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Abstract— Current sensor network platforms perform multiple 
processes including sensor sampling, communication, and various 
computational tasks. When deployed in unpredictable environ-
ments, complex schedules of those processes may arise. Typical 
sensor network qualities like periodic sampling of sensors, avoid-
ance of starvation of single processes and automatic energy man-
agement are crucial and required to be maintained in such situa-
tions. We propose a scheduling framework for senor nodes 
consisting of a scheduler, a dispatcher and a controller for an 
adaptation of process execution during the runtime. The key 
components of our framework are a controller and an enhanced 
dispatcher which both implement various strategies to maintain 
crucial qualities of process execution on sensor nodes deployed in 
unpredictable environments. Further, the framework is aware of 
the energy consumption of sensors. We show that our controlled 
scheduling framework performs significantly better than a non-
controlled single scheduler in unpredictable environments. Our 
proposed measures are efficient to implement. Results are under-
pinned by extensive simulations and a first implementation on 
our Particle Computer platform. 

Keywords: Scheduling, Sensor Network, Energy Management, 
Particle Computer 

I.  INTRODUCTION  
Sensor node platforms are proposed for various monitoring and 

tracking tasks which are hard to accomplished by other technologies. 
Thereby, sensor nodes are deployed in unknown and therefore in 
unpredictable environment. As a consequence, the nodes should im-
plement mechanism to adapt their tasks to the environment. Microcon-
trollers on current sensor nodes platforms have to handle a large diver-
sity of processes. Among them are sensor sampling tasks, 
communication tasks and computational task. Additionally, there are 
background processes for maintenance. Within each of those groups 
further dimensions are revealed. For instance, sensor sampling tasks 
may have different properties regarding sampling interval and sam-
pling time. Recently, lots of operating systems for sensor nodes have 
been proposed as an underlying runtime system handling various 
tasks. A prominent example is TinyOS[6], the operating system for the 
Berkeley Motes. In this paper we want to approach three goals, which 
we identified as crucial for process execution on sensor nodes in un-
predictable environments. Our first goal is to achieve a low jitter in 
periodic sensor sampling processes. Sampling in fixed intervals is 
reasonable as many algorithms rely on this property. But, with many 
competing sampling processes in an unpredictable environment high 
load and overload situations may occur. As a consequence, the run-
time system has to adapt the task properties to fulfill such requests. 

Our second goal is the avoidance of task starvation. The nodes are 
deployed in areas where no external administration or debugging is 

possible. Therefore, the system should take measures, if a task is 
constantly left out. In particular, such a situation may occur, if other 
tasks are permanently considered to be more important because of an 
event detection. Our third goal is the automatic energy management of 
sensors on the platforms. Sensors have start-up times, shutdown times 
or sample delays. This may lead to complex dependencies which need 
to be resolved by the runtime system.  

These goals can be approached by an appropriate scheduling strat-
egy. However, in unpredictable environment, the task properties are 
unpredictable, too. For instance, computation times of tasks are vary-
ing, overload situations may occur due to event detection and process-
ing or computational tasks may delay the entire system because their 
runtime depends strongly on their input data. This unpredictability of 
the environment makes it necessary to adapt the scheduler online 
while the system is running. Furthermore, the restricted resources of 
the sensor node platforms make it rather hard to implement a complex 
strategy. Therefore, we propose an adaptive scheduling framework 
utilizing compact priority-based schedulers which are further sup-
ported by an enhanced dispatcher and a controller.  
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Figure 1. The adaptive scheduling framework 

The key component of our framework is the controller and an en-
hanced dispatcher implementing a set of strategies to handle the dy-
namic effects of the system. Tasks are encapsulated in services repre-
senting stand-alone functional entities. The dispatcher monitors the 
performance of the execution of the services and triggers the controller 
for adaptation if necessary. Our contribution in this paper is the quanti-
tative performance evaluation of online scheduling adaptation strate-
gies which are suited for resource constrained sensor network plat-
forms applied in unpredictable environments. Our approach is based 
on permanent feedback from the current process execution. Remark-
able for this approach is that it results in a very good performance with 
a minimum of previously defined and uncertain knowledge. 

The remainder is structured as follows: In section II we will re-
view scheduling strategies on sensor nodes. As a result, we will derive 
important requirements for our scheduling framework. The framework 
works on functional entities called services, which will be introduced 
in section III. Section IV then presents the details of adaptive schedul-
ing framework and the adaptation strategies. For the evaluation of the 
framework we will describe a representative set of services in section 



V and the results of comparisons with non-adaptive strategies are 
discussed on section VI. Section VII shows an implementation of the 
adaptive framework on our Particle Computer platform. We conclude 
the paper in section VIII. 

II. SCHEDULING STRATEGIES ON SENSOR NODES 
In this section we will review important scheduling algorithms, 

which are currently implemented on sensor nodes. All algorithms 
utilize the same task model. A task i  is defined as a tuple 

}{ i,ri,di,Ti,CiPitask = , whereas iP  is the function which is exe-

cuted, iC  is the computation time, iT  is the period of the execution, 

id  is the deadline and ir  identifies the resources required by the task. 
The recurred execution of a task i  is said to be a set of jobs 

,...}1,0{ ijijiJ = . A job 0ij  is scheduled to start its execution at 

the time 0)0( iaija = , which is called the arrival time. An ordered 
set of jobs according to some policy is called a schedule. If a job gets 
interrupted during its execution, the schedule is called preemptive. If 
all jobs runs to completion before the next one is started, the schedule 
is called non-preemptive.  

A. First-In-First-Out (FIFO) 
A FIFO scheduler executes tasks in the order of their arrival. As a 

consequence, each job has a priority proportional to its arrival time 
and the resulting schedule is a totally ordered list of those priorities. A 
FIFO strategy runs non-preemptively. As a result, the implementation 
only requires an array of jobs and does not need any a-priori knowl-
edge about the jobs. These qualities constitute the FIFO strategy as a 
preferred approach for resource constrained devices. TinyOS 1.x [6], 
the operating system of the Berkeley Motes, implements a FIFO 
scheduler. However, the scheduler cannot assert time guarantees of 
periodic jobs nor execution guarantees. These are serious drawbacks 
of this approach. If the job queue is exceeded, then newly arrived jobs 
must be canceled. As a result, events may get lost and tasks run into 
starvation since constantly upcoming events may avoid the queuing of 
the starving task. 

B. Rate Monotonic Scheduling (RMS) 
RMS is a fix priority strategy where once a priority is assigned to 

a task depending on its period iP . Tasks with shorter periods are 
assigned higher priorities than tasks with longer periods. In [9] the 
authors showed that RMS is optimal, i.e. that no other fixed-priority 
algorithm can schedule a task set that cannot be scheduled by RMS. 
The authors also derived a least upper utilization bound for a set of n 
periodic tasks in a preemptive schedule. If the utilization  

∑ −≤=
i

i

i n
T
C

U )12( 2/1 , (1) 

then the RMS guarantees that all deadlines will hold. For a non-
preemptive schedule this guarantee can only be given, if the following 
condition holds:  

ii i TC min≤∑  

As a result, RMS executes the jobs repeatable in the same order 
and achieves even very low jitter during the periodic execution of the 
tasks. Fixed-priority strategies are attractive to be implemented on 
sensor nodes, since they need to compute the schedule only once 
before the runtime. They can even guarantee periodic behavior of 
tasks and the implementation just requires a single array where the 

jobs rotate through. The major drawback is the inflexibility of RMS. 
The strategy does not consider varying execution times and cannot 
adapt its runtime behavior. Further, an admission based on (1) under-
utilizes the system constantly and can result in starvation of tasks, 
which do not satisfy the criteria. 

C. Earliest Deadline First (EDF) 
In [9] Lui and Layland investigated EDF. The next job is selected 

according to its deadline during the runtime of the system. This behav-
ior can handle system dynamics where new jobs arrive unpredictably 
in the system. This property of EDF guarantees real-time behavior 
even in the case of unpredictable event occurrence on sensor nodes. 
The EDF strategy is preferred for real-time systems, because it utilizes 
the processor at best. Further, EDF is optimal in the sense, that if there 
is a schedule for which all deadlines will hold, then EDF will find it. A 
task set of n periodic tasks is guaranteed to be schedulable and there-
fore during execution all deadlines will hold, iff the utilization U is 
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However, (2) holds only for preemptive schedules. In the case of 
non-preemptive schedules, a complete search according to Bartley’s 
algorithm [2] has to be undertaken to find a feasible schedule. A varia-
tion is the Spring algorithm [11] which utilizes additional heuristics.  

AmbientRT, the operating system for the µNode platform [7], im-
plements an EDF variation called Earliest Deadline First with Dead-
line Inheritance (EDFI). This is a preemptive strategy using a priority 
ceiling mechanism applied on resource usage in order to solve con-
flicts when resources are shared between different tasks. In order to 
run correctly, EDFI requires exact computation times and resource 
allocation of each task beforehand. Instead of the exact computation 
time, a Worst-Case-Execution-Time (WCET) can be specified. WCET 
is an upper bound, which will never be exceeded. The properties 
specifications are left to the developer of an application on µNodes 
and therefore a potential source of errors when wrongly estimated. The 
EDF strategy is fragile to a domino effect, which may results in a 
continuously missed deadlines, once a single deadline was missed. In 
particular, computational tasks underlie a large variations as their 
computation times are dominated by the input data. Nevertheless, if 
these parameters are correctly chosen, then EDFI guarantees deadlock-
free execution and real-time behavior. But, even if the task set is static 
and the admission has verified the schedulability, i.e. all deadlines will 
hold, EDF may not guarantee fix intervals between two jobs of the 
same task. As a consequence, low jitter during periodic sampling 
cannot be guaranteed. 

D. Cooperative Scheduling  
In cooperative scheduling, a task yields its execution and the con-

trol is given to a dispatcher for selecting the next one. As a conse-
quence, the process order is implicitly encoded in the application 
program. Operating system like SOS[5] for Motes and the highly-
portable operating system Contiki [4], which is also available for 
sensor node devices, implement cooperative scheduling. In particular, 
latter system supports this strategy through a very lightweight imple-
mentation called protothreads. The overhead is comparable to the 
FIFO scheduling strategy because scheduling decisions are primarily 
specified by the application or the developer. There is basically addi-
tional effort through a specific scheduler. Cooperative scheduling 
burdens the effort on the developer. An implementation of periodic 
execution of tasks must be implicitly encoded in the application logic. 
For achieving fix periodic intervals the developer need to constantly 
monitor the execution behavior of the entire application. In case of a 
modification of the application, the measures to achieve a certain 
processing behavior also have to be modified. These might be distrib-
uted across all tasks of an application. If applications get more com-



plex the burden on the developer increases. As a result, it arises the 
risk, that decisions where to place yields within a task and which task 
to select next, may lead to task starvation. Since the task switches are 
distributed across an application, the possibilities of different execu-
tion orders increase dramatically. A developer has to carefully study 
the entire application in order to remain an intended behavior. 

E. Résumé 
From the previous analysis we derive now important properties of 

our scheduling framework for sensor node platforms. Preemptive real-
time schedulers guarantee deadlines for job execution and utilize the 
processor at best. However, additional effort is required to resolve 
conflicts due to resource sharing when a job accesses a resource, while 
a previously started job is preempted. Preemption is difficult to im-
plement safely on microcontroller systems with no protection between 
the tasks. Usually, a timer interrupt is used to preempt a running task. 
But the authors of [10] showed, it impossible to guarantee that a task 
mustn’t switch off this interrupt. The memory consumption of the 
switching between jobs when they are preempted is not negligible. A 
job has to store the current process control block consisting of actual 
processor registers and a stack pointer in order to return to its own 
block of local variables on the stack. AmbientRT reports an additional 
overhead of 10 bytes per task while 72 tasks are allowed at maximum. 
Although this is a low overhead per task, it scales up with the number 
of tasks and allocates more memory. Since the memory layout is often 
organized statically and fixed during compile time of an application, 
the memory is permanently reserved for the scheduler. Schedulers 
supporting real-time guarantees require an accurate specification of 
task properties, especially of the computation time. These are hard to 
find, especially, when they depend on the input data of a task. WCET 
approximations on the other side result in underutilization of the sys-
tem. 

FIFO strategies and fixed-priority strategies such as RMS are very 
inflexible. Although attractive for resource constrained sensor nodes 
due to their low effort, periodic processes with low jitter and avoid-
ance of task starvation are hard to support reliably. Automatic manag-
ing of the energy consumption of sensors, i.e. switching them on and 
off with respect to their specific start-up times is not considered at all.  

Due to the restricted resources and the additional overhead re-
quired for preemptive tasks, our framework will implement non-
preemptive tasks. As a result, resource conflicts cannot occur and this 
avoids any measures for synchronization. Unpredictable event proc-
essing may disturb real-time properties. Our framework omits real-
time guarantees, but rather prefers low jitter during periodic execu-
tions of tasks. Periods of tasks are adaptable in order to achieve this 
requirement. Cooperative scheduling is certainly best suited for spe-
cific parts of an application on sensor nodes, but it has no view on the 
overall execution performance. Furthermore, it is complex and bur-
dens a developer due to the tight coupling of the application and the 
scheduling decisions applied on the tasks. Finally, our framework 
allows flexible annotations. For instance, sensor tasks are annotated by 
their start-up times, in order to make the system aware of the sensors’ 
energy management. 

III. SERVICES 
As a consequence of our analysis in section II, we introduce the 

concept of services, which reflects the results from in section II.E. 
Services represent a uniform abstraction of all recurring processes on a 
sensor node. A schematic view on a service is depicted in Figure 2. 
Central in this abstraction is the service function, which implements 
the functionality, e.g. sensor sampling. Services run non-preemptively 
and are independent from each other, i.e. there is no service, which 
calls another one. The start of a service execution is always driven by 
the underlying runtime system. A service execution is always periodic, 
non-preemptive and an execution cycle finishes with a result stored in 
a result buffer. The result set is allowed to be empty. As an abstraction 

of recurring processes, a service provides rich capabilities to be con-
figured. Among them are regular task properties like period, deadline 
and computation time, but also additional parameters like starvation 
level, and start-up time for sensor sampling services. The runtime 
system utilizes these parameters for its online decisions. 
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Figure 2. A schematic view on a service – an encapsulated 
independent functional entity for sensor nodes 

During the periodic execution, a service transits through several 
states which are depicted in detailed in Figure 3. During the boot-up 
of the system, all services are initialized and to the sleeping state. 
Since all services arrive at the same time in the runtime system, they 
are now turned on one after the other, i.e. according to their start-up 
parameter, their new arrival time of each service is computed and the 
service is placed in the waiting state. If the arrival time is reached for a 
waiting service it changes its state to ready. All ready services are then 
executed by the dispatcher and they automatically transit to the wait-
ing state. A separate execution state is not necessary because services 
run non-preemptively. If a period is greater than the start-up time of a 
service, the service may want to go to the sleeping state in order to 
save energy. This is a crucial feature for sensor sampling services 
which can power-down energy-consuming sensors until the next 
usage. 
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Figure 3. State transition diagram of a service 

The service abstraction does not prohibit event processing. Events 
occur sporadically. In [8] the authors suggest a method to model spo-
radic processes with periodic processes. Thereby, the minimum time 
difference between two sporadic events can be considered as the 
period of a periodic process. As a consequence, the introduction of 
services can handle sporadic event processing.  

Formally, services are similar to the notion of tasks as presented in 

section II. We describe the service iS  as a tuple }{ i,Ti,CiPiS = , 

where iP  is the service function which is executed, iC  is the compu-

tation time, and iT  is the period of the execution. The resource de-



scription can be omitted because non-preemptive services do not 
interfere with each other on resources when accessing them. However, 
conflicts occurring as a result of sharing resources between different 
service invocations, are determined by the application logic and must 
be handled by utilizing internal states of resources. In the service 

model, the computation time iC  is given (i.e. specified by the devel-
oper), but for a concrete execution instance it is unknown. In particu-

lar, iC  of an instance is highly dynamically and may strongly vary 
according to the data which are processed. This behavior is the reason 
for omitting the deadline. Services are brought to execution as jobs at 
a given arrival time. The arrival time of the n-th job representing the n-

th invocation of service iS  is defined as iTnnia )1(, −= .  

IV. SCHEDULING FRAMEWORK AND RUNTIME SYSTEM 
The scheduling framework for sensor node platforms is responsi-

ble for executing the services. It serves as an underlying runtime sys-
tem for all services on a sensor node platform. The design goal was to 
plug-in multiple schedulers and adaptation strategies. As a conse-
quence, the framework is divided in the three components: dispatcher, 
scheduler and controller. The framework operates on the notion of 
jobs, which are the runtime representation of services. It utilizes the 
jobs’ arrival time and a reference from a job to its originating service. 
Jobs are organized in two queues, one for all ready jobs, which need to 
be executed now, and one queue for waiting jobs, which have their 
arrival time in the future. When designing the framework we followed 
a strict separation between the components’ actions on the jobs in 
order to form a clear concept and to avoid side-effects between the 
components. An overview of the framework is depicted in Figure 4.  
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Figure 4. Adaptive scheduling framework 

The core component is the dispatcher. It executes the service func-
tion associated with a job. The dispatcher is the only component which 
is allowed to remove jobs from the ready queue and to insert jobs in 
the waiting queue. If jobs achieve their arrival time, the scheduler 
moves them from the waiting queue to the ready queue in order to be 
executed by the dispatcher. The waiting queue is sorted according to 
the next arrival time of a job, while the ready queue is sorted accord-
ing to priorities computed by the scheduler. The scheduler is the only 
component which inserts jobs in the ready queue and changes their 
ordering therein. The planning of the ordering is based on the service 
parameters, especially on the computation time and period. The prior-
ity based interface via the ready queue allows us to plug-in priority 
based schedulers, such as FIFO, RMS and EDF. Since schedulers 
describe a ordered execution plan, this interface is naturally generic to 
handle other schedulers as well. On top of the scheduler we introduce 
a controller. This component is responsible for schedule adaptation. In 
order to avoid faulty interference with the scheduler, the controller is 
only allowed to modify job properties. If it changes the priority of a 

job, it must notify the scheduler. In the next subsections we will ex-
plain the design of the framework components in more detail. 

A. Dispatcher 
The dispatcher is executed for each job. It has access to two 

queues – ready and waiting – which match the states of a service. 
Services in the sleeping and waiting state are both contained in the 
waiting queue. Jobs in the ready queue are ordered by their priority 
with the highest priority on the first position. The dispatcher retrieves 
the first job from the ready queue, executes it and inserts it in the 
waiting queue. Latter is organized ascending according to the next 
arrival times of the jobs. The figure below illustrates the separate 
actions of the dispatcher. 
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Figure 5. A slim dispatcher 

The dispatcher has only the knowledge about the just occurred 
execution of a job. For computation of the job’s next arrival time the 
dispatcher calls an appropriate function from the service because the 
dispatcher does not know the service’s period. The result from this 
function is used to insert the job at the right position within the waiting 
queue. Since the ready queue is already sorted it takes a constant effort 
to retrieve the highest priority job. The insertion in the waiting queue 
uses a insertion sort algorithm with a complexity of O(n). Based on 
just two queues and a very low knowledge about each job we achieved 
a slim design of the dispatcher, but still maintaining flexibility for 
adaptation. 

B. Dispatcher adaptation strategies 
In the following subsections we present two adaptation strategies – 

automatic sensor energy management and jitter correction – which are 
directly implemented in the dispatcher. 

1) Energy management 
Our slim dispatcher design is enhanced for automatic energy 

management. The goal is to switch off sensor after the sampling job, 
but switch them on before the next sampling. This has to take the start-
up time of the specific sensors into account. Here, the service plays an 
active role. The dispatcher is state neutral, i.e. the state is held within 
the service and modified by the service itself when the job is accessed 
by the dispatcher. As a result the service itself can schedule its on/off 
behavior by returning the appropriate arrival time depending on its 
state when asked by the dispatcher. 

In Figure 6 the sensor sampling is just over when the dispatcher 
requests a new arrival time for the job. The associate service returns 
instead of its period T , the start-up difference wT − ; w  hereby 
denotes the configured start-up time specific for the sensor sampling 
service. After the job is executed at wT −  the service will then return 
w  as the next arrival time. It is assumed that the job’s computation 
time for switching the sensor on at wT −  is negligible. 
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2) Jitter correction 
The dispatcher is further enhanced to support the goal of low jitter 

in successive sampling processes. The jitter J  is the delay between 
the arrival time and the time the job starts its execution. We call this 
start time dispatch time. Jitter occurs as a result of a job’s unknown 
computation time. The scheduler has planned the execution order, but 
a job exceeds the planned computation time. As a consequence, it 
causes a jitter for the next job. The jitter correction works as follows: 
Instead of setting the next arrival time of a job on the period interval, 
the period is added to the dispatch time of the job. The new arrival 

time is then recursively defined as iTiJniania ++−= 1,, . The 

advantage of this definition is that jobs with common arrival times are 
differently shifted. As a result of this adaptation, the next dispatch 
time is set closer to the real behavior of the service. Jitter affects the 
period of jobs. Addressing our goal of low jitter, the jitter correction 
guarantees that the period deviation is within J± . We show this in 
the following theorem.  

Theorem 1: The jitter correction applied on the arrival times of 

jobs – iTiJniania ++−= 1,,  – guarantees a worst-case period 

deviation within }max{ iJ± . 

Proof: Firstly, we compute the period of a job using the difference of 
the dispatch times between the th)2( −n  execution instance and the 

th)1( −n  instance. We further assume, that the th)1( −n  instance 

was delayed by a jitter iJ . Clearly, the difference is 

iJiTniaiJnia +=−−+− 2,1, . In the second step, we compute the 

difference between the thn execution instance and the th)1( −n  

instance. The th)1( −n  instance started at iJniania +−=− 1,1, , 

because it was delayed, and the thn  instance starts at 

iTiJniania ++−= 1,, , because of the jitter correction. However, 

nia ,  may experience an additional jitter 2,iJ . The difference is 

2,1,, iJiTniania +=−− . The period deviation T∆ is now the 

difference of two consecutive periods of jobs: 

}max{2, iJiJiJT ≤−=∆ . The sequence of the jitter occurrence 

can be also the other way around, therefore the deviation is 

}max{ iJT ±=∆ . 

In the following example we illustrate the effect of jitter correc-
tion. We simulated jobs with period 3=T . The execution of jobs is 
randomly interfered with jitter between 0 and 1. One set of jobs was 
simulated without jitter correction and the other set has utilized the 
jitter correction as defined above. The figure Figure 7 plots the histo-
gram of the resulting period deviations. As proofed above, the devia-

tion stays between 1±  for the set utilizing the correction. Further-
more, the deviation is primarily 0. For the set where the jitter is not 
corrected, the deviation stays between 2± . Although the deviation 
stays primarily around 0, the deviation is broader distributed than in 
the case where correction is applied. Addressing our goal of low jitter, 
the jitter correction outperforms the non-corrected case by factor 
1.4091 in the case for 0-deviation. 
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Figure 7. Period deviation for a maximum jitter = 1 and a 
period T=3 

Although the jitter will be reduced, the period increases. The shift 
always moves the arrival time forward in time, which may result in 
less execution per time frame.  

The dispatcher design is also able to handle the domino effect by 
job omission. If computation times of jobs vary strongly, they may 
cause an execution delay of a job which causes further jobs to delay 
their execution. This may add-up to a delay chain and violate con-
stantly the periodicity of jobs. Before the execution of a job, the dis-
patcher may ask the associate service whether the job i  already ex-

ceeded its next arrival time. If at the time t with 1, +> niat  the n-th 

execution of job i  has not occurred, then the dispatcher can omit the 
execution. As a result, the delay chain is broken and the domino effect 
is stopped. 

C. Scheduler 
Our scheduling framework allows a clear way to plug-in different 

schedulers. For all jobs in the waiting queue which have achieved their 
arrival time, the scheduler computes an order of execution. This order 
is expressed as a priority used to order those jobs in the ready queue. 
Due to the cooperation between the scheduler and the dispatcher, we 
achieved that no service is represented by multiple jobs. From this 
perspective the framework does not impose additional overhead. As a 
result, the queues can be safely bounded to the maximum number of 
services the system designer wants to support. For our system tests we 
implemented the previously discussed strategies EDF, RMS and FIFO. 
For the reasons analyzed in section II.E we intentionally left out a 
cooperative scheduling strategy. None of the schedulers in the frame-
work should perform an admission control. Our second central goal 
was to avoid process starvation and rather handle such situations 
online. Therefore, the schedulers should always accept all jobs.  

D. Controller 
A serious problem occurs, if jobs face starvation. This might be a 

result of a fix priority scheduling strategy or constant job omissions in 



order to stop a domino effect. Such problems are handled by control-
lers. Controllers are services as well, but the dispatcher directly calls 
them. This is required to guarantee their execution. By design they are 
required to only modify job properties. For handling the starvation 
problem we now introduce the starvation controller. This service 
observes the job queues and the past runtime behavior of the other 
services in order to bound the maximum number of job omission. 
Each service is annotated with a starvation level specifying this bound. 
The starvation level is set by the developer in advance and reflects his 
requirements on a minimum response time for a service. If the control-
ler is executed it compares this value with the number of omissions, 
which occurred in series for this job. Such analyses are most complex 
compared to the effort of the scheduler and the dispatcher because for 

all jobs ij  in both queues the controller has to compute the number of 
omissions given by 


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where t denotes the current time, lastit ,  is the last time, that the job 

was successfully executed and iT  is the period of ij . The starvation 
controller then follows a straight rule:  
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FIFO

prioprio
i

omission
i

sli ij =≤−∀ )( then 0)( if: , 

where )(
i

sl  denotes the configured starvation level, i.e. the number 

of allowed omissions, )( ijprio is the priority of the job and 

FIFO
prio  is a reserved priority which causes the scheduler to place 

this job as the first one before all others in the ready queue. If there is 
more than one job, then they will be placed in FIFO order. Since FIFO 
is starvation free as long as the computation times are finite, the previ-
ously starved job will be guaranteed executed by the dispatcher. After 
execution the properties priority and starvation level are reset. The 
controller requires support from the dispatcher. Due to the complex 
computations it will run seldom. As a consequence, the dispatcher has 
to record the last successful execution for each job. Usually, the run-
time system will utilize only one starvation controller for all jobs. The 
system performance can be improved, if the period of this controller 
can be determined in advanced. However, an appropriate controller 
period depends on the starvation level and the period of the service. 
For instance, the controller can run more seldom, if the starvation level 
is high, i.e. the developer allows a high number of omissions. The 
optimal controller period in order to hold all starvation bounds is the 
greatest common divisor (gcd) of all service periods multiplied by the 
smallest starvation level. However, as soon as one period is prime, the 
gcd is 1, which runs the controller as fast as the most frequent service. 
Checking all jobs in both queues as fast as a periodic sensor sampling 
service imposes too much load on the system. As a consequence, we 
focus here on the starvation controller for services with the same 
period. Although equal in their period, different services may have 
different starvation levels. For reasons of comparison, we define the 
omission ratio as the number of job omissions of a job i  per time step. 
We now determine the least upper borderline of the controller period, 
where the omission ratio for at least one of the jobs differs from all the 
others. If the controller period exceeds this borderline, the omission 
ratio will be the same for all jobs. From the controller rule, we can 
derive the period guaranteeing the starvation bound. From 

0)( ≤−
i

omission
i

sl , we derive 

lasticontrol ttiT
i

slT ,)( −≤⋅= . For different starvation levels 

the upper bound is now found by )}(max{
i

sliT ⋅ . Beyond this 

period, the controller always evaluates its control rule to true 
and notifies the scheduler to schedule all jobs in FIFO order. 
The Figure 8 illustrates this behavior for two services with 
period 3=T  and starvation level 1)

1
( =sl  and 10)

2
( =sl . 

The upper bound for the controller period is 
30)}(max{ =⋅

i
slT . 
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Figure 8. Controller period bound at 30=controlT for two 

services with period T=3 and different starvation levels  

In terms of system load and guarantees for starvation bounds, no 
optimal control period can be given. An alternative is to delegate the 
need of control to the dispatcher. However, the dispatcher then has to 
count the number of job omissions in order to call controller immedi-
ately. In contrast to our system design, the dispatcher then has to know 
every detail of a service and additionally it has to implement almost all 
of the controller logic. This stands in contrast to our design principles 
from section IV. 

V. CASE STUDY 
Our evaluation setting is the AwareOffice [1], an office space with 

multiple moveable and mobile objects such as chairs, tables, windows, 
doors and office supplies like pens, paper, projectors, whiteboards and 
flipcharts. Office workers interact with those objects regularly. We 
attached our Particle Computer [3] sensor nodes to those objects in 
order to derive actions and complex situations, e.g. meeting or coffee 
break. Thereby, the recognition of situations is distributed among the 
sensor nodes. The goal is to support office workers in planning meet-
ings, and control of environmental and office infrastructure compo-
nents. In the AwareOffice, the Particle sensor nodes have to perform a 
set of sensing, communication and computation tasks. The sensor 
nodes detect multiple events in the environment through a rich pha-
lanx of sensors and forward them. On the other hand, the nodes allo-
cate some of their resources on communication and computation for 
collecting data from multiple sensing nodes and recognition of com-
plex situations. We implemented the tasks as the following services 
with the properties listed below. Varying computation times are indi-
cated through their relative occurrence in parentheses right after the 
computation times.  

 

 



Service Computation Time iC  (ms) 
Period 

iT (ms) 

Voltage sampling 0.6 100 

Audio sampling 3.4 10 

Light sampling 1.4 100 

Acceleration sampling 2.4 10 

Force sampling 0.6 20 

Temperature sampling 1.4 50 

Volume computation 0.3 50 

Shock detection (accel-
eration) 

0.02 (99%) / 200 (1%) 20 

Shock detection (force) 0.02 (99%) / 200 (1%) 50 

Communication 0.5(50%) / 6 (45%) / 22.5 
(5%) 

13 

Table 1. Service evaluation set for Particle sensor nodes 
which focus on sensing 

The set is not static, but rather contains a dynamic changes in its 
properties. In particular, communication services and computation 
services are subject to strong variations of their computation time. The 
sensor services have short periods, which lead to a high system utiliza-
tion. As a consequence, we consider the sets as well-chosen represen-
tatives for the evaluation. Our evaluation method is to benchmark the 
scheduling framework first without the extension of the dispatcher and 
without the use of the starvation controller. We will test the FIFO, RM 
and EDF scheduling strategies on the service set. In particular, our 
metrics in these benchmarks are the jitter of each job and the number 
of omissions. Latter indicates the potential level of starvation. Fur-
thermore, we are interested in the adaptation of the period throughout 
the jobs. These result provide the baseline which our approach utiliz-
ing jitter correction and starvation controller will improve. At the end 
we will benchmark the sensor energy savings which are achieved by 
the scheduling. 

VI. SCHEDULING IN UNPREDICTABLE ENVIRONMENTS 
For deeper investigations on our approach, the service set from Table 
1 was implemented in a scheduling simulator. The simulation covered 
a time span of 1.1 seconds. We ensured that all possible computation 
times occurred several times in that period. The service set was sched-
uled without the adaptation algorithms and afterwards with the adapta-
tion algorithm. We ensured that the behavior of the varying computa-
tion time was the same in the comparison. The jitter correction was 
done immediately by the dispatcher. The starvation controller was 
called once after the dispatching of 30 jobs. During one simulation run 
it was called 13 times. The overall system utilization was always 
between 91% and 93%. For all simulations we considered the average 
jitter fraction and the average period over all jobs for a service. The 
jitter fraction expresses the delay between two successive executions 
of a job normalized to its period. It is computed as follows; i  denotes 
the service, now and last are denote the current and last dispatch time 

i

ilastinowi

T

Ttt
i

JitterFrac
−−

=
,,

. 

For the evaluation of the service execution, we average the jitter frac-
tion over all jobs of a single service. This metric is abbreviated as 

i
Jitter . The comparison between two simulation runs, one run with-

out adaptation and the second one with adaptation delivers the differ-

ence in the jitter fraction, which is abbreviated as i
Jitter∆ . The advan-

tage of this metric is that it includes information about job omission. If 

1>∆
i

Jitter , then the jitter exceeded the period and therefore the job 

will be canceled by the dispatcher. As a result of the dynamic of the 
service set, we are interested in the change of the period of each ser-
vice. After each simulation run we computed the average periodic 

interval of service which is defined as ct simulationi
I /= , where c 

denotes the number of jobs executed for the service i . Like for the 
jitter fraction these intervals were compared for each service in the 
two cases with and without the adaptation. The result is represented by 

i
I∆ . We evaluated our scheduling framework using the three schedul-

ing strategies RMS; FIFO and EDF. The results are summarized in 
Table 2. Note that negative values represent an improvement when 
using the adaptation. Positive values indicate that the scheduling with-
out adaptation performed better. 

 RMS FIFO EDF 

Service i
I∆  

(ms) 
i

Jitter∆

(%) 
i

I∆  

(ms) 
i

Jitter∆

(%) 
i

I∆  

(ms) 
i

Jitter∆

(%) 

Voltage 
sampling 

0.27 -4.4 12.21 2.8 21.32 23.7 

Audio 
sampling 

-1.31 -26.0 0.49 -13.6 -0.69 -27.7 

Light 
sampling 

0.27 -6.1 12.21 2.6 21.32 24.9 

Accel-
eration 
sampling 

2.04 -4.7 0.51 -22.7 1.37 -5.6 

Force 
sampling 

5.11 1.4 5.31 7.7 5.03 7.1 

Tem-
perature 
sampling 

6.98 -4.1 6.81 8.1 12.19 4.4 

Volume 
compu-
tation 

2.23 -7.0 0.97 -25.3 0.67 -37.9 

Shock 
detection 
(accel-
eration) 

-6.44 13.4 -4.65 21.1 -24.01 -117.2 

Shock 
detection 
(force) 

-48.80 -109.0 -45.82 -99.9 -55.47 -113.3 

Com-
munica-
tion 

-0.29 -3.6 -0.02 -0.3 -0.73 -2.8 

Table 2. Results from our scheduling simulations; negative 
numbers indicate an improvement achieved by the adapta-

tion compared to the non-adaptive scheduling 



Interesting in the table above are the results indicating an im-
provement of more than 100%. A closer look on the data revealed that 
these services suffered under permanent starvation in the case where 
no adaptation was active. Reasons were a low priority in case of RMS, 
a very long deadline in the case of EDF and a period violation in the 
case of FIFO. The jitter fraction for the jobs of these services were 
constantly high above 1. As a result the averaged value over all jobs of 
those services exceeded the starvation border. In the simulation runs 
those situations could be handled through the starvation controller. 
The jitter fraction decreased dramatically below the 1-limit and as a 
result we obtained a difference of more than 100% between the simu-
lation runs. Intuitively, this difference is explainable, if one is aware 
that the situation for this service changed completely from permanent 
starvation to actual execution. 

A. Utilization analysis 
In order to compare our results from Table 2 with our selection 

from Table 2 we analyzed the correspondence between the utilization 
of each single service and the performance of our scheduling frame-
work. The utilization is computed according to formula (2) but for 
each service separately. The first result shows the correspondence 
between the utilization and the jitter fraction. 
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Figure 9. Correspondence between the utilization and the 
improvements regarding the jitter fraction  

The figure above indicates that the scheduling framework works 
better on services with higher utilization. These are services where the 
computation time consumes a large fraction of the period. Services 
with a very short period share the same property. As an example con-
sider the audio sampling service from Table 1. For services with a low 
system utilization the improvement is not clear. The jitter fraction is 
negative, this indicates an improvement, as well as positive – this is a 
weakening. Remarkable are the shock detection services with the large 
variation in their computation times. The achieved improvement is 
very high, since the starvation controller resolved the permanent star-
vation. However, the utilization is rather low, due to the low probabil-
ity of their long computation time. For EDF the improvement through 
adaptation is exceptional high because of the very long deadline in 
99% of the runtime. As a second result of our investigation we present 
the correspondence between utilization and the periodic interval dif-
ference in Figure 10. 

The jitter correction will lead to a longer periods due to the fact 
that the next arrival time is computed on basis of the last invocation. 
For services with low utilization, this can be seen in Figure 10. How-
ever, the adaptation has a rather small effect on the period for services 
with higher utilization. Due to their shorter periods, they are already 

scheduled quite accurate. Nevertheless, the jitter correction can im-
prove this behavior. Remarkable again are the changes for the shock 
detection services. Due to their long starvation phase the periodic 
interval is huge. The improvement through the starvation controller is 
then very significant. 
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Figure 10. Correspondence between the utilization and the 
improvements regarding the periodic interval  

B. Automatic energy management 
Our enhanced dispatcher is able to support the power up and down 

of sensors. Thereby, the dispatcher queries the service for a new arri-
val time, but let it additionally know the current time. As an result, the 
service sets the arrival time for its next job before the period, leaving 
enough time for the start-up. The developer configures this start-up 
time. We evaluated the energy management using the acceleration 
sensor ADXL210 of our Particle Computer platform. The sensor needs  
316 us for start-up and draws 1 mA. Figure 11 plots the energy con-
sumption over a time frame of 1.1 seconds. The results were gathered 
using the service set from Table 1 under RMS and all adaptation 
mechanisms were enabled.  
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Figure 11. Power consumption ADXL acceleration sensor  

Between 475ms and 708ms within the plot, the ADXL sensor-
sampling job was skipped due to the long runtime of a shock detection 
job. The adaptive scheduling framework achieved for the overall time 
span a duty cycle of 9.5%. No extra code had to be placed in the appli-
cation for switching the sensor on and off. Simultaneously, the adapta-
tion mechanisms in the framework improved the jitter fraction. Auto-
matic energy management becomes crucial for sensor node platforms 
incorporating chemical sensors like gas sensors with long start-up 
times. 

Shock detection 
services 

Shock detection 
services 



VII. IMPLEMENTATION 
The implementation of the scheduling framework was done on the 

Particle Computer platform (Figure 12). It bases on a Microchip 
PIC18F6720 microcontroller. This low power MCU has an instruction 
cycle of 0,2 µs and includes only 4K RAM and 128K ROM.  

 

Figure 12. The Particle sensor node 

Due to the resource constraints the implementation especially 
stresses on low scheduling overhead by the means of memory con-
sumption and computation time. A 16bit timer at instruction cycle 
resolution can be used to trigger dispatching events regaining control 
from an interruptible background application. Because of the non-
preemptive nature of services, no thread control mechanisms are 
needed. The service execution state is kept on top of the runtime stack 
of the background application. Services are stored within a bounded 
array as a set of service control blocks. Each block contains generic 
parameters such as its period and can be extended at compile time by 
optional parameters, e.g. the starvation level. The service control block 
represents an indefinitely long sequence of recurring jobs. Only the 
arrival time for the earliest job in time that has neither been executed 
nor skipped is stored with each service element. The service run state 
is implicitly encoded by the membership in either the ready or waiting 
queue. The default implementation supports 16 active services in the 
system. Each service control block consumes 5 Byte of RAM. Addi-
tionally 1 byte is needed to point to the queue heads. Structure split-
ting is used to store static parameters such as the pointers to the ser-
vice itself. The pointers to the service procedure are kept in parallel 
jump table in code memory consuming no additional RAM. Overall 
this setup consumes only 81 byte of statically allocated RAM for the 
scheduler. Priorities of the jobs are reflected by the sorting order of the 
ready queue supporting both dynamic and fixed priority schemes. The 
waiting queue is strictly sorted by arrival time of the next waiting job 
of each service. The scheduler interacts with the dispatcher by insert-
ing formerly waiting jobs into the ready queue and is called on each 
arrival of a new job. Arbitrary priority schemes can be implemented. 
The FIFO scheduler as an example simply retains the order of the 
waiting queue on the transition from waiting to ready. RMS uses the 
period length as sort criterion. The overhead of a single scheduler call 
is thus limited to the overhead of an insertion into a sorted list. Addi-
tionally another insertion is needed when moving a serving from ready 
to waiting virtually creating the next instance of a job. At a maximum 
that means nw+nr per job comparison operation; nw and n´r being the 
number of jobs in each queue. By design nw+n´r equals the total num-
ber of services n currently running. 

Concrete timing measurements based on the implementation on a 
Particle 2/29 are depicted in Table 3. We use the algorithm from 
Figure 13 to implement the dispatcher. Insertion into the waiting 
queue is only done once per dispatch event. Insertion into the ready 
queue is on the average also done once per dispatch event. But, it can 
happen as often as n times if all services become ready at the same 
time. The concrete timings are strongly influenced by the linked list 

implementation. We are using forward link lists that are only accessi-
ble via the queue head. This explains the fairly high overhead the 
FIFO scheduler. In this case a more optimized implementation using 
just a single queue would have been better in terms of performance by 
avoiding the need to iterate the whole ready queue. 

State transition Instructions-cycles  PIC18F6720 

Ready to running 15 cycles 3µs 

Running to waiting 

create next instance 
sort into waiting 

 

138 cycles 
32-752 cycles 

 

25.6µs 
6.5µs-150µs 

Waiting to Ready 

FIFO Scheduler 
RMS Scheduler 
EDF Scheduler 

  

32-480  cycles 
32-752 cycles 

32-752  cycles 

 

6.5µs-92µs 
6.5µs-150µs 
6.5µs-150µs 

Table 3. Timing Measurement of Service Transitions 

On the average the iteration overhead for RMS and EDF is even 
less than FIFO since sorting terminates the iteration before the end is 
reached. RMS, EDF and the waiting queue insertion do not differ in 
the implementation in terms of sorting. Only the sorting key changes 
from the period in RMS to the deadline in EDF. This explains the 
equal measurements regarding those algorithms. 

void dispatcher() interrupt timer1{
for(;;){
    time start=now();
    service current=pop(ready); //dispatch first
    dispatch(current); //run service uninterruptible
    interval C=time_diff(now(),start);
    
    service_calc_next(current,C,start); //create next
    insert_sorted(waiting,current);
    while(next=top(waiting) && get_arrival(next)=<now())
      schedule(ready,pop(waiting));  //call the scheduler
if (!top(ready)) {
service next=pop(waiting);
insert(ready,next);      //pre-schedule
      sleep_time= time_diff(now(),get_arrival(next));
      if(sleep_time>DISPATCH_OVERHEAD){
        set_timer1(sleep_time);
return; //defer loop to interrupt
}}}}}  

Figure 13. Dispatcher implementation 

We implemented the adaptation strategies jitter correction, starva-
tion controller and the energy management. The overhead of the 
strategies is given in the Table 4. The real effort spent for the strategy 
heavily depends on its period. As a consequence, we state the basic 
overhead in µs and quote the period as we have implemented it. 

Adaptation strategy Overhead Strategy pe-
riod 

Jitter correction 32.5 µs Every dis-
patcher invoca-

tion 

Starvation controller 6.5µs-191µs Every 30 
dispatcher 

invocations 

Energy management 27.8µs  
(+ scheduling) 

Every sensor 
period 

Table 4. Adaptation overhead 



VIII. CONCLUSION AND FUTURE WORK 
We presented an adaptive scheduling framework which is espe-

cially tailored to efficiently organize and processes on sensor network 
platforms which are deployed in unpredictable environments. The 
framework is implemented as a runtime environment for independent, 
non-preemptive services, which can be efficiently scheduled and 
executed even under high load and the varying computation times. We 
proposed two adaptation mechanism: jitter correction through the 
dispatcher and starvation control through a new service. Low jitter and 
a starvation control were the first two primary goals defined at the 
beginning of this paper. Our results show significant improvements 
regarding low jitter, and starvation control. The third goal of automatic 
energy management was also evaluated. The efficient implementation 
of the adaptive scheduling framework proved feasibility for sensor 
node platforms. For future work we will further investigate the sched-
uling framework and adaptation strategies. Crucial in our research will 
be the selection of appropriate service sets and their properties. A 
straight approach cannot be chosen here, since many effects we are 
investigating are directly influenced by the services in their specific 
combination. Our future work will also contain the investigation of 
other application areas. In particular, we see high potential of our 
approach in highly mobile scenarios. 
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