
Adaptation of On-line Scheduling Strategies for
Sensor Network Platforms

Christian Decker, Till Riedel, Michael Beigl
Telecooperation Office (TecO),

University of Karlsruhe
Karlsruhe, Germany

{cdecker,riedel,beigl}@teco.edu

Abstract— Current sensor network platforms perform multiple
processes including sensor sampling, communication, and various
computational tasks. When deployed in unpredictable environ-
ments, complex schedules of those processes may arise. Typical
sensor network qualities like periodic sampling of sensors, avoid-
ance of starvation of single processes and automatic energy man-
agement are crucial and required to be maintained in such situa-
tions. We propose a scheduling framework for senor nodes
consisting of a scheduler, a dispatcher and a controller for an
adaptation of process execution during the runtime. The key
components of our framework are a controller and an enhanced
dispatcher which both implement various strategies to maintain
crucial qualities of process execution on sensor nodes deployed in
unpredictable environments. Further, the framework is aware of
the energy consumption of sensors. We show that our controlled
scheduling framework performs significantly better than a non-
controlled single scheduler in unpredictable environments. Our
proposed measures are efficient to implement. Results are under-
pinned by extensive simulations and a first implementation on
our Particle Computer platform.

Keywords: Scheduling, Sensor Network, Energy Management,
Particle Computer

I. INTRODUCTION
Sensor node platforms are proposed for various monitoring and

tracking tasks which are hard to accomplished by other technologies.
Thereby, sensor nodes are deployed in unknown and therefore in
unpredictable environment. As a consequence, the nodes should im-
plement mechanism to adapt their tasks to the environment. Microcon-
trollers on current sensor nodes platforms have to handle a large diver-
sity of processes. Among them are sensor sampling tasks,
communication tasks and computational task. Additionally, there are
background processes for maintenance. Within each of those groups
further dimensions are revealed. For instance, sensor sampling tasks
may have different properties regarding sampling interval and sam-
pling time. Recently, lots of operating systems for sensor nodes have
been proposed as an underlying runtime system handling various
tasks. A prominent example is TinyOS[6], the operating system for the
Berkeley Motes. In this paper we want to approach three goals, which
we identified as crucial for process execution on sensor nodes in un-
predictable environments. Our first goal is to achieve a low jitter in
periodic sensor sampling processes. Sampling in fixed intervals is
reasonable as many algorithms rely on this property. But, with many
competing sampling processes in an unpredictable environment high
load and overload situations may occur. As a consequence, the run-
time system has to adapt the task properties to fulfill such requests.

Our second goal is the avoidance of task starvation. The nodes are
deployed in areas where no external administration or debugging is

possible. Therefore, the system should take measures, if a task is
constantly left out. In particular, such a situation may occur, if other
tasks are permanently considered to be more important because of an
event detection. Our third goal is the automatic energy management of
sensors on the platforms. Sensors have start-up times, shutdown times
or sample delays. This may lead to complex dependencies which need
to be resolved by the runtime system.

These goals can be approached by an appropriate scheduling strat-
egy. However, in unpredictable environment, the task properties are
unpredictable, too. For instance, computation times of tasks are vary-
ing, overload situations may occur due to event detection and process-
ing or computational tasks may delay the entire system because their
runtime depends strongly on their input data. This unpredictability of
the environment makes it necessary to adapt the scheduler online
while the system is running. Furthermore, the restricted resources of
the sensor node platforms make it rather hard to implement a complex
strategy. Therefore, we propose an adaptive scheduling framework
utilizing compact priority-based schedulers which are further sup-
ported by an enhanced dispatcher and a controller.

Controller

Service

DispatcherScheduler

Service

...

Figure 1. The adaptive scheduling framework

The key component of our framework is the controller and an en-
hanced dispatcher implementing a set of strategies to handle the dy-
namic effects of the system. Tasks are encapsulated in services repre-
senting stand-alone functional entities. The dispatcher monitors the
performance of the execution of the services and triggers the controller
for adaptation if necessary. Our contribution in this paper is the quanti-
tative performance evaluation of online scheduling adaptation strate-
gies which are suited for resource constrained sensor network plat-
forms applied in unpredictable environments. Our approach is based
on permanent feedback from the current process execution. Remark-
able for this approach is that it results in a very good performance with
a minimum of previously defined and uncertain knowledge.

The remainder is structured as follows: In section II we will re-
view scheduling strategies on sensor nodes. As a result, we will derive
important requirements for our scheduling framework. The framework
works on functional entities called services, which will be introduced
in section III. Section IV then presents the details of adaptive schedul-
ing framework and the adaptation strategies. For the evaluation of the
framework we will describe a representative set of services in section

V and the results of comparisons with non-adaptive strategies are
discussed on section VI. Section VII shows an implementation of the
adaptive framework on our Particle Computer platform. We conclude
the paper in section VIII.

II. SCHEDULING STRATEGIES ON SENSOR NODES
In this section we will review important scheduling algorithms,

which are currently implemented on sensor nodes. All algorithms
utilize the same task model. A task i is defined as a tuple

}{ i,ri,di,Ti,CiPitask = , whereas iP is the function which is exe-

cuted, iC is the computation time, iT is the period of the execution,

id is the deadline and ir identifies the resources required by the task.
The recurred execution of a task i is said to be a set of jobs

,...}1,0{ ijijiJ = . A job 0ij is scheduled to start its execution at

the time 0)0(iaija = , which is called the arrival time. An ordered
set of jobs according to some policy is called a schedule. If a job gets
interrupted during its execution, the schedule is called preemptive. If
all jobs runs to completion before the next one is started, the schedule
is called non-preemptive.

A. First-In-First-Out (FIFO)
A FIFO scheduler executes tasks in the order of their arrival. As a

consequence, each job has a priority proportional to its arrival time
and the resulting schedule is a totally ordered list of those priorities. A
FIFO strategy runs non-preemptively. As a result, the implementation
only requires an array of jobs and does not need any a-priori knowl-
edge about the jobs. These qualities constitute the FIFO strategy as a
preferred approach for resource constrained devices. TinyOS 1.x [6],
the operating system of the Berkeley Motes, implements a FIFO
scheduler. However, the scheduler cannot assert time guarantees of
periodic jobs nor execution guarantees. These are serious drawbacks
of this approach. If the job queue is exceeded, then newly arrived jobs
must be canceled. As a result, events may get lost and tasks run into
starvation since constantly upcoming events may avoid the queuing of
the starving task.

B. Rate Monotonic Scheduling (RMS)
RMS is a fix priority strategy where once a priority is assigned to

a task depending on its period iP . Tasks with shorter periods are
assigned higher priorities than tasks with longer periods. In [9] the
authors showed that RMS is optimal, i.e. that no other fixed-priority
algorithm can schedule a task set that cannot be scheduled by RMS.
The authors also derived a least upper utilization bound for a set of n
periodic tasks in a preemptive schedule. If the utilization

∑ −≤=
i

i

i n
T
C

U)12(2/1 , (1)

then the RMS guarantees that all deadlines will hold. For a non-
preemptive schedule this guarantee can only be given, if the following
condition holds:

ii i TC min≤∑

As a result, RMS executes the jobs repeatable in the same order
and achieves even very low jitter during the periodic execution of the
tasks. Fixed-priority strategies are attractive to be implemented on
sensor nodes, since they need to compute the schedule only once
before the runtime. They can even guarantee periodic behavior of
tasks and the implementation just requires a single array where the

jobs rotate through. The major drawback is the inflexibility of RMS.
The strategy does not consider varying execution times and cannot
adapt its runtime behavior. Further, an admission based on (1) under-
utilizes the system constantly and can result in starvation of tasks,
which do not satisfy the criteria.

C. Earliest Deadline First (EDF)
In [9] Lui and Layland investigated EDF. The next job is selected

according to its deadline during the runtime of the system. This behav-
ior can handle system dynamics where new jobs arrive unpredictably
in the system. This property of EDF guarantees real-time behavior
even in the case of unpredictable event occurrence on sensor nodes.
The EDF strategy is preferred for real-time systems, because it utilizes
the processor at best. Further, EDF is optimal in the sense, that if there
is a schedule for which all deadlines will hold, then EDF will find it. A
task set of n periodic tasks is guaranteed to be schedulable and there-
fore during execution all deadlines will hold, iff the utilization U is

∑ ≤=
i

i

i

T
C

U 1 (2)

However, (2) holds only for preemptive schedules. In the case of
non-preemptive schedules, a complete search according to Bartley’s
algorithm [2] has to be undertaken to find a feasible schedule. A varia-
tion is the Spring algorithm [11] which utilizes additional heuristics.

AmbientRT, the operating system for the µNode platform [7], im-
plements an EDF variation called Earliest Deadline First with Dead-
line Inheritance (EDFI). This is a preemptive strategy using a priority
ceiling mechanism applied on resource usage in order to solve con-
flicts when resources are shared between different tasks. In order to
run correctly, EDFI requires exact computation times and resource
allocation of each task beforehand. Instead of the exact computation
time, a Worst-Case-Execution-Time (WCET) can be specified. WCET
is an upper bound, which will never be exceeded. The properties
specifications are left to the developer of an application on µNodes
and therefore a potential source of errors when wrongly estimated. The
EDF strategy is fragile to a domino effect, which may results in a
continuously missed deadlines, once a single deadline was missed. In
particular, computational tasks underlie a large variations as their
computation times are dominated by the input data. Nevertheless, if
these parameters are correctly chosen, then EDFI guarantees deadlock-
free execution and real-time behavior. But, even if the task set is static
and the admission has verified the schedulability, i.e. all deadlines will
hold, EDF may not guarantee fix intervals between two jobs of the
same task. As a consequence, low jitter during periodic sampling
cannot be guaranteed.

D. Cooperative Scheduling
In cooperative scheduling, a task yields its execution and the con-

trol is given to a dispatcher for selecting the next one. As a conse-
quence, the process order is implicitly encoded in the application
program. Operating system like SOS[5] for Motes and the highly-
portable operating system Contiki [4], which is also available for
sensor node devices, implement cooperative scheduling. In particular,
latter system supports this strategy through a very lightweight imple-
mentation called protothreads. The overhead is comparable to the
FIFO scheduling strategy because scheduling decisions are primarily
specified by the application or the developer. There is basically addi-
tional effort through a specific scheduler. Cooperative scheduling
burdens the effort on the developer. An implementation of periodic
execution of tasks must be implicitly encoded in the application logic.
For achieving fix periodic intervals the developer need to constantly
monitor the execution behavior of the entire application. In case of a
modification of the application, the measures to achieve a certain
processing behavior also have to be modified. These might be distrib-
uted across all tasks of an application. If applications get more com-

plex the burden on the developer increases. As a result, it arises the
risk, that decisions where to place yields within a task and which task
to select next, may lead to task starvation. Since the task switches are
distributed across an application, the possibilities of different execu-
tion orders increase dramatically. A developer has to carefully study
the entire application in order to remain an intended behavior.

E. Résumé
From the previous analysis we derive now important properties of

our scheduling framework for sensor node platforms. Preemptive real-
time schedulers guarantee deadlines for job execution and utilize the
processor at best. However, additional effort is required to resolve
conflicts due to resource sharing when a job accesses a resource, while
a previously started job is preempted. Preemption is difficult to im-
plement safely on microcontroller systems with no protection between
the tasks. Usually, a timer interrupt is used to preempt a running task.
But the authors of [10] showed, it impossible to guarantee that a task
mustn’t switch off this interrupt. The memory consumption of the
switching between jobs when they are preempted is not negligible. A
job has to store the current process control block consisting of actual
processor registers and a stack pointer in order to return to its own
block of local variables on the stack. AmbientRT reports an additional
overhead of 10 bytes per task while 72 tasks are allowed at maximum.
Although this is a low overhead per task, it scales up with the number
of tasks and allocates more memory. Since the memory layout is often
organized statically and fixed during compile time of an application,
the memory is permanently reserved for the scheduler. Schedulers
supporting real-time guarantees require an accurate specification of
task properties, especially of the computation time. These are hard to
find, especially, when they depend on the input data of a task. WCET
approximations on the other side result in underutilization of the sys-
tem.

FIFO strategies and fixed-priority strategies such as RMS are very
inflexible. Although attractive for resource constrained sensor nodes
due to their low effort, periodic processes with low jitter and avoid-
ance of task starvation are hard to support reliably. Automatic manag-
ing of the energy consumption of sensors, i.e. switching them on and
off with respect to their specific start-up times is not considered at all.

Due to the restricted resources and the additional overhead re-
quired for preemptive tasks, our framework will implement non-
preemptive tasks. As a result, resource conflicts cannot occur and this
avoids any measures for synchronization. Unpredictable event proc-
essing may disturb real-time properties. Our framework omits real-
time guarantees, but rather prefers low jitter during periodic execu-
tions of tasks. Periods of tasks are adaptable in order to achieve this
requirement. Cooperative scheduling is certainly best suited for spe-
cific parts of an application on sensor nodes, but it has no view on the
overall execution performance. Furthermore, it is complex and bur-
dens a developer due to the tight coupling of the application and the
scheduling decisions applied on the tasks. Finally, our framework
allows flexible annotations. For instance, sensor tasks are annotated by
their start-up times, in order to make the system aware of the sensors’
energy management.

III. SERVICES
As a consequence of our analysis in section II, we introduce the

concept of services, which reflects the results from in section II.E.
Services represent a uniform abstraction of all recurring processes on a
sensor node. A schematic view on a service is depicted in Figure 2.
Central in this abstraction is the service function, which implements
the functionality, e.g. sensor sampling. Services run non-preemptively
and are independent from each other, i.e. there is no service, which
calls another one. The start of a service execution is always driven by
the underlying runtime system. A service execution is always periodic,
non-preemptive and an execution cycle finishes with a result stored in
a result buffer. The result set is allowed to be empty. As an abstraction

of recurring processes, a service provides rich capabilities to be con-
figured. Among them are regular task properties like period, deadline
and computation time, but also additional parameters like starvation
level, and start-up time for sensor sampling services. The runtime
system utilizes these parameters for its online decisions.

Function

State

Output Buffer

C
on

fig
ur

at
io

n T, C, d, starvation
level, start-up time

Results

Figure 2. A schematic view on a service – an encapsulated
independent functional entity for sensor nodes

During the periodic execution, a service transits through several
states which are depicted in detailed in Figure 3. During the boot-up
of the system, all services are initialized and to the sleeping state.
Since all services arrive at the same time in the runtime system, they
are now turned on one after the other, i.e. according to their start-up
parameter, their new arrival time of each service is computed and the
service is placed in the waiting state. If the arrival time is reached for a
waiting service it changes its state to ready. All ready services are then
executed by the dispatcher and they automatically transit to the wait-
ing state. A separate execution state is not necessary because services
run non-preemptively. If a period is greater than the start-up time of a
service, the service may want to go to the sleeping state in order to
save energy. This is a crucial feature for sensor sampling services
which can power-down energy-consuming sensors until the next
usage.

New

Sleeping

Ready

Waiting

Init

Turn on

ExecuteScheduling

Turn off

Figure 3. State transition diagram of a service

The service abstraction does not prohibit event processing. Events
occur sporadically. In [8] the authors suggest a method to model spo-
radic processes with periodic processes. Thereby, the minimum time
difference between two sporadic events can be considered as the
period of a periodic process. As a consequence, the introduction of
services can handle sporadic event processing.

Formally, services are similar to the notion of tasks as presented in

section II. We describe the service iS as a tuple }{ i,Ti,CiPiS = ,

where iP is the service function which is executed, iC is the compu-

tation time, and iT is the period of the execution. The resource de-

scription can be omitted because non-preemptive services do not
interfere with each other on resources when accessing them. However,
conflicts occurring as a result of sharing resources between different
service invocations, are determined by the application logic and must
be handled by utilizing internal states of resources. In the service

model, the computation time iC is given (i.e. specified by the devel-
oper), but for a concrete execution instance it is unknown. In particu-

lar, iC of an instance is highly dynamically and may strongly vary
according to the data which are processed. This behavior is the reason
for omitting the deadline. Services are brought to execution as jobs at
a given arrival time. The arrival time of the n-th job representing the n-

th invocation of service iS is defined as iTnnia)1(, −= .

IV. SCHEDULING FRAMEWORK AND RUNTIME SYSTEM
The scheduling framework for sensor node platforms is responsi-

ble for executing the services. It serves as an underlying runtime sys-
tem for all services on a sensor node platform. The design goal was to
plug-in multiple schedulers and adaptation strategies. As a conse-
quence, the framework is divided in the three components: dispatcher,
scheduler and controller. The framework operates on the notion of
jobs, which are the runtime representation of services. It utilizes the
jobs’ arrival time and a reference from a job to its originating service.
Jobs are organized in two queues, one for all ready jobs, which need to
be executed now, and one queue for waiting jobs, which have their
arrival time in the future. When designing the framework we followed
a strict separation between the components’ actions on the jobs in
order to form a clear concept and to avoid side-effects between the
components. An overview of the framework is depicted in Figure 4.

Scheduler

Dispatcher

Controller

Jobs

Ready Waiting

Jobs

notifiesModifies
job properties

calls

schedules

Figure 4. Adaptive scheduling framework

The core component is the dispatcher. It executes the service func-
tion associated with a job. The dispatcher is the only component which
is allowed to remove jobs from the ready queue and to insert jobs in
the waiting queue. If jobs achieve their arrival time, the scheduler
moves them from the waiting queue to the ready queue in order to be
executed by the dispatcher. The waiting queue is sorted according to
the next arrival time of a job, while the ready queue is sorted accord-
ing to priorities computed by the scheduler. The scheduler is the only
component which inserts jobs in the ready queue and changes their
ordering therein. The planning of the ordering is based on the service
parameters, especially on the computation time and period. The prior-
ity based interface via the ready queue allows us to plug-in priority
based schedulers, such as FIFO, RMS and EDF. Since schedulers
describe a ordered execution plan, this interface is naturally generic to
handle other schedulers as well. On top of the scheduler we introduce
a controller. This component is responsible for schedule adaptation. In
order to avoid faulty interference with the scheduler, the controller is
only allowed to modify job properties. If it changes the priority of a

job, it must notify the scheduler. In the next subsections we will ex-
plain the design of the framework components in more detail.

A. Dispatcher
The dispatcher is executed for each job. It has access to two

queues – ready and waiting – which match the states of a service.
Services in the sleeping and waiting state are both contained in the
waiting queue. Jobs in the ready queue are ordered by their priority
with the highest priority on the first position. The dispatcher retrieves
the first job from the ready queue, executes it and inserts it in the
waiting queue. Latter is organized ascending according to the next
arrival times of the jobs. The figure below illustrates the separate
actions of the dispatcher.

Ready Waiting

Dispatcher

Execution

first(ready)

insert_sorted(waiting)
Priority ascending Arrival time ascending

Figure 5. A slim dispatcher

The dispatcher has only the knowledge about the just occurred
execution of a job. For computation of the job’s next arrival time the
dispatcher calls an appropriate function from the service because the
dispatcher does not know the service’s period. The result from this
function is used to insert the job at the right position within the waiting
queue. Since the ready queue is already sorted it takes a constant effort
to retrieve the highest priority job. The insertion in the waiting queue
uses a insertion sort algorithm with a complexity of O(n). Based on
just two queues and a very low knowledge about each job we achieved
a slim design of the dispatcher, but still maintaining flexibility for
adaptation.

B. Dispatcher adaptation strategies
In the following subsections we present two adaptation strategies –

automatic sensor energy management and jitter correction – which are
directly implemented in the dispatcher.

1) Energy management
Our slim dispatcher design is enhanced for automatic energy

management. The goal is to switch off sensor after the sampling job,
but switch them on before the next sampling. This has to take the start-
up time of the specific sensors into account. Here, the service plays an
active role. The dispatcher is state neutral, i.e. the state is held within
the service and modified by the service itself when the job is accessed
by the dispatcher. As a result the service itself can schedule its on/off
behavior by returning the appropriate arrival time depending on its
state when asked by the dispatcher.

In Figure 6 the sensor sampling is just over when the dispatcher
requests a new arrival time for the job. The associate service returns
instead of its period T , the start-up difference wT − ; w hereby
denotes the configured start-up time specific for the sensor sampling
service. After the job is executed at wT − the service will then return
w as the next arrival time. It is assumed that the job’s computation
time for switching the sensor on at wT − is negligible.

Sensor
Sampling

Ready

Sensor
Sampling

Ready

Switch
on

Sleep

Arrival
TimeT – w T

Sensor Start-up time

0 Dispatcher
requests new
arrival time

Dispatcher
requests new
arrival time

Figure 6. Automatic energy management

2) Jitter correction
The dispatcher is further enhanced to support the goal of low jitter

in successive sampling processes. The jitter J is the delay between
the arrival time and the time the job starts its execution. We call this
start time dispatch time. Jitter occurs as a result of a job’s unknown
computation time. The scheduler has planned the execution order, but
a job exceeds the planned computation time. As a consequence, it
causes a jitter for the next job. The jitter correction works as follows:
Instead of setting the next arrival time of a job on the period interval,
the period is added to the dispatch time of the job. The new arrival

time is then recursively defined as iTiJniania ++−= 1,, . The

advantage of this definition is that jobs with common arrival times are
differently shifted. As a result of this adaptation, the next dispatch
time is set closer to the real behavior of the service. Jitter affects the
period of jobs. Addressing our goal of low jitter, the jitter correction
guarantees that the period deviation is within J± . We show this in
the following theorem.

Theorem 1: The jitter correction applied on the arrival times of

jobs – iTiJniania ++−= 1,, – guarantees a worst-case period

deviation within }max{ iJ± .

Proof: Firstly, we compute the period of a job using the difference of
the dispatch times between the th)2(−n execution instance and the

th)1(−n instance. We further assume, that the th)1(−n instance

was delayed by a jitter iJ . Clearly, the difference is

iJiTniaiJnia +=−−+− 2,1, . In the second step, we compute the

difference between the thn execution instance and the th)1(−n

instance. The th)1(−n instance started at iJniania +−=− 1,1, ,

because it was delayed, and the thn instance starts at

iTiJniania ++−= 1,, , because of the jitter correction. However,

nia , may experience an additional jitter 2,iJ . The difference is

2,1,, iJiTniania +=−− . The period deviation T∆ is now the

difference of two consecutive periods of jobs:

}max{2, iJiJiJT ≤−=∆ . The sequence of the jitter occurrence

can be also the other way around, therefore the deviation is

}max{ iJT ±=∆ .

In the following example we illustrate the effect of jitter correc-
tion. We simulated jobs with period 3=T . The execution of jobs is
randomly interfered with jitter between 0 and 1. One set of jobs was
simulated without jitter correction and the other set has utilized the
jitter correction as defined above. The figure Figure 7 plots the histo-
gram of the resulting period deviations. As proofed above, the devia-

tion stays between 1± for the set utilizing the correction. Further-
more, the deviation is primarily 0. For the set where the jitter is not
corrected, the deviation stays between 2± . Although the deviation
stays primarily around 0, the deviation is broader distributed than in
the case where correction is applied. Addressing our goal of low jitter,
the jitter correction outperforms the non-corrected case by factor
1.4091 in the case for 0-deviation.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Period deviation

O
cc

ur
en

ce
 o

f p
er

io
d

de
vi

at
io

n

no correction
jitter correction

Figure 7. Period deviation for a maximum jitter = 1 and a
period T=3

Although the jitter will be reduced, the period increases. The shift
always moves the arrival time forward in time, which may result in
less execution per time frame.

The dispatcher design is also able to handle the domino effect by
job omission. If computation times of jobs vary strongly, they may
cause an execution delay of a job which causes further jobs to delay
their execution. This may add-up to a delay chain and violate con-
stantly the periodicity of jobs. Before the execution of a job, the dis-
patcher may ask the associate service whether the job i already ex-

ceeded its next arrival time. If at the time t with 1, +> niat the n-th

execution of job i has not occurred, then the dispatcher can omit the
execution. As a result, the delay chain is broken and the domino effect
is stopped.

C. Scheduler
Our scheduling framework allows a clear way to plug-in different

schedulers. For all jobs in the waiting queue which have achieved their
arrival time, the scheduler computes an order of execution. This order
is expressed as a priority used to order those jobs in the ready queue.
Due to the cooperation between the scheduler and the dispatcher, we
achieved that no service is represented by multiple jobs. From this
perspective the framework does not impose additional overhead. As a
result, the queues can be safely bounded to the maximum number of
services the system designer wants to support. For our system tests we
implemented the previously discussed strategies EDF, RMS and FIFO.
For the reasons analyzed in section II.E we intentionally left out a
cooperative scheduling strategy. None of the schedulers in the frame-
work should perform an admission control. Our second central goal
was to avoid process starvation and rather handle such situations
online. Therefore, the schedulers should always accept all jobs.

D. Controller
A serious problem occurs, if jobs face starvation. This might be a

result of a fix priority scheduling strategy or constant job omissions in

order to stop a domino effect. Such problems are handled by control-
lers. Controllers are services as well, but the dispatcher directly calls
them. This is required to guarantee their execution. By design they are
required to only modify job properties. For handling the starvation
problem we now introduce the starvation controller. This service
observes the job queues and the past runtime behavior of the other
services in order to bound the maximum number of job omission.
Each service is annotated with a starvation level specifying this bound.
The starvation level is set by the developer in advance and reflects his
requirements on a minimum response time for a service. If the control-
ler is executed it compares this value with the number of omissions,
which occurred in series for this job. Such analyses are most complex
compared to the effort of the scheduler and the dispatcher because for

all jobs ij in both queues the controller has to compute the number of
omissions given by











 −
=

i
T

lasti
tt

i
omission

,
,

where t denotes the current time, lastit , is the last time, that the job

was successfully executed and iT is the period of ij . The starvation
controller then follows a straight rule:

()
FIFO

prioprio
i

omission
i

sli ij =≤−∀)(then 0)(if: ,

where)(
i

sl denotes the configured starvation level, i.e. the number

of allowed omissions,)(ijprio is the priority of the job and

FIFO
prio is a reserved priority which causes the scheduler to place

this job as the first one before all others in the ready queue. If there is
more than one job, then they will be placed in FIFO order. Since FIFO
is starvation free as long as the computation times are finite, the previ-
ously starved job will be guaranteed executed by the dispatcher. After
execution the properties priority and starvation level are reset. The
controller requires support from the dispatcher. Due to the complex
computations it will run seldom. As a consequence, the dispatcher has
to record the last successful execution for each job. Usually, the run-
time system will utilize only one starvation controller for all jobs. The
system performance can be improved, if the period of this controller
can be determined in advanced. However, an appropriate controller
period depends on the starvation level and the period of the service.
For instance, the controller can run more seldom, if the starvation level
is high, i.e. the developer allows a high number of omissions. The
optimal controller period in order to hold all starvation bounds is the
greatest common divisor (gcd) of all service periods multiplied by the
smallest starvation level. However, as soon as one period is prime, the
gcd is 1, which runs the controller as fast as the most frequent service.
Checking all jobs in both queues as fast as a periodic sensor sampling
service imposes too much load on the system. As a consequence, we
focus here on the starvation controller for services with the same
period. Although equal in their period, different services may have
different starvation levels. For reasons of comparison, we define the
omission ratio as the number of job omissions of a job i per time step.
We now determine the least upper borderline of the controller period,
where the omission ratio for at least one of the jobs differs from all the
others. If the controller period exceeds this borderline, the omission
ratio will be the same for all jobs. From the controller rule, we can
derive the period guaranteeing the starvation bound. From

0)(≤−
i

omission
i

sl , we derive

lasticontrol ttiT
i

slT ,)(−≤⋅= . For different starvation levels

the upper bound is now found by)}(max{
i

sliT ⋅ . Beyond this

period, the controller always evaluates its control rule to true
and notifies the scheduler to schedule all jobs in FIFO order.
The Figure 8 illustrates this behavior for two services with
period 3=T and starvation level 1)

1
(=sl and 10)

2
(=sl .

The upper bound for the controller period is
30)}(max{ =⋅

i
slT .

0 30 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Controller period

O
m

is
si

on
 ra

tio

Starvation level 1
Starvation level 10

Figure 8. Controller period bound at 30=controlT for two

services with period T=3 and different starvation levels

In terms of system load and guarantees for starvation bounds, no
optimal control period can be given. An alternative is to delegate the
need of control to the dispatcher. However, the dispatcher then has to
count the number of job omissions in order to call controller immedi-
ately. In contrast to our system design, the dispatcher then has to know
every detail of a service and additionally it has to implement almost all
of the controller logic. This stands in contrast to our design principles
from section IV.

V. CASE STUDY
Our evaluation setting is the AwareOffice [1], an office space with

multiple moveable and mobile objects such as chairs, tables, windows,
doors and office supplies like pens, paper, projectors, whiteboards and
flipcharts. Office workers interact with those objects regularly. We
attached our Particle Computer [3] sensor nodes to those objects in
order to derive actions and complex situations, e.g. meeting or coffee
break. Thereby, the recognition of situations is distributed among the
sensor nodes. The goal is to support office workers in planning meet-
ings, and control of environmental and office infrastructure compo-
nents. In the AwareOffice, the Particle sensor nodes have to perform a
set of sensing, communication and computation tasks. The sensor
nodes detect multiple events in the environment through a rich pha-
lanx of sensors and forward them. On the other hand, the nodes allo-
cate some of their resources on communication and computation for
collecting data from multiple sensing nodes and recognition of com-
plex situations. We implemented the tasks as the following services
with the properties listed below. Varying computation times are indi-
cated through their relative occurrence in parentheses right after the
computation times.

Service Computation Time iC (ms)
Period

iT (ms)

Voltage sampling 0.6 100

Audio sampling 3.4 10

Light sampling 1.4 100

Acceleration sampling 2.4 10

Force sampling 0.6 20

Temperature sampling 1.4 50

Volume computation 0.3 50

Shock detection (accel-
eration)

0.02 (99%) / 200 (1%) 20

Shock detection (force) 0.02 (99%) / 200 (1%) 50

Communication 0.5(50%) / 6 (45%) / 22.5
(5%)

13

Table 1. Service evaluation set for Particle sensor nodes
which focus on sensing

The set is not static, but rather contains a dynamic changes in its
properties. In particular, communication services and computation
services are subject to strong variations of their computation time. The
sensor services have short periods, which lead to a high system utiliza-
tion. As a consequence, we consider the sets as well-chosen represen-
tatives for the evaluation. Our evaluation method is to benchmark the
scheduling framework first without the extension of the dispatcher and
without the use of the starvation controller. We will test the FIFO, RM
and EDF scheduling strategies on the service set. In particular, our
metrics in these benchmarks are the jitter of each job and the number
of omissions. Latter indicates the potential level of starvation. Fur-
thermore, we are interested in the adaptation of the period throughout
the jobs. These result provide the baseline which our approach utiliz-
ing jitter correction and starvation controller will improve. At the end
we will benchmark the sensor energy savings which are achieved by
the scheduling.

VI. SCHEDULING IN UNPREDICTABLE ENVIRONMENTS
For deeper investigations on our approach, the service set from Table
1 was implemented in a scheduling simulator. The simulation covered
a time span of 1.1 seconds. We ensured that all possible computation
times occurred several times in that period. The service set was sched-
uled without the adaptation algorithms and afterwards with the adapta-
tion algorithm. We ensured that the behavior of the varying computa-
tion time was the same in the comparison. The jitter correction was
done immediately by the dispatcher. The starvation controller was
called once after the dispatching of 30 jobs. During one simulation run
it was called 13 times. The overall system utilization was always
between 91% and 93%. For all simulations we considered the average
jitter fraction and the average period over all jobs for a service. The
jitter fraction expresses the delay between two successive executions
of a job normalized to its period. It is computed as follows; i denotes
the service, now and last are denote the current and last dispatch time

i

ilastinowi

T

Ttt
i

JitterFrac
−−

=
,,

.

For the evaluation of the service execution, we average the jitter frac-
tion over all jobs of a single service. This metric is abbreviated as

i
Jitter . The comparison between two simulation runs, one run with-

out adaptation and the second one with adaptation delivers the differ-

ence in the jitter fraction, which is abbreviated as i
Jitter∆ . The advan-

tage of this metric is that it includes information about job omission. If

1>∆
i

Jitter , then the jitter exceeded the period and therefore the job

will be canceled by the dispatcher. As a result of the dynamic of the
service set, we are interested in the change of the period of each ser-
vice. After each simulation run we computed the average periodic

interval of service which is defined as ct simulationi
I /= , where c

denotes the number of jobs executed for the service i . Like for the
jitter fraction these intervals were compared for each service in the
two cases with and without the adaptation. The result is represented by

i
I∆ . We evaluated our scheduling framework using the three schedul-

ing strategies RMS; FIFO and EDF. The results are summarized in
Table 2. Note that negative values represent an improvement when
using the adaptation. Positive values indicate that the scheduling with-
out adaptation performed better.

 RMS FIFO EDF

Service i
I∆

(ms)
i

Jitter∆

(%)
i

I∆

(ms)
i

Jitter∆

(%)
i

I∆

(ms)
i

Jitter∆

(%)

Voltage
sampling

0.27 -4.4 12.21 2.8 21.32 23.7

Audio
sampling

-1.31 -26.0 0.49 -13.6 -0.69 -27.7

Light
sampling

0.27 -6.1 12.21 2.6 21.32 24.9

Accel-
eration
sampling

2.04 -4.7 0.51 -22.7 1.37 -5.6

Force
sampling

5.11 1.4 5.31 7.7 5.03 7.1

Tem-
perature
sampling

6.98 -4.1 6.81 8.1 12.19 4.4

Volume
compu-
tation

2.23 -7.0 0.97 -25.3 0.67 -37.9

Shock
detection
(accel-
eration)

-6.44 13.4 -4.65 21.1 -24.01 -117.2

Shock
detection
(force)

-48.80 -109.0 -45.82 -99.9 -55.47 -113.3

Com-
munica-
tion

-0.29 -3.6 -0.02 -0.3 -0.73 -2.8

Table 2. Results from our scheduling simulations; negative
numbers indicate an improvement achieved by the adapta-

tion compared to the non-adaptive scheduling

Interesting in the table above are the results indicating an im-
provement of more than 100%. A closer look on the data revealed that
these services suffered under permanent starvation in the case where
no adaptation was active. Reasons were a low priority in case of RMS,
a very long deadline in the case of EDF and a period violation in the
case of FIFO. The jitter fraction for the jobs of these services were
constantly high above 1. As a result the averaged value over all jobs of
those services exceeded the starvation border. In the simulation runs
those situations could be handled through the starvation controller.
The jitter fraction decreased dramatically below the 1-limit and as a
result we obtained a difference of more than 100% between the simu-
lation runs. Intuitively, this difference is explainable, if one is aware
that the situation for this service changed completely from permanent
starvation to actual execution.

A. Utilization analysis
In order to compare our results from Table 2 with our selection

from Table 2 we analyzed the correspondence between the utilization
of each single service and the performance of our scheduling frame-
work. The utilization is computed according to formula (2) but for
each service separately. The first result shows the correspondence
between the utilization and the jitter fraction.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-120

-100

-80

-60

-40

-20

0

20

40

Utilization

Ji
tte

r f
ra

ct
io

n
di

ffe
re

nc
e

[%
]

RMS
FIFO
EDF

Figure 9. Correspondence between the utilization and the
improvements regarding the jitter fraction

The figure above indicates that the scheduling framework works
better on services with higher utilization. These are services where the
computation time consumes a large fraction of the period. Services
with a very short period share the same property. As an example con-
sider the audio sampling service from Table 1. For services with a low
system utilization the improvement is not clear. The jitter fraction is
negative, this indicates an improvement, as well as positive – this is a
weakening. Remarkable are the shock detection services with the large
variation in their computation times. The achieved improvement is
very high, since the starvation controller resolved the permanent star-
vation. However, the utilization is rather low, due to the low probabil-
ity of their long computation time. For EDF the improvement through
adaptation is exceptional high because of the very long deadline in
99% of the runtime. As a second result of our investigation we present
the correspondence between utilization and the periodic interval dif-
ference in Figure 10.

The jitter correction will lead to a longer periods due to the fact
that the next arrival time is computed on basis of the last invocation.
For services with low utilization, this can be seen in Figure 10. How-
ever, the adaptation has a rather small effect on the period for services
with higher utilization. Due to their shorter periods, they are already

scheduled quite accurate. Nevertheless, the jitter correction can im-
prove this behavior. Remarkable again are the changes for the shock
detection services. Due to their long starvation phase the periodic
interval is huge. The improvement through the starvation controller is
then very significant.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-60

-50

-40

-30

-20

-10

0

10

20

30

Utilization

P
er

io
di

c
in

te
rv

al
 d

iff
er

en
ce

 [m
s]

RMS
FIFO
EDF

Figure 10. Correspondence between the utilization and the
improvements regarding the periodic interval

B. Automatic energy management
Our enhanced dispatcher is able to support the power up and down

of sensors. Thereby, the dispatcher queries the service for a new arri-
val time, but let it additionally know the current time. As an result, the
service sets the arrival time for its next job before the period, leaving
enough time for the start-up. The developer configures this start-up
time. We evaluated the energy management using the acceleration
sensor ADXL210 of our Particle Computer platform. The sensor needs
316 us for start-up and draws 1 mA. Figure 11 plots the energy con-
sumption over a time frame of 1.1 seconds. The results were gathered
using the service set from Table 1 under RMS and all adaptation
mechanisms were enabled.

0 2 4 6 8 10 12

x 10
5

0

0.2

0.4

0.6

0.8

1

ADXL Power Consumption (RMS)

Time [microseconds]

C
ur

re
nt

 [m
A

]

Figure 11. Power consumption ADXL acceleration sensor

Between 475ms and 708ms within the plot, the ADXL sensor-
sampling job was skipped due to the long runtime of a shock detection
job. The adaptive scheduling framework achieved for the overall time
span a duty cycle of 9.5%. No extra code had to be placed in the appli-
cation for switching the sensor on and off. Simultaneously, the adapta-
tion mechanisms in the framework improved the jitter fraction. Auto-
matic energy management becomes crucial for sensor node platforms
incorporating chemical sensors like gas sensors with long start-up
times.

Shock detection
services

Shock detection
services

VII. IMPLEMENTATION
The implementation of the scheduling framework was done on the

Particle Computer platform (Figure 12). It bases on a Microchip
PIC18F6720 microcontroller. This low power MCU has an instruction
cycle of 0,2 µs and includes only 4K RAM and 128K ROM.

Figure 12. The Particle sensor node

Due to the resource constraints the implementation especially
stresses on low scheduling overhead by the means of memory con-
sumption and computation time. A 16bit timer at instruction cycle
resolution can be used to trigger dispatching events regaining control
from an interruptible background application. Because of the non-
preemptive nature of services, no thread control mechanisms are
needed. The service execution state is kept on top of the runtime stack
of the background application. Services are stored within a bounded
array as a set of service control blocks. Each block contains generic
parameters such as its period and can be extended at compile time by
optional parameters, e.g. the starvation level. The service control block
represents an indefinitely long sequence of recurring jobs. Only the
arrival time for the earliest job in time that has neither been executed
nor skipped is stored with each service element. The service run state
is implicitly encoded by the membership in either the ready or waiting
queue. The default implementation supports 16 active services in the
system. Each service control block consumes 5 Byte of RAM. Addi-
tionally 1 byte is needed to point to the queue heads. Structure split-
ting is used to store static parameters such as the pointers to the ser-
vice itself. The pointers to the service procedure are kept in parallel
jump table in code memory consuming no additional RAM. Overall
this setup consumes only 81 byte of statically allocated RAM for the
scheduler. Priorities of the jobs are reflected by the sorting order of the
ready queue supporting both dynamic and fixed priority schemes. The
waiting queue is strictly sorted by arrival time of the next waiting job
of each service. The scheduler interacts with the dispatcher by insert-
ing formerly waiting jobs into the ready queue and is called on each
arrival of a new job. Arbitrary priority schemes can be implemented.
The FIFO scheduler as an example simply retains the order of the
waiting queue on the transition from waiting to ready. RMS uses the
period length as sort criterion. The overhead of a single scheduler call
is thus limited to the overhead of an insertion into a sorted list. Addi-
tionally another insertion is needed when moving a serving from ready
to waiting virtually creating the next instance of a job. At a maximum
that means nw+nr per job comparison operation; nw and n´r being the
number of jobs in each queue. By design nw+n´r equals the total num-
ber of services n currently running.

Concrete timing measurements based on the implementation on a
Particle 2/29 are depicted in Table 3. We use the algorithm from
Figure 13 to implement the dispatcher. Insertion into the waiting
queue is only done once per dispatch event. Insertion into the ready
queue is on the average also done once per dispatch event. But, it can
happen as often as n times if all services become ready at the same
time. The concrete timings are strongly influenced by the linked list

implementation. We are using forward link lists that are only accessi-
ble via the queue head. This explains the fairly high overhead the
FIFO scheduler. In this case a more optimized implementation using
just a single queue would have been better in terms of performance by
avoiding the need to iterate the whole ready queue.

State transition Instructions-cycles PIC18F6720

Ready to running 15 cycles 3µs

Running to waiting

create next instance
sort into waiting

138 cycles
32-752 cycles

25.6µs
6.5µs-150µs

Waiting to Ready

FIFO Scheduler
RMS Scheduler
EDF Scheduler

32-480 cycles
32-752 cycles

32-752 cycles

6.5µs-92µs
6.5µs-150µs
6.5µs-150µs

Table 3. Timing Measurement of Service Transitions

On the average the iteration overhead for RMS and EDF is even
less than FIFO since sorting terminates the iteration before the end is
reached. RMS, EDF and the waiting queue insertion do not differ in
the implementation in terms of sorting. Only the sorting key changes
from the period in RMS to the deadline in EDF. This explains the
equal measurements regarding those algorithms.

void dispatcher() interrupt timer1{
for(;;){
 time start=now();
 service current=pop(ready); //dispatch first
 dispatch(current); //run service uninterruptible
 interval C=time_diff(now(),start);

 service_calc_next(current,C,start); //create next
 insert_sorted(waiting,current);
 while(next=top(waiting) && get_arrival(next)=<now())
 schedule(ready,pop(waiting)); //call the scheduler
if (!top(ready)) {
service next=pop(waiting);
insert(ready,next); //pre-schedule
 sleep_time= time_diff(now(),get_arrival(next));
 if(sleep_time>DISPATCH_OVERHEAD){
 set_timer1(sleep_time);
return; //defer loop to interrupt
}}}}}

Figure 13. Dispatcher implementation

We implemented the adaptation strategies jitter correction, starva-
tion controller and the energy management. The overhead of the
strategies is given in the Table 4. The real effort spent for the strategy
heavily depends on its period. As a consequence, we state the basic
overhead in µs and quote the period as we have implemented it.

Adaptation strategy Overhead Strategy pe-
riod

Jitter correction 32.5 µs Every dis-
patcher invoca-

tion

Starvation controller 6.5µs-191µs Every 30
dispatcher

invocations

Energy management 27.8µs
(+ scheduling)

Every sensor
period

Table 4. Adaptation overhead

VIII. CONCLUSION AND FUTURE WORK
We presented an adaptive scheduling framework which is espe-

cially tailored to efficiently organize and processes on sensor network
platforms which are deployed in unpredictable environments. The
framework is implemented as a runtime environment for independent,
non-preemptive services, which can be efficiently scheduled and
executed even under high load and the varying computation times. We
proposed two adaptation mechanism: jitter correction through the
dispatcher and starvation control through a new service. Low jitter and
a starvation control were the first two primary goals defined at the
beginning of this paper. Our results show significant improvements
regarding low jitter, and starvation control. The third goal of automatic
energy management was also evaluated. The efficient implementation
of the adaptive scheduling framework proved feasibility for sensor
node platforms. For future work we will further investigate the sched-
uling framework and adaptation strategies. Crucial in our research will
be the selection of appropriate service sets and their properties. A
straight approach cannot be chosen here, since many effects we are
investigating are directly influenced by the services in their specific
combination. Our future work will also contain the investigation of
other application areas. In particular, we see high potential of our
approach in highly mobile scenarios.

ACKNOWLEDGMENT
The work presented in this paper was partially funded by the

European Community through the project CoBIs (Collaborative Busi-
ness Items) under contract no. 4270 and by the Ministry of Economic
Affairs of the Netherlands through the BSIK project Smart Surround-
ings under contract no. 03060.

REFERENCES
[1] M. Beigl, T. Zimmer, A. Krohn, C. Decker P. Robinson. “Creating Ad-

hoc Pervasive Computing Environments”, Video at Pervasive 2004 in
"Advances in Pervasive Computing", ISBN 3-85403-176-9, pp. 377-381,
Vienna, Austria.

[2] P.Bratley, M.Florian, P.Robillard. “Scheduling with earliest start and
due date constraints.” Naval Research Quarterly, 18(4), 1971

[3] C.Decker, A.Krohn, M.Beigl, T.Zimmer. “The Particle Computer
System.” IPSN SPOTS, Los Angeles, USA, 2005

[4] A.Dunkels, O.Schmidt, T.Voigt. “Using Protothreads for Sensor Node
Programming.” In Proceedings of the REALWSN 2005 Workshop on
Real-World Wireless Sensor Networks, Stockholm, Sweden, June 2005.

[5] C.Han, R.Rengaswamy, R.Shea, E.Kohler, M.Srivastava. “SOS: A
dynamic operating system for sensor networks.” Third International
Conference on Mobile Systems, Applications, And Services (Mobisys),
2005

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System
architecture directions for network sensors”, ASPLOS 2000, Cambridge,
November 2000.

[7] T.J. Hofmeijer, S.O. Dulman, P.G. Jansen, P.J.M. Havinga. "AmbientRT
- Real Time System Software Support for Data Centric Sensor
Networks", ISSNIP 2004, Australia, December 2004

[8] K.Jeffay, D.F.Stanat, C.U.Martel. “On non-preemptive scheduling of
periodic and sporadic tasks.” 12th IEEE Symposium on Real-Time
Systems (December 1991), pp. 129--139.

[9] C.L.Liu, J.W.Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment.” Journal of the ACM 20(1), 1973

[10] F.Stajano, R.Anderson, “The grenade timer: Fortifying the watchdog
timer against malicious mobile code,” MoMuC 2000, Waseda, Tokyo,
Japan, Oct. 2000.

[11] J.Stankovic, K. Ramamritham. “The design of the spring kernel.” In
Proceedings of the IEEE Real-Time Systems Symposium, December
1987

