
Modelling, Simulation, and
Performance Analysis of Business Processes

Involving Ubiquitous Systems

Patrik Spieß1, Dinh Khoa Nguyen1, Ingo Weber1,
Ivan Markovic1, and Michael Beigl2

1 SAP Research, CEC Karlsruhe, Germany, http://sap.com/research/
{patrik.spiess,dinh.khoa.nguyen,ingo.weber,ivan.markovic}@sap.com

2 IBR, Braunschweig, Germany, http://www.ibr.cs.tu-bs.de/dus/

Abstract. A recent trend in Ubiquitous Computing is that embedded
software (e.g. in production machines, wired or wireless networked sen-
sors and actuators, or RFID readers) directly offers Web Services. This
allows it to directly participate in IT business processes. Our work sug-
gests an approach to assess and compare the performance of such hybrid
process models. It critically evaluates BPEL, the standard instrument for
creating executable process descriptions, for its support of the dynamic
nature of ubiquitous services, e.g. due to device mobility and unreliable
wireless communication. 3

1 Introduction

The near future vision of industrial production (which we see merely as a special
case of Ubiquitous Computing) is moving towards an Internet of things, in which
smart machinery and smart semi-finished products are integrated into enterprise
business processes, to enable more flexibility and adaptability by including some
business intelligence already at a very low, technical level.

Following a SOA concept, we argue that the functionalities of those devices
should be made available as Web Services, which could be consumed by other
devices or composed into higher-level Web Services. As the shop-floor devices
are now powerful enough regarding hardware resources such as computing power
and memory, they can be designed to host Web Services (SOA-ready devices)
and hence can easily be accessed from within business processes.

Given a completely service-oriented device landscape, the next challenges
are how to describe business processes orchestrating such hybrid systems using
executable process description languages like BPEL [1] and what are appropri-
ate metrics to assess the operational performance of a given process model. In
this paper, we propose the modelling and simulation approaches for standard,

3 The authors would like to thank the European Commission and the partners of
the European IST projects SOCRADES (www.socrades.eu) and SUPER (www.ip-
super.org), for their support.



executable business process descriptions together with ubiquitous systems. We
explain also how to use simulation results for performance analysis of such hybrid
business processes.

2 Modelling and Simulation Approach

In order to evaluate the performance of an executable process description in a
ubiquitous environment, we suggest explain the benefits an problem when using
the BPEL standard, introduce a model of the heterogeneous device landscape
and lay out our simulation approach.

2.1 Business Process Description and Execution

For the modelling of an executable business process, we suggest to use BPEL as
the de-facto industry standard. A BPEL process description contains references
to all services that it interacts with. This limitation is against the nature of a
ubiquitous environment, where devices (and consequently, the services hosted
on them) can appear and disappear unpredictably at run-time. Our solution to
overcome this problem is to extend the BPEL engine, providing the ability to
resolve generic partner link descriptions with concrete endpoints stored in the
device landscape model at run-time.

Another deficiency of BPEL, mentioned by Wohed et. al. in [5], is the missing
support for broadcasting a message to several partners through partner links.
Constrained, embedded devices, especially when using a wireless link, would
benefit from this functionality. We mitigate this limitation by suggesting and
supporting modifications in BPEL and the engine executing it. Our work is
based on the engine presented in [3] where Hackman et al. introduced a new
BPEL element called Partner Group. During run-time, a BPEL engine support-
ing partner groups features addition and removal of partner links to a partner
group, as well as binding and unbinding a partner link dynamically at run-time.
For instance, when a message from a previously unknown service is received,
its endpoint is mapped (bound) to a currently unbound partner link and this
partner link can be added to a partner group. After that, the partner link can
be unbound again and is ready for the next incoming messages. Reply messages
can be sent to a whole partner group.

2.2 Modelling the Service Landscape

The service landscape model is a data structure, designed in XML, that describes
a landscape containing hierarchical layers, groups of nodes, nodes, and services
hosted on a node. Each service is specified by a service endpoint and a service
type. By discovering the service type of a BPEL partner link, the simulation
engine can map this partner link to an existing endpoint in the landscape.

Using simulated services generated from the service landscape definition is
useful in the following situations: A process model should be tested with more



devices than physically available, or a process needs to be repeated many times
to get a stable average assessment which might take too long. Our simulation
approach is straightforward: Replacing the ubiquitous devices with a web appli-
cation server and letting the server provide the services instead of the devices. If
left uncompensated, this would however lead to unrealistically high performance
measurements. To compensate, we introduce technical virtual costs for service
invocations.

The virtual costs of service invocations that cross the boundary between
standard PC-based back-end subsystem and the embedded subsystem should be
set considerably higher than communications within these subsystems. The cost
for interactions within the embedded subsystem should be set higher than the
cost for interactions within the back-end subsystem. For more complex systems,
more than two layers may exist, each with its own cost of internal service inter-
actions. For convenience, a default access cost can be assigned at each level of
the landscape: on the whole landscape, on a layer, on a group of nodes, and on a
node. Each service on a node can have a specific extra cost. The costs defined for
a simulation must reflect the resources that are used for each step of the process
execution (in the best case known by measurements) and their priority for the
individual application. A time critical application would e.g. assign a higher cost
to high-latency steps; an application that uses a volume-based 3G subscription
would assign high cost to steps that send large messages over the 3G link.

Instead of measuring the performance of the simulated devices, we let the
simulation engine sum up the virtual cost of each service invocation. The total
cost (and other statistical meta data) of each process instance (from instantia-
tion to termination) under varying environmental conditions (i.e. varying return
values of simulated services) is summed up during the simulation. We assume
the estimation to be Gaussian distributed, thus we are able to compute a reliable
averaged performance indicator by averaging the results over many runs.

2.3 Simulation approach

For simulating the process model on top of virtual devices and services (modelled
in a landscape definition document) we need a business process engine that
supports the following non-standard features. (1) Dynamic mapping of a partner
link at runtime with a service binding stored in the device landscape. (2) Reusing
a partner link at runtime, i.e., unbinding a partner link and then rebinding it to a
new device. (3) Using the landscape definition to get cost values of cross-layered
service invocations in order to calculate the total cost of process instance.

As a basis for our implementation, we chose the Sliver [4] open source BPEL
engine, which can parse and execute a BPEL process description and covers most
of the BPEL concepts. It stores all partner links in a hash map, and provides
getter and setter methods to modify them at runtime. That means partner links
can be mapped (or bound), unbound, and reused dynamically at runtime. We
extended the engine for many other purposes, especially to link it with the
device landscape in order to resolve partner links at run-time and to calculate
invocation costs during process execution.



To simulate the connection and disconnection of devices, we modify the device
landscape while a process instance is running. New devices can join or leave the
device landscape providing new or taking away existing services. At the end of
the simulation, when the process ends successfully or in an erroneous state, the
calculated total cost is returned to a GUI for users to evaluate the process. The
simulation engine can be instructed to repeat this process n times and return
the average costs.

3 Conclusion and Future Work

This article analysed the widely adopted standard for executable business pro-
cess description BPEL for its feasibility to support processes including ubiq-
uitous systems and made suggestions for extensions to that standard. We also
introduced an approach for estimating and comparing the performance of the
execution of a process description.

This work is part of a larger project that is intended to facilitate the mod-
elling of the behaviour of a hybrid system including services provided by both
enterprise applications and ubiquitous systems. Process modelling experts should
be enabled to model freely without the need to care for the resource constraints
of ubiquitous systems. An automatic optimization step will partition the pro-
cess and deploy the connected fragments e.g. on small execution engines running
on the ubiquitous devices themselves [2]. The distributed version of the process
will feature more locality during its execution and will use less system resources
although it shows the same behaviour as the original one. The work presented
in this paper will be used to evaluate the performance gain of the automatic
optimization.

The concepts presented in this paper are based on an ongoing implementation
by extending an experimental, open source BPEL engine.

References

1. Web Services Business Process Execution Language Version 2.0 (OASIS Standard),
April 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

2. Patrik Spieß and Stamatis Karnouskos. Maximizing the business value of networked
embedded systems through process-level integration into enterprise software. In
Proc. Second Intl. Conf. on Pervasive Computing and Applications, July 2007.

3. Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman. Extending BPEL
for interoperable pervasive computing. In Proceedings of the 2007 IEEE Interna-
tional Conference on Pervasive Services, pages 204–213, 2007.

4. Gregory Hackmann, Mart Haitjema, Christopher D. Gill, and Gruia-Catalin Roman.
Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices. In ICSOC,
pages 503–508, 2006.

5. Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofst-
ede. Pattern based analysis of bpel4ws. Technical Report Technical Report FIT-TR-
2002-04, Faculty of Information Technology, Queensland University of Technology,
December 2002.


