
S2B2: Blackboard for Transparent Data and Control
Access in Heterogeneous Sensing Systems

Michael Beigl, Monty Beuster, Daniel Röhr
Distributed and Ubiquitous Systems Group

TU - Braunschweig
Braunschweig, Germany

{beigl, beuster, roehr}@ibr.cs.tu-bs.de

Albert Krohn, Till Riedel, Christian Decker
Telecooperation Office (TecO)
TecO, University of Karlsruhe

Karlsruhe, Germany
{krohn, riedel, cdecker}@teco.edu

Abstract—This paper presents concept and first
implementation of a Sensor System BlackBoard concept
(S2B2). S2B2 is designed as a data store surrounded by
software modules that operate on the Blackboard. The
Blackboard is implemented as the only communication
medium between modules within the sensor node. Modules
can also transparently communicate with other modules even
if they are hosted on a remote, different type of sensor node
thus allowing true heterogeneity. The S2B2 module concept
enables fine-grained decoupling of software functionality and
separation of concerns. This allows rapid prototyping of
functionality and simplifies real-time testing and debugging.
The S2B2 provides the basis for integration of PC based and
sensor node based applications. This paper introduces
concept and architecture of S2B2 and shows the potential of
the approach by presenting an example implementation. First
results show that the system shortens programming time by
at least 30%.

Keywords: ubiquitous and pervasive computing,
networked embedded sensor systems, middleware

I. INTRODUCTION
Networked sensing systems are often difficult to

develop, maintain, debug, test and study. Sensor
development requires programming of resource restricted
network systems. This is very tedious due to long
programming – downloading – testing circles, inferior tool
support compared to PC programming and restricted in-situ
debugging possibilities. Simulators as TOSSIM [1] or
MiXiM [2] address the problem of programming and initial
debugging by allowing programming of nodes in a
simulated environment running on a PC. The drawback of
such approaches is that real-world problems may not be
appropriately transferable to a simulation model. Such a
complex real-world behavior that cannot be modeled within
the simulator may cause unexpected behavior from the
nodes in real world experiments not visible in simulation.
Debugging environments e.g. Sympathy and Emstar [3]
address this issue by providing mixed environments where
simulated applications and data from sensor nodes in real
world can be incorporated. The approach requires a close
integration of networked nodes into the simulation
environment, especially a complete software representation
of the behavior of a sensor node in the PC environment.
The integration of physical sensor nodes is done on a per-

node basis. Consequently the complete functionality of a
sensor node can be either represented as a software
simulation or integrated as a real-world node.

Based on our experiences with programming wireless

sensor node applications we think that it would be
beneficial to extend the integration of development support
to a inner-node module level. Such an approach allows for
a clear separation of concerns not only between the sensor
nodes, but also between the various functionality of a
sensor node. Our approach is module oriented. A clear
defined set of functionality makes up one module that can
communicate to other modules on the sensor network either
locally or remotely, i.e. running as an internal sensor node
module or as an external (e.g. PC based) module. The
approach can be used for rapid prototyping of specific
sensor node functionality without any need to care about
the complexity of the rest of the node’s functionality.

II. GENERAL CONCEPT
This paper will present a BlackBoard (BB)[4] oriented

concept for Sensor Systems (S2B2) that uses a shared
memory concept to allow applications access to software
modules on sensor nodes. BB is a concept originating from
Artificial Intelligence research. Many variations of the
concept are known, but we restrict our introduction to a
general overview. A Blackboard is a central data structure
of a computing system that contains all knowledge of the
system. Blackboard systems do not make a difference
between the data and control flow – there is only
knowledge in the system. Knowledge is produced and
consumed by so-called Knowledge Sources (KS), which
are often modeled as black box components that interpret
the knowledge. KS are often the only legitimate active
parts in a BB system. It is up to the KS to take actions
according to a piece of knowledge – thus interpreting the
knowledge as control structure. It should also be noted,
that the BB is stateless – it only provides the access to the
data. This way a BB decouples interpretation from
communication – there is no binding nor implicit
knowledge or state to be hold between the KS. Knowledge
sources look up the BB to retrieve information without any
knowledge where this information comes from. Thus, KS
are not allowed to assume any behavior from other KS nor

should they communicate to other KS in other ways than
via the Blackboard.

Sensor Node 1

Module a

Workstation

Module c

c

Module b c
Black
Board

Sensor Node 2

Module a c

Module d c
Black
Board

c

This may lead to performance problems, as e.g. any KS is
required to scan the BB periodically to perform
communication tasks (i.e. to receive information). To
overcome this problem, some of the knowledge sources
can be more closely coupled with the BB and are allowed
to extend the communication mechanism of the BB. E.g. a
subscribe/notify module is often used where other KS can
subscribe to a type of message and get notified from the
BB upon arrival. This way the subscribe/notify module
extends the communication mechanism of the BB to
events rather than only read/write/search. A subscribe
mechanism requires that the structure of data stored in the
BB has a known structure. Various types of such structures
are known, most prominent are hierarchical structures [10]
or typed data structures.

We introduced a Sensor-Systems BlackBoard S2B2 as an
implementation of a BB on sensor nodes. S2B2
implements an extremely loosely coupled distributed BB.
Due to the distribution aspect, the BB can have various
views: local, nearby, regional or global. This is in contrast
to other similar approaches, e.g. the Bulletin Board [9].
With S2B2 a global BB can be interpreted as a
transformation of the real world covered by the set of BB,
which is constructed through sharing the local BB views of
all participating devices. The local BB is then the local
perception or view of the real world. Such a view concept
is very helpful for our RELATE application of the sensor
system in that it supports the iterative processing of
location knowledge. From our implementation of the BB it
should be noted that in our model the BB is the only
legitimate communication medium between modules.

Apart from the potential of designing and shifting scope
of views, there are other practical benefits that can be
addressed by implementing a BB on sensor nodes. Figure 1
depicts our BB concept: Each sensor node implements a
Blackboard and several Knowledge Sources that we call
modules. We have opt for the name module rather than KS
to make clear that the work is not about usual topics as
reasoning or learning. In Figure 1, 4 modules have access to
the Blackboard of sensor node 1. Two of the modules (a,b)
are implemented within the node, one is implemented
outside the node on a PC (c) and one on sensor node 2
(module d). Due to the Blackboard coordinated
architecture, module (c,d) are also seen as part of the
system, the same as (a) and (b). In our approach, all parts of
the sensor system including the basic operation of the node
are modeled as modules. Thus our S2B2 model allows to
run a sensor nodes functionality partially or completely by
an external device, e.g. from a PC based system. In Figure
1, module (c) running on a PC may provide basic sensor
operation functionality as sensor fusion remotely for Sensor
Node 1.

The described approach has several advantages that are
shortly listed.

Figure 1. S2B2 Example of remote module access

A. Rapid prototyping and debugging with full PC based
support. The BB approach allows a programmer to use
existing, convenient PC based rapid prototyping tools and
debugging capabilities. We will show at the end of the
paper that this advantage could be quantified also in terms
of development time. We are aware that the proposed
approach may require a double implementation of an
algorithm, first on the PC and then on to the embedded
system. It is well known that the time required for
debugging and testing a program is much higher compared
to implementation time [7]. Thus the effect of lowering
test&debug time outperforms the added implementation
time.

B. Most appropriate programming language. Programmers
may select the most appropriate development language for
implementation from the full set of programming
languages available on the PC.

C. Realistic operating conditions. Development of specific
modules instead of complete applications outside a
processing node lets these modules operate “virtually” in a
more realistic environment. For example, modules that
sample real-world sensor information are implemented
within in the sensor node, but sensor processing is
developed on the PC. This processing module is still able
to operate on real-time, real-world data, in contrast to
simulation environments.

D. Integration of development and simulation. The
approach allows to integrate simulation, programming and
testing. An algorithm developed on the simulator may be
able to transparently use real-world data from sensing
modules running on a sensor node. Vice versa a module
operating on a sensor node may make use of the simulated
data set on a PC. The approach provides the potential to
easily build up standard test sets and environments.

E. Fine granular access to sensor node behavior. A
characteristic of our S2B2 architecture is that the control
and data flow can be easily tracked by logging data from
the Blackboard. This gives access an extensive set of
internal sensor node data that can be used for testing and
debugging reasons.

III. RELATIVE IMPLEMENTATION
The system was implemented and tested in working
environment in the context of the RELATE research
project. The idea of the RELATE project is to provide

basic services for applications requiring peer-to-peer
location information. The software architecture of the
RELATE system should support application developers but
also build the basis for research on P2P location systems
using the RELATE platform. Various location modalities
and different types of sensor node hardware are used
within the project. Software modules for low-level sensor
data reading as well as high level applications for the
various RELATE platforms are implemented so far.

A. RELATE Blackboard Implementation Architecture.
The implementation of the RELATE Blackboard
architecture (Fig. 2) consists of a set of Blackboard
modules, the Blackboard and the underlying Operating
System. This architecture is the same for all type of sensor
modules thus allowing true heterogeneity. The Blackboard
Implementation Architecture is an implementation of the
S2B2 concept with a set of specialized modules and data
structures that take into account the conditions of the
resource restricted device the BB is implemented on. The
OS also contains the AwareCon RF [5] communication
protocol, a protocol build in firmware of the Particle
transceiver boards [6].

Blackboard

Sensors /Other Hardware

Location Services

Interfaces / ParticleOS

Applications

BB Operation

BB Modules

O
p
t
i
o
n
a
l

C
o
n
t
r
o
l

P
a
t
h

info

O
S

A
c
c
.

System Services

subscribe

events

Blackboard

Sensors /Other Hardware

Location ServicesLocation Services

Interfaces / ParticleOS

ApplicationsApplications

BB OperationBB Operation

BB Modules

O
p
t
i
o
n
a
l

C
o
n
t
r
o
l

P
a
t
h

subscribe

info

O
S

A
c
c
.

System ServicesSystem Services events

The local Blackboard allows the integration of typed data
using the ConCom [5] language. Modules can subscribe to
a type and receive an event if the data is put on the BB
from one of the nodes. This functionality is provided
because of performance reasons and carried out by one of
the System Modules (Fig. 2). Modules are grouped
according to their functionality but are independent. The
Location Modules contain all modules of the Location
Stack as the Sensing and Postprocessing, Location
Coordination, Region Manager for ad-hoc regional
understanding of location of devices. The shift of the scope
of the view of the surrounding “world” of location
information is supported by the BB system. This allows us
in the RELATE project to easily converge our
understanding about the world – aka position of devices –
from a very limited local view (local node/BB) to a small
scope view (BB in vicinity) to a regional or even global
view. System Modules provide basic functionality of the
sensor node and the BB system. They enable access to
various services on the nodes hardware. BB Operation
modules care for operation task on the Blackboard. The
Blackboard is also accessible from the Interfaces which are
embedded into the (Particle) Operating System. The OS
allows to implement functionality in a more non-modular
manner that this is the case for a BB-only system. This can
be seen as our tribute to the resource restriction of the
sensor node platform underlying.

B. RELATE Blackboard Data Structure, Communication
Modalities and operations.
The Interfaces part also contains the wrapper

functionality that allows a transparent access to the
Blackboard from external modules and applications. Such
Interfaces enable applications and devices from outside to
access the sensor node’s local Blackboard transparently as

if they run locally. There are two interfaces provided: The
Console interface is a high-level text based interface to the
Blackboard. This interface is mainly used to enable a
human user to retrieve and change information on the
Blackboard, but could also be used to for writing script
programs both on the PC or embedded node thus allowing
rapid prototyping. A more compact and machine oriented
access is possible with the AwareCon [5] interface, which
exposes the same functionality as the console but in a byte
encoded opcode format based on the ConCom protocol.

Figure 2. Exemplary Blackboard Implementation Architecture

Thus, S2B2 provides 3 modalities to access Blackboard
information: Internal APIs on a sensor node, text based
commands via a Console and ConCom packet format. All
three are different communication modalities providing the
same operations that can be performed on S2B2.
Operations are performed on the information stored in the
Blackboard which are structured as list of typed tuples
following the ConCom [5] specification. Operations on the
BB are:

• Read/Filter read: Read a single tuple, a set of tuples
(according to a specified type pattern) from the BB.

• Write: Write a tuple to the BB. A scope parameter
indicates if the write is intended to go the local BB or
the region etc. Writing to the regional BB causes
communication of the tuple via the network.

• Subscribe: Subscribe to one or more tuple-types to
receive an event upon arrival.

• Delete/Filter delete: Delete a single tuple, a set of
tuples (according to a specified type pattern) from the
BB.

C. RELATE Console Operation.
Operation on the local RELATE Blackboard do not

require that all modules described above are running within
the embedded software of a RELATE node. With the
concept of interfaces and especially the Console concept
transparent remote access to the RELATE node is possible.
The Console exposes a simple minimal text based interface
to the Blackboard using a standard input/output command
shell. This minimal interface can be extended by combining

the minimal interfaces commands to write more powerful
scripts using e.g. shell commands.

Console system thus simplifies development of programs
by letting a programmer first develop and test parts of a
Blackboard module (e.g. an application program) on the PC
by accessing the RELATE sensor nodes blackboard
information storage remotely using the console. Standard
I/O can also be used to pipe BB information into a file
helping to store and retrieve location information for
evaluation or other purposes.

IV. FIRST RESULTS
The implementation of S2B2 was introduced as a
development, testing and field study platform for the
RELATE project replacing the existing “standard”
embedded sensor node development and testing process.
We collected about 2 month experience with S2B2 so far.
Still, many of these experience are more quantitative rather
than qualitative, but the benefit of separating concerns and
thus enabling a more decouple development process is
difficult to measure.
From a quantitative perspective it is important to note, that
the S2B2 approach provides various possibilities for
improving the development process. E.g. a physical
measurement component could be replaced by a simulated
or play-backed reality thus allowing to generate a more
comparable set of results. On the other hand, a location
detection algorithm developed based on a simulator can be
directly tested on real-world measurements taken at sensor
nodes by simply replacing the sensing & post processing
module in the simulation and forward control and dataflow
to the module to the remote Blackboards of real sensor
nodes.

There are also several quantitative results to be reported
from the first testing phase. In this first testing phase we
concentrated on the implementation of small software
modules as simple location algorithms and application
programs for user output1. Table 1 shows first results of
this testing phase. It can be seen that the performance of
development time increases at about 30%, not considering
the time for flashing the embedded controller which saves
another 46 seconds flashing time for each round of
programming in average. The parameters do also not
reflect the general positive effect of speed-up in
implementation due to the more clear separation of
concerns.
The speed-up in programming time goes along with a
decrease in the lines of code (LOC) required for writing

1 Conditions: Programming of a microprocessor PIC Microchip
PIC 18LF series under C (embedded programming) using CCS C.
Programming Console using Bash shell. Flashing uses CCS ICD
with/without verify on. Programming and Flashing performed on
several Pentium M/IV PCs from 1.5GHz to 2GHz. Note:
Flashing and C-Programming is performed using the fastest
compiler and Flash-programmer available for the used
microprocessor; measured times would be substantially longer
when using other compilers and programmers.

the programs (almost 50%) which is also an indicator for
the simplified development process.

TABLE I. DEVELOPMENT PERFORMANCE PARAMETERS

Parameter Value
Dev-time Cons. (min) Max 10, Min 7, Avg 8

LOC Console Max 26, Min 25, Avg 26
Dev-time embed (min) Max 15, Min 10, Avg 11

LOC embedded Max 64, Min 34, Avg 50
Flashing time Max 56s, Min 32s, Avg 46s

V. CONCLUSION
This paper introduced the concept of using a Blackboard-
like architecture for Sensing Systems. We have shown
some initial quantitative and qualitative advantages for
developing and testing applications for sensing systems.
Next steps will require more extensive studies on the
improvement in the development process, especially in the
context of complex software projects.

So far we only compared development time neglecting
the effect of improved development process due to clearer
separation of concern, more flexibility in combining
functionality and a higher reuse-factor. We will research
these parameters in the future and also seek to quantify
these effects. Also, we see great potential in using the
Blackboard architecture and the Console as a flexible inter-
sensor node system for operation in highly heterogeneous
environments using various brands of sensor nodes but
especially using sensor nodes together with other mobile
devices and together with stationary – e.g. environment
installed – devices. The potential here is that relocation of
services can be ad-hoc and easily performed using such a
method.

REFERENCES

[1] P. Levis et al. "TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications," Proc. 1st ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003), November
2003.

[2] Otto Visser, MiXiM, Master's Thesis, TU Delft, NL, August 2005.
[3] N. Ramanathan, E. Kohler, D. Estrin. Towards a Debugging System

for Sensor Networks, International Journal for Network
Management, 2005.

[4] R. Englemore, T.Morgan. Blackboard Systems, Pub. Addison-
Wesley Pub. Co. 1998

[5] Beigl, M., Krohn, A., Zimmer, T., Decker, C., Robinson, P.:
AwareCon: Situation Aware Context Communication. Proceedings
of Ubicomp 2003, Oct. 12-15, Seattle, USA

[6] Particle Computer. http://www.particle-computer.net
[7] Fairley, R. 1985 Software Engineering Concepts. McGraw-Hill, Inc
[8] Albert Krohn, Mike Hazas, and Michael Beigl, Removing

Systematic Error in Node Localization Using Scalable Data Fusion,
EWSN 2007, to appear.

[9] Lifton, J., Seetharam D., Broxton, M., Paradiso, J.: Pushpin
Computing System Overview: a Platform for Distributed,
Embedded, Ubiquitous Sensor Networks. Pervasive 2002,
Proceedings of the Pervasive Computing Conference, Zurich
Switzerland, 26-28 August 2002, Springer Verlag, Berlin
Heidelberg, pp. 139-151

[10] Weiss, M., Stetter, F. A hierarchical blackboard architecture for
distributed AI systems, Software Engineering and Knowledge
Engineering, 1992. Proceedings., Fourth International Conference
on Volume , Issue , 15-20 Jun 1992 Page(s):349 - 355

	I. Introduction
	II. General Concept
	III. Relative Implementation
	A. RELATE Blackboard Implementation Architecture.
	B. RELATE Blackboard Data Structure, Communication Modalities and operations.
	C. RELATE Console Operation.

	IV. First Results
	V. Conclusion

