hunters
[collisions of jam signals]. Others will be lucky and survive. The duck hunter
problem discusses the probability that a certain number of ducks die.
In SDJS, the question is slightly different: SDJS asks how many hunters have
been there. We can derive the closed form equation through a basic problem of
partitions theory:

1. the number of all combinations of k elements to be placed in s slots is s
k

2. the number of combinations to chose a slots is
(

s

a

)

3. taking k elements, the number of combinations to form groups of the size a

is the surjective mapping from k to partitions of the size a:

a
∑

i=0

(−1)i

(

a

i

)

(a − i)k

[3, Theorem 2.1.7]
4. now, the probability to find a combination of the size a is:

Pa|k(a|k) =

(

s

a

)
∑

a

i=0
(−1)i

(

a

i

)

(a − i)k

sk
(1)

Using a maximum likelihood (ML) estimator, we get the estimation k̃ for the
number of devices through

k̃ML = arg max
k

Pa|k(a|k) (2)

With the help of a-priori knowledge confidence intervals can also be given [2].
There is a trade-off between speed and accuracy of SDJS. Increasing the number
of slots of one SDJS scheme reduces the collisions but at the same time increases
the accuracy and vice versa. For a given application, the required accuracy can
be achieved by adjusting the number of SDJS slots accordingly – still resulting in
a constant and predictable process-time independent of the actual participating
number of nodes.

References

1. Albert Krohn, Michael Beigl, and Sabin Wendhack. SDJS: Efficient statistics for
wireless networks. In Proceedings of the 12th IEEE International Conference on

Network Protocols, Berlin, Germany, 2004.
2. Albert Krohn, Tobias Zimmer, Michael Beigl, and Christian Decker. Collabora-

tive sensing in a retail store using synchronous distributed jam signalling. In 3rd

International Conference on Pervasive Computing, Munich, Germany, 2005.
3. H. Joseph Straight. Combinatrics: an Invitation. Cole Publishing Company, Bel-

mont, USA, 1993.

