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Abstract. Sensor network technology is pushing towards integration into the 
business world. By using sensor node hardware to augment real life business 
items it is possible to capture the world and support processes where they 
actually happen. Many problems of the business logic running our world can be 
efficiently implemented “on the item”. In order for these smart items to couple 
back to the virtualized world of business processes it necessary to design a 
uniform system abstraction for enterprise systems. Service oriented 
architectures are the tool to describe functionality apart from its concrete 
implementation. This paper describes a system and the experiences made 
integrating wirelessly networked smart business items into high-level business 
processes. 

Keywords: Wireless sensor networks, service oriented architecture, business 
logic, distributed systems. 

1   Introduction 

The complex and interwoven business logic demands more and more information 
sources to enable reliable, flexible and efficient processes. Information has become 
one of the key values of today’s business world. At the same time technologies 
emerge that can lead to a ubiquity of information sources. Especially sensor nodes are 
a promising platform for enabling the digitalization of our environment. Augmenting 
real life business items like goods or people with tiny wirelessly connected computing 
and sensing platforms creates a broad range of possibilities. 

However, the enormous amount of unfiltered information arising from a steadily 
growing amount of sensors can soon become a problem of scalability. The need for 
continuous evaluation of sometimes-unreliable information often contradicts the goal 
of reliable, flexible and efficient business processes. We think that only integrating 
sensor networks into business logic (as in [2]) will thus fall short of a scalable 
solution. However, integrating business logic into sensor networks we believe can 
become a future direction of computing systems. 

The information processing capabilities of sensor networks can implement 
business logic in a collaborative fashion without pushing unnecessary information to 
backend systems.  
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Fig. 1.  Smart chemical drums equipped with sensor nodes 

The following motivating scenario, for which we build a trial installation in a BP 
chemical plant in Hull, UK, shall outline sensor network capabilities in the context  
of business processes. In this example containers of chemical goods – the business 
items – are equipped with wireless sensor nodes (see Fig. 1) in order to enforce pre-
defined storage conditions. The regulations are encoded in backend enterprises 
systems as part of the workflow with the business items. However, the supervision on 
the regulation is delegated to the business items themselves. In this scenario, the 
nodes on the items communicate with each other and collaboratively supervise the 
environment around the containers. Business logic on the nodes utilizes the sensor 
information on presence on number of other containers, chemical content, and 
environmental conditions, e.g. temperature, as input to collaboratively reason on 
eventual violation of storage regulations. If detected, the nodes in this scenario are 
able to warn locally by triggering a visual alert signal and report this incident back for 
purposes of logging to a backend system. In contrast to technologies like Radio 
Frequency Identification (RFID), the process on detection and enforcement is 
completely distributed among the participating business items. This enables a 
continuous, very accurate in-situ supervision with no additional information overhead 
for back-end systems. 

Sensor networks already have the means for executing such business logic (e.g. 
in [1]). However, in order to ensure that backend end sensor network seamlessly 
work together a technical framework is needed that provides interconnectivity 
between sensor networks and server based enterprise systems. Both systems have 
optimized ways of processing and communicating data. All assumptions about 
increasing efficiency by combining both only hold if we don’t lose their original 
efficiency along the path of integrating both systems. Based on the implementation 
of the business logic of the smart drum scenario we show how efficient an 
unwanted and potentially dangerous storage combination can be identified on item 
level and how this can increase the reliability of systems where logic is coupled 
with physical entities. 
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In this paper we describe a service-oriented architecture for seamless integrating 
business logic executed on sensor networks. The goal of the architecture is to delegate 
parts of the business logic from resource intensive backend systems to thin sensor 
node technology. In the next section we analyze the general structure of business 
logic and the requirements for mapping them to sensor networks. Furthermore we 
discuss the technical and structural challenges for an integrated architecture. We 
continue describing a pragmatic architecture for enabling sensor supported business 
logic, the CoBIs Gateway Architecture. It links services executing logic on top of the 
sensor network through UPnP (Universal Plug and Play) proxies to the logic running 
in backend systems. In the last section we present our experiences gathered while 
applying this technology within a real world trial. 

2   Analysis 

A business process describes the transformation of resources in order to achieve a 
measurable business relevant outcome.  Business processes can be split into process 
tasks, which can be delivered by different service providers. The sequence of such 
tasks can e captured and modeled in so-called business logic. 

The term business logic is used to distinguish the processing part from presentation 
and storage within classical 3-tier architectures. The term “functional process logic” 
might be a better term describing the same thing.  Classical business logic is built on 
top storage layer most commonly called CRUD (Create, Read, Update and Delete). 
Because business logic components still share a lot of intimate knowledge about the 
data layout CRUD layer parts of the reusability of business logic is often limited.  
Services oriented architectures have recently been used to abstract from this rather 
tight coupling to the data layer by defining functional interfaces across all 
components.  

In our view (see [3]) a service consists of a well-defined functionality and a well-
defined interface for accessing this functionality from a client. To distinguish the 
service abstraction from others we demand that the client is independent of the 
concrete implementation of the service and that the each service is independent 
from the internals and the state of any other service.  The discriminating factor of 
service-oriented architectures is the loose coupling between services. This enables 
exchanging functional entities and gives us the possibility to seamlessly integrate 
new technology. 

2.1   Collaborative Business Items 

Business logic acts on a virtual representation of physical world. Every business item 
that is part of a process is modeled to have an equivalent in the virtual world. 
Business rules and workflows describe how to act on those objects. Business logic 
often relies on user or machine interfaces to update their state according to the real 
world process in parallel. The state between the real world and the virtual world is 
thus only synchronized at certain checkpoints in space and time. 
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Fig. 2.  Relocated business logic 

Collaborative Business Items (CoBIs) push the interface between real world 
processes and business logic out onto the business item itself (see Fig. 2). This allows 
us close the gap between the virtual and physical world. Sensor nodes attached to 
business item as the drums in the introductory example can directly act as service 
providers. CoBIs add the following key capabilities normal business items (also 
compare [3]): 

- Computing 
- Data Storage 
- Monitoring 
- Controlling 
- Communication 

Wireless sensor nodes such as the Berkley Motes [6], Ambient uNodes [7] or 
Particle Computers [8] can be used as enabling platforms for embedding those 
features into physical business items. 

2.2   Logic on the Item 

Functionality implemented on a single sensor node is subject to many constraints. For 
instance, the micro-controller is often a resource-restricted 8-bit processing unit, 
providing typically up to 512KB Flash memory for programs and only a small amount 
(around 2KB) of RAM for volatile data. 

However, in spite of the limited amount of data space and computation power on 
sensor nodes, they can provide complex services to business applications by in 
network collaboration. There are two key properties of business logic that can 
compete with and outplay server-based alternatives.  

The first is the distributability of business logic. Because business logic is item 
related it can often be split on item level. The processing power then can scale linear 
with the number of collaborative business items. While backend systems often need 
complex strategies to scale with an always-increasing number and speed of inputs, 
scaling is an intrinsic feature of sensor networks.  

The second key property of most business logic is that it exposes a high locality 
concerning their information working set. As an example matching storage 
regulations against environmental conditions such as temperature or humidity can be 
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done locally on a single node, as all input is available. At the same time the number of 
possible matching regulations can be statically evaluated on item basis, so that the 
logic actually executed on a single node only has linear time and space requirements. 

We suggest that instead of only collecting sensor nodes should interpret data and 
pass on results to the business logic. Executing the process logic close to the data 
source decreases the amount of data that has to be processed by the backend system. 
This results in less resource consumption for computation and communication and 
can in turn increase the responsiveness and the scalability of the whole system 
considering the amount of data that gets generated by a normal business process. 

2.3   Architectures for Collaborative Business Items 

Considering the growing number of sensor network platforms for services relevant to 
business logic the backend systems would have to interface a number of different 
sensor networks hosting different sensor types and using different data encoding. 

Uniform service concepts for sensor networks have already been designed in the 
past however they either see sensor networks only as a data source like [2] or at least 
restrict the logic which is processed on the item to query statements [10]. Other 
systems like [9] also suggest new service architectures for backend systems. 

In contrast to this related work we see the challenge in fitting sensor networks into 
existing business service architectures. Seeing a sensor networks as regular service 
providers frees business developers from the need to develop proprietary connectors 
and leaves sensor network technology the freedom of optimized implementations. The 
coupling point between the two worlds is a service interface that has to be provided 
by a collaborative item architecture. 

3   Key Design Challenges 

In this chapter we describe the key design challenges of a service-oriented 
architecture (SOA) integrating collaborative business items.  

3.1   Interfaces 

Supporting standard RPCs to the services running on the nodes could lead to a 
painless integration with backend systems. However, it can be shown that RPC is not 
the right abstraction to directly support on sensor nodes (see [4]). RPC is very 
restrictive about the calling semantics, which makes stub generation easy, but proves 
to be inefficient for the communication requirements of sensor networks.  

Data packets in sensor networks are often built in a way to support cross-layer 
protocol optimizations. For this purpose the data is encapsulated in an efficient 
encoding that can easily be parsed by the system. Because of different protocol stacks 
and operating systems, this leads to very different presentations of structured 
information in a packet. As an example the Particle platform use a tuple-oriented data 
format enforcing strictly typed information. Motes use Active Messages allowing a 
direct mapping to the component interfaces of TinyOS. A client would have to 
support all different encoding in such a heterogeneous environment. 
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Even if we can understand the message encoding, we will still fail to extract 
sensible information from the data. If transport container and environment have both 
humidity sensor embedded, it is not possible to make a statement about neither 
absolute nor relative humidity, because both sensors will most likely have different 
sensitivity or different resolutions. 

The goal has to be that interfacing sensor network services are not more complex 
than using backend services. All domain knowledge needed to understand interfaces 
to sensor network services needs to be made explicit in standardized service 
interfaces. 

 If we acknowledge the necessity of proprietary protocol layers, this means that 
sensor network messages need to convert to a uniform message encoding. We propose 
the use of “active” service descriptions. Additional to the interface descriptions they 
can contain information to generate transformation stubs implementing endpoints for 
both sensor network and backend service communication.  

3.2   Addressing 

Besides interfaces, addressing can be identified as one of the most essential parts 
about service interaction. It is closely coupled to topics like transport and routing, 
which are also key elements of wireless sensor network research [12,13]. For us it is 
important not to impose implications on concrete implementations of such protocols 
and algorithms via the addressing scheme. From the application’s point of view, 
however, a common method for addressing is necessary for a truly service-oriented 
view on the network. Because the semantics of an address is determined by the 
concrete implementation, we need means for address translation in our system. 

Arbitrary resolving scheme can be applied to describe the different needs for 
addressing. Like in a DNS system semantic hierarchies can be constructed across an 
address space. Once resolved, the client can use the address to communicate with the 
system hosting a service using the target address space.  

In highly dynamical systems like item networks (in contrast to rather static sensor 
networks) this generates consistency problems. To illustrate this we may think of a 
temperature service in out smart drums scenario. Getting the temperature can easily 
be executed on any sensor node in the network. Typically higher-level logic is, 
however, not really interested in the temperature of some node A but in e.g. the 
temperature at a location L. If node A is in location L we can nonetheless execute the 
service there by resolving L to A. If node A physically moves, however, this leads to 
an obvious problem when calling the service again.  

Another kind of service mobility leads to the same problem: migrating a service to 
a neighboring node. Once again the service cannot be reached using A’s address. 
Those problems occur, because we once again replicated part of the service state 
(namely the current host) in the backend system. Exactly this we stated as a problem 
before, as now the problem is keeping virtual and physical world consistent. 
Constantly requesting new addresses leads to an immense overhead on the network 
traffic. 

Once we also push the logic of matching a concrete address into the sensor 
network, we see this problem disappear. An efficient implementation could e.g. 
involve location-based routing algorithms. We can easily imagine other routing 
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schemes. Therefore we propose to introduce service proxies in order to hide the 
addressing information behind an IP-based addressing scheme. Those proxies 
represent a “service running on an address”. This way we can avoid pushing the 
routing functionality into the client. 

3.3   Discovery 

By saying that we map service addressing and interfacing to IP-based proxies we only 
shifted the problem of service binding to IP technologies. However, the problem of 
service discovery can be handled fairly efficient in those networks. Two main 
approaches can be identified here: infrastructure-based and infrastructure-less 
approaches. 

An example of an infrastructure-based service binding and discovery approach is 
described the Web Service Interoperability Standard, namely the UDDI registry 
(www.uddi.org). Without going into detail about the specific up- and downsides of 
specific discovery implementations, it can be said that infrastructure based approaches 
are useful for rather static service landscapes and often have a broader scope than just 
announcing functionality. They also may represent a bottleneck in a distributed 
system or at least need special care to setup. 

The service enabling of sensor networks should be a rather “plug-and-play” 
oriented approach that simplifies the use of a specific technology and should not 
generate additional infrastructure dependencies. For those purposes infrastructure-less 
discovery seems to be the better choice. This kind of discovery either uses multicast 
announcements and queries or distributed hash tables to announce services throughout 
the network. Because service mapped to real world items via wireless interfaces can 
easily disappear or appear, services may move with the nodes. Therefore 
announcement-based discovery interfaces also provide monitoring functionality for 
the liveliness of a service. Multicast announcements can provide a powerful means to 
program dynamical business logic, that acts on the availability of a service and also 
can take trigger necessary steps if a service is unavailable. 

3.4   Lifecycle Management 

The first thing to do if some logic fails to discover and bind necessary service 
functionality is to try to deploy this functionality to the sensor network. Because 
services can be mapped to multiple nodes within the network it makes sense to install 
one lifecycle management interface per network. The whole sensor network acts as a 
container for services.  

Creating container interfaces for all service hosts would create the need to generate 
proxies for all addressable entities. Those are not known beforehand, as they can be 
arbitrarily defined. In order to solve this problem we use deployment descriptions that 
can have the power of selection statements of any query language. Those descriptions 
are used to instantiate the service on the target host generating a local proxy. 
Addressing the service instance is implemented by the sensor network routing 
services, thus the expressiveness of deployment description is also directly depended 
on their addressing modes.  
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We assume precompiled binaries called service executables as the input for the 
sensor network, which are then passed to the single nodes. As stated before we are 
totally agnostic about the implementation language and content of the service 
executables. The lifecycle management service only needs a counter part on each 
node in the network to forward the binary to. Once the deployment request was issued 
it is left to sensor nodes to execute it and initiates a service instance. The success of 
the deployment can be verified end-to-end using service discovery. Functions for 
removal and temporary disabling of a service are added to the service interface of 
each proxy. 

4   CoBIs Gateway Architecture 

In this chapter we describe our implementation of a service-oriented architecture for 
enabling sensor networks to run business logic. The Collaborative Business Item 
Gateway Architecture implements an UPnP to sensor network gateway. We chose the 
Universal Plug and Play (UPnP) standard because of its lightweight, infrastructure 
less and yet complete approach. The Standard includes the Simple Object Access 
Protocol (SOAP), the Simple Service Discovery Protocol (SSDP) and the General 
Event Notification Architecture (GENA). Because UPnP uses Internet technology it 
can easily be included in most business applications. The implementation, however, is 
not UPnP specific but can be easily ported to e.g. Web Services. 
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Fig. 3. The CoBIs Gateway Architecture 

Key element of this architecture is the dynamic instantiation of service proxies. 
Proxies can be accessed like native UPnP devices, providing detailed service 
descriptions for the implemented functionality. The proxy itself, however, only exists 
as a virtual representation of the service interface. Request issued to the service proxy 
are transformed by the gateway to sensor network messages and vice-versa. From the 
backend the gateway itself is only visible for deploying new services to the sensor 
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network. Multiple gateways can be instantiated simultaneously to include several 
sensor networks into the architecture. The general architecture is depicted in Fig. 3. 

4.1   Gateway Devices 

The platform gateway is a application level bridge that handles all aspect of 
communication with the backend system. This includes all protocol levels beginning 
with the physical layer bridging from Ethernet to the wireless network ending with the 
application level bridging for service interaction from proprietary interfaces to RPC-
style service interfaces. The idea of platform gateway is that it capsules all domain 
knowledge needed for communication with a sensor network platform. Because the 
interfaces to the backend system is always of the same type this allows exchanging 
the platform as well as using multiple sensor network platforms in parallel. 

Because we handle the platform gateway as a monolithic software component in 
our architecture this does not mean that it is a single machine. The system has been 
designed to be able to both different levels of bridging as well as proxies to different 
services distributed on multiple machines. The only interface to the gateway from the 
backend system is the lifecycle management service that enables pushing new service 
binaries to the network. 

This and all interfaces dynamically created service proxy are announced in the 
network. UPnP handles Service discovery natively once a proxy is initiated. All proxy 
instances provide a pointer to their description via GENA when requested by some 
client. For the gateway this means that proxy services have to be instantiated 
whenever a new service is provided by the sensor network and destructed when the 
service becomes unavailable. The proxy service instance itself is a only dispatching 
path associated with a SOAP request URL pointing to the gateway and a service 
description including a the interface transformation (see below). 
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Fig. 4.  Discovery methods supported by the gateway 

Fig. 4 shows four means to initiate a service instantiation. They are provided by 
Discovery Services running on the gateway and can be exchanged. In the first case the 
gateway parses predefined “hello” and “bye-bye” packages (Fig. 4A). Querying 
actively instructs all services to issue hello packets by sending broadcast pings (Fig. 
4B). Passive discovery omits special hello packets completely by adding a service 
identifier to all packets (Fig. 4C). Proxies can also be permanently installed on 
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deployment, requiring manual removal (Fig. 4D). This however disables support for 
liveliness monitoring. 

4.2   Interface Transformations 

We integrate the platform specific semantic transformation for the RPCs into the 
XML-based UPnP service description. Because the UPnP demands flexible XML 
parsing we can use the same description for providing the client description to the 
control point. Leaving the transformations inside the descriptions allows easy 
debugging of the transformations and allows the management services to analyze the 
running system. 

The descriptions are automatically parsed by UPnP stack implementation, which 
already provides the UPnP RPC dispatching and eventing facilities. We integrate our 
transformation logic into the device instantiation that is guided by the XML 
description. This allows a direct coupling between transformation and interface. 

We suggest a simple template-based transformation, we have successfully used for 
creating interfaces for Particle Computers and Ambient uNodes. Templates work as 
bi-directional transformation. Fig. 5 shows the model of the templates organized as an 
ingress filter tree that is loosely connected via a listener pattern to the UPnP protocol 
stack. When a RPC call is received each outgoing argument is serialized via the 
template the UPnP state variable and incoming arguments are parsed by inverting the 
process: the template is matched against the packet.  

A template entry can be of three types of data, wildcard or don’t care. If a matching 
template is found the information under the wildcards is extracted/serialized together 
with any optional static data. UPnP typing information contained in the interface 
description can be used for de- and encoding. This suffices for most standard integer 
data, but the scheme can be extended to support more explicit interfaces without the 
increasing message size. In cases more complex parsing is needed one may specify 
platform specific extensions for message decoding. 

 

Fig. 5. Mapping message templates of RPC arguments 
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4.3   Message Primitives 

We support seven message types for communication between sensor node services 
and backend-based services that can be accessed via the RPC interface: 

- Non-blocking Send, Receive and Call 
- Blocking Send, Receive and Call 
- Callback 

The classification of blocking and blocking messages concerns the behavior on the 
gateway not on the issuer as RPCs are always blocking. The non-blocking send can be 
used if no return types are given. It sends out a message to the sensor network and 
does not wait for an answer. 

The non-blocking receive uses replicated services states on the proxy to answer the 
RPC. Here no function argument can be provided to RPC. An example would be a 
getTemperature action providing the most current temperature data. Caching data in 
the gateway allows the services on the sensor node to run in a duty cycle without 
loosing accessibility. The non-blocking call is a combination of the message types 
described before. It does not wait for data to arrive, but returns cached data. It can be 
used to signal the service that its data was received and consumed by the backend. 
The blocking call can be used to implement real RPC for a service. It sends out data 
and awaits an answer before returning. It can also be used to provide support for 
acknowledged that means blocking sending support as well as blocking receive by 
omitting either in or out parameters. For blocking operation we wait for a message 
matching the associated return argument. Timeout values may be specified 
individually for each function. 

The callback provides support for a node service to asynchronously trigger the 
Business Logic in the backend. An example would be an alerting service that needs to 
result in rapid action within the backend. UPnP’s General Event Notification 
Architecture (GENA) handles the callback subscription. Subscriptions are thus 
handled by the gateway. 

5   Real World Trial 

The gateway implementation described above was installed for a one-month trial at 
one of the BP’s largest acetyls production site. The trial was conducted in a 
declassified storage area and included 21 chemical drums equipped with Particle 
Computers. The goal was to model storage regulation of chemical substances stored 
in two different stored with multiple storage locations inside the same store (see 
Fig. 6). 

We implemented logic for multiple types of storage regulation: 

- per chemical storage limit 
- incompatibility classes of chemicals stored in the same location 
- environmental constraints ( maximum/minimum temperature) 
- maximum time in storage 

The Business logic for the storage regulations was modeled in SAP’s EH&S 
(Environment, Health and Safety) system. The system was used to parameterize a  
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so-called hazardous goods service on the nodes. This service needed input from a 
location service, which was implemented using a simple infrastructure-based infrared 
location system. A temperature monitoring service gave input to check environmental 
storage regulations. Additional management functionality (voltage, duty cycle) was 
provided to manage the networks functionality from Smart Items Management 
Console developed by SAP Research. The gateway software was run on two 200 
MHz embedded Linux MIPS systems in combination with a with 2GHz Intel 
Windows XP server also running the monitoring logic. 

 

Fig. 6.  Storage location enabled with Collaborative Business Items 
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Fig. 7. Message load per minute to backend system 

5.1   Trial Evaluation 

Surprisingly most of the problems encountered on site were related to technologies 
not specific to our architecture. Using Internet technologies the hope beforehand was 
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to seamlessly integrate into any existing network using those technologies. As BP 
provided us with a wireless 802.11 based infrastructure we were able to connect our 
gateways without the need of complicated wiring on site. Probably because of the 
rather humid weather conditions close to the cooling towers the 802.11 network 
showed a high packet loss at times. This packet loss did not very much affect TCP 
traffic but unacknowledged traffic like UDP. UPnP uses UDP multicast as part of its 
discovery scenes and also the DHCP based dynamic addressing for the gateways used 
unacknowledged transport for discovery.  

The logic pushed to the sensor network worked reliable. Additionally to the month 
long trial we performed an extensive test set at the end of the trial to confirm the 
correct behavior of the system. Both the business software running on an SAP 
application server as well as the sensor network performed their services by 
specification. The average message load to the business logic was only about 23 
messages per minute (see Fig. 7), mostly resulting from voltage monitoring need for 
the management application. We were however able to put our system into an 
overload situation (right part of Fig. 7), when simultaneously generating alerts from 
all business items. This was due to the GENA implementation of the used UPnP 
stack, which set up new HTTP connections for each event and each subscription. 
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Fig. 8. Delayed issuing of alarm action 

Only functions carrying state changing configuration information actively injected 
messages into the sensor network. All other services running on the nodes ran 
autonomously, only actively communicating to the backend system on events 
subscribed by the business logic. This scheme made the reactions of the sensor 
network especially in critical situations very robust as the message load was in some 
sense predictable within the system and message prioritization could be decided 
within the node network. This at times (due certain amount of message loss in 
unacknowledged traffic) leads to an inconsistent view of the system between sensor 
network frontend and backend (business logic/management) systems. Most events 
were retransmitted repeatedly so that the error was temporal and the correct logic was 
executed with a delay (compare Fig. 8).  
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6   Conclusion 

In this paper we have demonstrated how a system can be build to easily integrate 
arbitrary sensor networks into business logic. For this purpose we did not stop at the 
point where we use this technology as a data source, but rather tried to unleash the 
computation power that results from deploying networked sensor nodes into real life 
environments. We showed that service oriented architectures are way to abstract from 
classical system designs using only backend driven business logic. The proposed 
system enables sensor networks to actively take part in distributed processes.  

The implementation of our UPnP sensor network gateway shows that this 
technology can easily be used to adapt existing sensor node platforms to a service 
oriented business architecture. While trying to make the least possible assumptions 
about functionality of the services executed by sensor network during the design of 
our architecture, we showed by trial a specific use case that this technology can be 
successfully applied in real life settings. In spite of the still prototypical nature this 
system we hope that our experiences can help the deployment and integration of 
sensor node technology into business applications in near future. 
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