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Abstract. Most passive location systems (e.g. pressure sensitive floor
mats) inherently do not come with an identification mechanism, i. e. are
ambiguous concerning the number of persons who cause readings: Two
persons close beside each other could seem like one single person. In
contrast, most active location systems operate with user-bound tags,
and thus directly give the number of used tags. Possibly, both sensor
types may be used in conjunction, but the number of persons and their
respective locations need then to be simultaneously estimated.

This paper presents an approach that allows to fuse observations from
both sensor types. We introduce a probabilistic model for representing
the joint density of number and location of persons as well as the available
sensor modalities. We show how this model can be used for estimating
the posterior placement density given the sensor observations, applying
a Gibbs sampling approach.
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1 Introduction and Motivation

In this paper, we analyse the chances and limits of a novel sensor fusion tech-
nique employing the exact probabilistic modelling of (i) two location sensing
modalities, one being able to differentiate between persons and the other one
with no such labelling capability, and (ii) the joint density of the number and
respective locations of persons. We further model the causal interdependencies
of these items and derive a sampling strategy in order to simultaneously esti-
mate (ii) based on observations from (i). We present an initial evaluation and
outline further research topics we identified based on this work. But prior to
that, we give a brief introduction into background and motivation of this work,
and depict potential application fields below.

Smart Environments [5, 6] are indoor environments intended to give assis-
tance to people who perform specific everyday activities, with the latter being
mostly predetermined by the properties and the equipment of the environment.
The desired assistance is then given in form of automatic responses to the peo-
ple’s actions. The underlying techniques leading to such proactive assistance
functionalities can conceptionally be divided into two main subprocesses: First,



Intention Analysis determines the current user goal (probabilities). This happens
based on (i) a user or activity model and (ii) on a observation or sensor model.
By then, Strategy Synthesis can take place, which is supposed find a reasonable
plan of actions for the (ad-hoc) device ensemble. Since Intention Analysis relies
on robust and accurate sensor data, and location information is a fundamental
subset of sensor data, this work aims at enhancing the quality and accuracy of
existing location systems by sensor data fusion.

2 Technical Background

A great number of location sensing systems is available. The probably simplest
ones are little expressive but simple binary sensors such as Passive Infrared
sensors, light barriers, and pressure mats, which are merely able to detect the
presence of an object which is heavy or big or warm enough to trigger the sensor.
Passive location systems are inherently not able to distinguish between different
objects, and thus do not provide any identification or labelling mechanism.

A rather sophisticated passive location system is given by the SensFloor
system, which is basically a flooring of sensitive tiles, with the relatively high
resolution of 32 sensor tiles per square metre. The manufacturers’ description [12]
reads as follows: ” A grid of sensors underneath the flooring [that] detects local
capacitive changes in the environment brought about by humans walking on the
floor. By design, this method does not allow for an identification of individuals.”
The latter comes with the advantage of no requirement of additional technical
devices on the part of the persons to be tracked. The sensor tile arrangement
can be seen in Fig. 1. Every floor tile is able to detect if its area is being covered
by an object. It will give signal true if an object is present and signal false
otherwise. Through the built-in recalibration mechanism, sensor tiles are able to
adjust themselves to fixed furniture parts as chairs and tables.

Within the SmartFloor project [9] pressure sensitive floor plates were utilised
for person identification and tracking, based on information about the load,
exerted by persons, which is quite more expressive data than e.g. the binary
SensFloor signals. Similar projects or products utilising floor tile based sensors
or sensor data are: SmartCarpet [11], TileTrack [14], and Z-Tiles [10]. For a
good overview of location tracking approaches, [7] may be consulted.

By contrast, active location systems require additional technical devices on
the part of the users which are to be located or tracked. Thus, they allow for a
unique assignment of sensor data to persons. Most of them are highly specialised
solutions based on UWB pulses such as the Ubisense RTLS [4] and the XSens
Motion Grid [2, 8], or on ultra-sound pulses such as Sonitor [1]. Another example
is a fixed RFID scanner which produces a reading everytime an RFID tag passes
at short distance, with the tag making the passing person clearly identifiable.
By all active systems known to the authors, tags are handled system-unique.
Thus, they allow inherently to keep track of the tagged persons, e.g. even in
situations when two or more objects pass each other at short distance, which is
a characteristic problem during tracking tasks. To the contrary, passive systems



Fig. 1. SensFloor sample setup and sensor data, red areas indicate activated cells

cannot discriminate or identify persons, for what reason this tracking problem
can become an intractable task to them, and the exclusive usage of passive
systems would quickly suffer from this technical limitation. Taken this together
with the quite strong assumption to have every user carry a tag, a combination
of these two kinds of location systems, so that this assumption can be weakened,
seems to make sense.

The authors of [13] have established a location system taxonomy which dis-
tinguishes between intrinsic and extrinsic traits, with the latter being traits that
are not held by a humans inherently. They need to be “lent” by some technical
device resembling the above-mentioned tag. But note, that the disambiguation
among passive and active systems we require in the context of this paper differs
a little from [13]: In our point of view, any sensor system that comprises some
object ID mechanism and thus gives us a unique assignment of a location mea-
surement to a specific person and hence the opportunity to keep track of people
inherently, would be called active system, regardless of whether a technical de-
vice was involved. To give an example, all kinds of camera-based approaches
making use of face recognition (with the face being an intrinsic trait) to identify
people and hence being able to keep track of them, would need to be stated as
active in this context.

For our experiments we utilised our SMARTLAB: An instrumented meeting
room (cf. Fig. 4 of section 3) equipped with a number of remotely controllable
devices. Besides for experiments, the SmartLab is frequently used as a common
seminar room for lectures, presentations, meetings, and the like. Our laboratory
is equipped with a couple of sensors, required to observe state changes in the
room. Besides sensors capable of detecting whether the windows are closed or
opened, or measuring the current temperature, or detecting persons that enter
or leave the room, we have got a SensFloor installation covering a specific part
of the room area as well as a Ubisense RTLS system running. Besides the sensors



there is a number of remotely controllable devices which are required in typical
meeting rooms: Dimmable lamps as well as movable projection screens and sun
shades, controllable via EIB, a computer video and audio matrix switcher to
connect brought-in devices with the installed projectors and an audio equipment,
just to mention the most important. Furthermore, our SmartLab also features
a powerful middleware [3] which on the one hand allows for ad-hoc control of
all currently present hardware by using simple commands. On the other hand,
apart from triggering device actions, our middleware enables every device to
make its specific properties accessible to other components in the system, for
instance through a tuple space. Thus, every component has the opportunity to
watch the entire world state at a glance whenever needed.

3 Owur Approach

3.1 Situation and Sensor Abstraction

We consider the area of our SmartLab as a finite set of locations L, e. g. the cells
of a grid. With a(o,!) being the area covered by an object o at location | € L,
c(ay, az) describes the coverage of an area a; by another area ay as

s o(a; Nas)

c(ay, az) o ()

with o(S) denoting the size of area S, e. g. the number of covered cells.

The measurement area of our SensFloor installation (cf. section 2) can be
considered as a set of n floor tiles 71.,, with every 7; covering a specific area
a,,. Every such sensitive floor tile can be seen as a random variable Z;, giving
values of either 1 or 0, while a reading of 1 indicates an object covering that tile,
and a reading of 0 means no coverage. In order to take erratic sensor data into
account, we will introduce e;o as the probability of getting a 1-reading even if
the tile area isn’t covered by any object, and eg; denoting the probability of
reading 0 even if the floor tile is entirely covered.

As an active location system based on tags we have presented Ubisense RTLS.
We assume every tag ~; with ¢ € [1 : m] to be fixed to the person w;. Each of
those tags 7; can be seen as a random variable Y; giving values I; € L. The
probability of receiving the sensor reading y;, given object w; at location I; can
be described e.g. as p(yi|l;) = N(yi|p = l;, X), a normal distribution centered
at [; with X' denoting the measurement error of this sensor reading.

3.2 Probabilistic Model and Inference Strategy

Further random variables X; (¢ € [1 : m]) bring the above random variables Y;
and Z; into relation with the persons which are to be located. The structure of
the random variables together with their conditional interdependencies are given
by the graphical probabilistic model in Fig. 2 and defined as follows.
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Fig. 2. Graphical model of the probabilistic structure governing our SMARTLAB.

We assume that locations of people cannot overlap. Thus, a maximum of
m persons Xj.,, are able to be present, with m depending on the size of the
room as well as its equipment with desks and other furniture elements and also
on the spatial needs of each person. We assume that k persons (k < m) are
wearing tags. We call the m — k persons who are not wearing a tag anonymous.
We can hence assume a minimum of £ and a maximum of m persons present in
our room, and the following question was raised: How many anonymous persons
are indeed present in our room and what are the most probable locations of all
of them?

Our graphical model Fig. 2 describes every person Xi., as a joint condi-
tional density, consisting of two random variables: Visibility V; and Location L;.
Thereby, V; is a flag that reads V; = 1 if X is visible and V; = 0 otherwise, and
was introduced for handling different numbers of persons: Only if a person is
visible it can cause sensor data. The location variable L; resembling the person’s
whereabout delivers elements out of the set of possible locations L.

Because each person X; with i < k is wearing a tag it has got a direct impact
onto the sensor data of this tag Y;. Solely visible persons can be the cause for
sensor data at all. The sensor tiles 7; are fixed to their locations within the room
and can possibly be activated by every user within range, but again only if this
user is set visible. This explains why every person’s visibility V; is linked to its
own tag variable Y; and to all of the sensor tile variables Z;.,,.

Furthermore, whenever V; = 1 this means that person X; will occupy some
free space which then cannot be used by other persons. That’s why every V; is
linked to every L;; . Finally note the bidirectional correlation between all of
the L variables. This is because user X; cannot share location with user X, if
V; = V;y = 1. Therefore, if we have several location variables L;.,, all of them are
correlated due to the assumption of non-overlapping personal occupation areas.

Based on this model, our goal is to compute visibility and location of all
persons X;.,,, simultaneously, given k tag readings and n sensor tile readings:

p(xlzm|y1:k7 Zl:n) = p(vl:my ll:m|y1:k7 Zl:n)



Because of the mutual interdependencies of the L; variables, this posterior
density is possibly not manageable at all the analytical way, even when using
grid-based approaches. Thus, we needed to resort to sampling methods. For this
actual case, Gibbs sampling promised to be an appropriate inference method by
sequentially checking if (i) making a single person X; visible and (ii) placing it at
some available space would bring out a better explanation of the observed sensor
data. Based on this, we can sample v; and [; proportional to the possible visibility
and location values. The structure of a simplified Gibbs sampling process is
shown exemplarily in Fig. 3.
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Fig.3. Expanded Gibbs sampling structure of a simplified model considering
m = 2 persons with k = 1 of them wearing a tag. Sample duration: 2 time slices.
Note: t — 1 and t are sample indices, not timesteps in terms of a clock time.

Given a sample ng;l), Gibbs sampling creates for every i € [1 : m] a new

sample xﬁn by sequentially drawing
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We end up having two densities, which we want to sequentially draw samples
from. The following two sections cover their derivation.



3.3 Sampling a Person’s Visibility
By marginalisation and the Bayes’ Theorem:
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We can hence sample vlm by (1) computing f(1) and f(0), (2) drawing u ~ U(0,1),
and (3) setting vgt) =1, ifu> % and vl-(t) := 0, otherwise.
With the following three paragraphs We outline the main ideas and the

1Dy ) (term 4).

? ? Z

derivations of the three factors of g(



p(y: | lgt), vit)) This factor describes the sensor reading probability of tag y;
given both visibility and location samples of person w; at sampling step t. For
simplicity reasons, we assumed that anonymous persons wear mock tags, which
always return 1:

1 ifi>k
(1D By =
pyi ;7 v;7) N (yilp = ll(t)’ X)) otherwise

Note that for tagged users p(y; | lgt), Ul(t)) =0 if vft) = 0. That is why vi(t) =0is
impossible, since in this case f(vft)) = f(0) =0 so that f(1)/(f(1)+ f(0)) = 1.
Thus p(‘/;(t) =1)=1

p(z1:n | mgtz,mgi_llr)n) The probability of the SensFloor readings zi., given

both the visibility and location of every person, can be simplified due to the
(t=1) ) =

1+1:m
[ p(2| :vgtz, :cgj__llgn) We assume for each tile a causal connection between its
coverage ¢ and the probability p(Z = 1| ¢) of getting a 1-reading from that tile.
Furthermore, we introduce two error probabilities, e;)o indicating the probability
of a 1-reading even if ¢ = 0 and eq|; the other way round. Based on this, we de-
fined a linear SensFloor activation function: p(Z = 1| ¢) = eyjo+ecx(1—eqjo—eoj1)-
Other shapes like threshold or logistic functions, possibly tile-specific, could also
be used if appropriate.

independence of sensor tile readings given the causes: p(zl;n|x§2,x

p(lz(-t) | :cgtzz_l, wij__llzn) The probability of a location I; at sampling step t, given

both the visibility and location of all other persons, encompasses several aspects:

— Once we have placed all persons except w;, they cover specific parts of the
area. The remaining areas can then be treated as probable locations.

— Non-accessible areas like desks and other furniture can be regarded through
a predefined weight function which assigns lower weights to those areas.

— Person-specific location preferences (possibly resulting from the person’s cur-
rent activity) can also be covered, yet were initially assumed to be constant.

— The set of possible locations can be restricted to a subset if there are areas
where persons cannot be the cause for sensor data at all.

With this, we are able to handle the complexity which arises from the pairwise
interdependencies between the persons’ locations by

(t=1)

. —1
p(l@ |$§t) 1 Tig1im) = {ap(l’(’t) ey lz@ Ny R(Wi;mgfz_l’xl(':-l:zn)

0 otherwise

where R(wi;x%gfl,x;i%) is a set of available locations (based on the spatial

needs of person w; and all the other persons), weighted by a function a.



3.4 Sampling a Person’s Location
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These two factors have already emerged in the previous section within term 3.

For a discrete set of locations £, sampling p(ll@ | .1732_1, vi(t), ;zzgi_llgn, Y1k, Z1:m)

1@ 1) = g(l,vgt)) for every | € £, and (2) drawing

amounts to (1) computing w

1 proportional to wgt)(l).

4 Initial Simulation Studies and Results

The SMARTLAB situation is depicted in Fig. 4 (right). The area (approx. 7x 7 me-
tres in size) was represented by an 18 x 18 matrix. Coloured grid cells stand for
covered areas while occupation ranges from red (fully covered) via blue (less
covered) through to white (not covered). There is a U-shaped desk arrangement
and a chair. The SensFloor is represented by 64 grey cells in the left part of the
room. Little gray squares indicate activated tiles. The gray circular area rep-
resents a tag reading at position (3,6) and the 95% confidence region for the
covariance governing the underlying distribution (here: X' = (3-§3-2)).

Fig. 4. left: our SMARTLAB, right: initial setting for our simulation studies

As there is just one tag reading, we know there is one tagged person. Following
questions were raised: How many untagged persons are there? And what are the
potential locations of all the persons?

Two simulation runs with N = 1000 drawn samples each have been per-
formed, and a maximum number of m = 11 persons has been assumed. The first
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run (Fig. 5 (left)) employed parameters indicating relatively unreliable sensors
(e10 = 0.1, eqp = 0.1, ¥ = (:§ §)) and a small footprint. The second run (more
reliable sensors ey = 0.01, egp = 0.001, X' = (¢ %), and large footprint).

Figure 5 shows the simulation results using those two different parameter
sets. For each run a single sample is depicted upper left to give an idea. Find
next to it the distribution of the number of visible people. The lower left picture
shows the distribution of all the placements of the single tagged person, and in
the lower right figure all possible locations of all anonymous persons are shown.
Note that the anonymous persons are permutable, that is why their placements
have all been put into a single figure. The first run resulted in a mean of 5.3
persons (sd=0.99, median=>5), while the second provided a mean of 3.37 persons
(sd=0.61, median=3).
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Fig. 5. left half: Simulation results using unreliable sensors and small person footprint
right half: Simulation results using reliable sensors and large person footprint

5 Conclusion and Future Work

The paper presents first a classification scheme for multimodal sensor equipments
which distinguishes between active and passive location systems, the first of
which operate in a tag-based way and allow unique assignment of measurements
to users. Passive location systems without any identification mechanism cannot
make any statement about which person has caused an observed sensor reading.

An overview was given of the specific setup of our experimental environment,
the SMARTLAB. It is equipped with various sensor systems two of which are a
SensFloor system covering an area of 4 square metres and a Ubisense RTLS cell.
Within this work, the latter has been considered as a representative for active
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location systems while the SensFloor system has been demonstrated as a sample
passive location system.

Given this multimodal sensor setup as well as an application scenario regard-
ing multiple persons being partially equipped with active tags and a set of sensor
readings originating from both location systems at a specific point in time, the
question was raised: How many persons are inside that environment in total and
what are their respective locations?

In order to answer the above question, we obtained a unified probabilistic
modelling approach, which is fit to take simultaneously into account the number
of persons and their respective locations with respect to sensor data from both
active as well as passive location systems. Furthermore, the presented approach
provides several modelling interfaces to deal with the following issues, which
either already have been addressed or can readily be tackled:

— Application of detailed error models for both kinds of location systems to
model their actual reliability, possibly even down to the level of individual
tags or sensor tiles, when necessary (cf. section 3.3)

— Consideration of non-accessible areas due to e.g. walls, desks, chairs, and
other furniture

— Distinction of differing personal occupation areas which cannot overlap

— Integration of personal or role-based location preferences possibly capable
to regard current user or group activity

Note that the last point inidcates an interface to overlying components such as
activity or intention recognition (cf. section 1). With this, certain knowledge
about current user activites could possibly enhance location results.

We have shown results of initial simulation studies. They were delivering
promising results, though they revealed several open questions: The actual pa-
rameters which fit for the existing location systems in our lab still need to be
figured out. Once we have obtained the number of anonymous persons, proba-
ble locations for each of them need to be estimated. Bump Hunting algorithms
should be suitable for this task, and we are working on this topic at the moment.

Besides this, within the presented model anonymous persons are only of
interest regarding their number, and not with respect to specific attributes,
what makes them pairwise permutable. We have not yet looked carefully enough
at this circumstance and still need to learn if and how we can profit from that.

Note further that we have not elaborated within this work the integration
of location development over time, the motion of persons. The proposed model
and inference method so far are especially of interest when we are beginning in-
ference, i.e. when we want to process the very first observation vector. Though
we have not yet integrated motion-related issues, the proposed modelling ap-
proach can be extended in order to support person tracking tasks. At first sight
this extension could comprise the integration of further random variables rep-
resenting motion speed and direction, and would further require a mirroring of
the whole model from Fig. 2 together with the formalisation of the respective
relations between random variables of timesteps ¢ and ¢+ 1. The employment of
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an appropriate inference method (e. g. (Rao-Blackwellized) Particle Filter) could
make the model suitable for online processing.

Another issue which we are currently elaborating is the exact determination
of the paramaters of the proposed sampling algorithm: The error models of both
presented location systems have not yet been investigated carefully enough. But
initial measurements concerning Ubisense RTLS encourage us to carry out more
detailed studies: They created doubt if normal distributions fit best to model
location errors. In addition to this, one error model could be insufficient to
describe the error distribution(s). However, the results will be helpful anyway,
as we are examining simulation tasks of smart environments as well.
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