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Abstract. User activity prediction can enable powerful personalized services 

such as target advertising, contextual recommendations, and advanced remind-

ers and social coordination. Predicting user activities is non-trivial for many 

obvious reasons. This paper focuses on predicting future user visits to various 

venues based on past visit history. Our approach is most notable in its efficien-

cy and the actionable predictions it produces for recommendations. Experi-

ments based on a large Foursquare data set shows that our approach has an ac-

curacy of up to 76% compared to the 40% from naïve methods, and also pro-

duces up to 10x less false alarms. Our experiments unearthed some other inter-

esting insights and inspired several promising research problems. 

1 Introduction 

Activity prediction is a new technology that has applications to targeted messaging, 

recommender systems, transportation optimization, home heating energy savings, and 

social coordination. The idea is to analyze data from several sensor streams (GPS, 

Email/SMS, audio, web pages viewed, etc.) and use them to update a user model that 

predicts what the user will do next from patterns observed in past data. In the context 

of targeted messaging and recommendation, the prediction can be used to pro-actively 

push information related to the predicted user activity at the right moment ahead of 

time. For instance, we may predict that a business traveler is likely to travel to a des-

tination in 3 weeks and that he is likely to purchase air tickets 2 weeks ahead of his 

travel (i.e. within 1 week). In this case, we may want to push an alert (e.g. via email, 

text message or phone pop-up) to the user in 1 week with an airline discount offer that 

is attractive to the user. This proactive push is especially useful given that most com-

panies book discount travels for their employees, and once the traveler commits to a 

ticket, it is non-refundable (even if there is a much cheaper discount available from 

another airline). 

Herein location check-ins are used in place of activities for inference. There is a 

close relationship between place and activity [2], and many techniques that are ap-

plied to only predicting place can be easily extended to predicting activity. This paper 

thus specifically focuses on location prediction, in order to facilitate making the 



aforementioned hyper-personalized recommendations. This entails solving two chal-

lenging problems: (1) predicting the probability of future activities, and (2) triggering 

a recommendation action based on the computed probabilities (most prominently if it 

crosses a certain threshold).  

The former is challenging in two respects. First, there might not be much history 

available per user per location to find meaningful patterns. In a realistic application, 

the prediction has to be made in real-time for thousands or millions of users with 

many activities per user, rendering the cost of computation a potential concern.  

The latter is required because recommender systems must act on certain predic-

tions about whether a future activity will take place. Choosing the right threshold of 

activity prediction certainty can have significant impact on the effectiveness of a rec-

ommendation. If the threshold is set too low, many low probability activities would 

result in irrelevant recommendations being made; conversely, if it’s set too high, 

many relevant recommendations may not be made.  Even in cases where the recom-

mendation system is trying to choose the most probable alternative from a number of 

alternatives, one can argue that the recommendation system should choose to take no 

action, if the probability of all alternatives is below the optimal threshold.  

   While there is much relevant work in this popular space, little has been done to 

address the challenges set forward above. This paper is our attempt in bridging this 

gap, initially focusing on predicting future visits to venues using the four square data 

set as a reference.  

   In the process, we have made the following research contributions:  

 An efficient method for predicting the probability of location visits.  

 A utility-driven method for triggering contextual recommendations based on the 

predicted probability  

 Empirical validation and findings using a real-world, large-scale data set: the pub-

lic four square check-in data [7].  

 Identifying a number of related research problems that merit further investigation.  

The remainder of the paper is organized as follows: the sequel overviews the four 

square data set referenced throughout this paper. Section 3 discusses our method of 

location prediction in detail. Experiment setup and results are described in Sections 4. 

Section 5 reviews related work, before we conclude and outlines a number of promis-

ing pieces of ongoing and future work in Section 6.  

2 Foursquare data 

Our data consists of more than 180 million public check-ins by Foursquare users from 

April 2010 through mid-2011.  We are continuing to collecting more data and have 

plans towards making this data available in the future.  

       As illustrated in Figure 1, as users check-in in Foursquare, we listen to corre-

sponding public broadcasts in Twitter [8] and build a database of check-in events over 

time.  
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Fig. 1.   Foursquare data overview: collection and schema  

2.1  Data collection and filtering 

When a user ‘checks in’ to a location with Foursquare, they are given the option to 

publicly broadcast the check-in via twitter. We had a Twitter  filtered search set up to 

listen for tweets that contained text strings that might indicate a Foursquare check in. 

The default check-in message usually contains a URL (e.g. “I’m at HSBC (Plaza Fies-

ta, Merida) http://t.co/svYDhTW2”), so we listened for “4sq.com” and “t.co”.  

      To capture the public check-in tweets, we ran a single Java process that connected 

to Twitter’s Streaming API and registered interest in a set of search terms as de-

scribed earlier. For expediency, and because of the potential burst nature of any Twit-

ter feed, the raw JSON text of the tweets was simply saved to log files. Periodically, 

usually once per day, the contents of any new log files were decomposed into relevant 

fields (Twitter userID, tweet ID, embedded URL of check-in, etc) and imported into a 

MySQL database. Some tweets did not resolve to a check-in or lead to a venue. Those 

tweets were subsequently ignored in the database. 

 The vast majority of users that publicly tweeted their check-ins only did so a few 

times so, for our purposes, we selected a subset of users that had each checked in at 

least 500 times. This gave us roughly 8800 sets of check-ins to work with, comprising 

~6.7M check-ins to ~967K venues. 

2.2 Data description 

Each check-in event consists of a unique ID, an ID of the user who checked in and 

further information about the venue, including the full name, street address, city, state, 

postal code, country, latitude, longitudes, and a tier 1 Foursquare-assigned category 

and a tier 2 category (e.g. “Food/Coffee Shop”).  There are a total of 8 Tier 1 catego-

ries as enumerated in Figure 1 and numerous tier 2 categories per tier 1 category.  



3 Methodology 

Accurately predicting the fine grained behavior of individual users can be very diffi-

cult. The prior evidence available for any one user about events for a specific day, 

time and tier 1 and 2 venue type will often not be sufficient to make accurate predic-

tions.  This is particularly true for new users that have little history with the system 

(i.e., the cold start problem).  This sparseness is apparent in the activity history plots 

taken from our Four Square dataset. A plot for a single user is shown in Figure 2.    

We address the data scarcity problem in part by ignoring the specific time of day 

and predicting only the venue type (e.g., generic restaurant).  Unfortunately, the data 

will still be too sparse in many cases for new users.  A standard statistical technique in 

such situations is to make use of priors. In this case, we opt for the conceptual sim-

plicity of an Empirical Bayes formulation [10]. As we will explain, this choice also 

supports our desired architectural decomposition. We first model the venue visit 

probabilities for the population as a whole. So on average, we might discover people 

are most likely to visit restaurants around Noon and 6:00 p.m.  We then use the max-

imum likelihood estimates for the population visit probabilities as priors for individu-

al level models.  In the absence of additional information, the individual would be 

predicted to follow the population trends.  However, if there is specific evidence for 

the individual, this evidence could override the population.  So, if an individual likes 

to go out with friends on Fridays to a very fany restaurant, the record of their actual 

behavior would cause their predictions to diverge from the population on Fridays.   

As explained in Section 1, modeling the visit probability is only the first step.  

Given the probability of a visit, we must decide whether the strength of the prediction 

warrants taking an action (such as making a recommendation, sending a coupon, or 

initiating a survey). The details of our prediction model and the procedure for tuning 

the decision threshold are described below.   

 

                     
 

Fig. 2. Example of Four Square visitation data for an individual user and illustration of the 

problem of predicting visit on a given day. Different colors represent different venue types. 

3.1 Logistic regression of contextual factors 

We choose to use logistic regression models for both individual and population level 

predictions. Logistic regression is attractive for our problem, because it’s computa-
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tional inexpensive to evaluate probabilities at run time and the shape of the model 

appears to fit the patterns we can visually see from the data well. We use logistic 

functions of the form  

 logit(p) = a + b1 * x1 + …… + bn * xn  

where a is the intercept  xi represents the value of the i
th

 feature, bi represents the 

learned weight of the i
th

 feature and p is the probability of a future activity taking 

place given the feature variables. 

Categorical variables, where there is no natural ordering, are represented by a set 

of binary variables with one variable for each category.  Each binary variable takes 

the value 1 when the categorical variable is in its corresponding state. For instance, 

the day of the week feature is converted into 7 binary feature variables {isMonday, 

isTuesday. IsWednesday, isThursday, isFriday, isSaturday, isSunday}. In our model, 

this categorical feature is augmented by a numerical variable daysSinceLastVisit.  

The intercept and the weight parameters for each feature must be learned.  For both 

the intercept and the parameter weights we specified essentially an uninformative 

prior (a normal prior with mean 0 and variance 1x10
6
). We then used Gibbs sampling 

[10] to estimate the parameters for the population from the data.  This then gives us a 

model for predicting the visitation behavior of an average individual drawn from the 

population as a whole. 

A key tenant of personalized recommendation, however, is that each individual is 

different.  To accommodate individual differences, we learn individual models. Fol-

lowing the empirical Bayes paradigm, we use the maximum likelihood values from 

the population model parameters as the prior mean for individual level models and a 

variance of 0.001 for the individual level model prior variance. This causes individu-

als to generally fall in the range of the population probabilities unless the individual 

provides significant evidence of deviations from population behavior.  

3.2  Setting the triggering threshold for predictions 

Given a probability of a visitation, we must decide whether the recommender should 

take action. A common method of making this decision is to set a threshold K and 

decide to take action whenever the probability of a visit exceeds K. The optimum 

value for K can be found by defining a utility function and searching for the threshold 

K that maximizes expected utility. As shown in the confusion matrix below in Figure 

3, a prediction can result in one of four possible outcomes. Given a specific K, each of 

these outcomes will have a probability. Thus K determines the trade-offs between 

these outcomes. 
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Fig. 3. Given a probability threshold K, the confusion matrix describes the probability of a true 

positive TPK, false positive FPK, false negative FNK, and true negative TNK (left). The trade-

offs amongst any two of these four probabilities are often captured by an ROC curve (right).  

In this work, the expected utility function has the form: 

U(K) = a1 (TPK) + a2(FPK) + a3(FNK) + a4(TNK) .  

The a1 term represents the value to the user when we correctly predict their visiting 

behavior and would be generally be positive. The term a2 represents the case where 

we believed they would visit but did not. In the case of pushing coupons this could 

result in negative value as we have bothered the user with a coupon that was irrele-

vant. Similarly, the a3 and a4 terms represents the cost associated with these out-

comes. The optimal threshold is simply: 

 K* = argmax U(K) . 

First, a K  must at a minimum ensure that the decisions we make are superior to a 

designated baseline method where no prediction is used. For example, one baseline 

may be always predicting there is a visit, or nor a visit.   

Second, we seek a K. that yields a high (if not maximum) utility score. While a 

brute force approach is in principle possible, it can be expensive given a large number 

of possible values of K, , especially considering that the search process has to be re-

peated for the number of users and the number of venues per user).  

We adopt a greedy approach, where we first search the entire space [0,1] at a 

coarse granularity to determine a promising range around the K with the highest utili-

ty score which also satisfies the baseline criterion above. We then iteratively search 

the promising area at a finer granularity; and so on until the granularity is deemed 

sufficiently fine. If at acertain iteration, the highest utility score is no better than base-

lines, we redo the search of the entire space using a finer granularity (vs. focusing on 

a promising local area) in the hope of finding a threshold value that outperforms the 

baseline.  An example heuristic is outlined below.  

DEPTH = 0; 

K = 0; K = 1 

1. P = {K , K +delta, … , K -delta, K } , DEPTH = 

DEPTH + 1;  

2. FOR all K in P,  



Compute the corresponding TP, FP, FN, TN and  U(K ); 

3. Find the K* in P with the highest utility score,  

4. IF U (K*) >= U(Baseline) THEN GOTO Step #5 

         ELSE  delta  = delta / 10; GOTO Step #1.  

5. IF DEPTH > 2 THEN EXIT,  

         ELSE GOTO Step #6 

6. delta = delta / 10;    // Increase search granularity, 

7. K = K*– 5 * delta; K = K*– 5 * delta;  

8. GOTO Step #1 

4 Experiments 

We evaluated our approach against the four square data set. The goal was to show 

the efficacy of our approach and to learn lessons on what could help us do better. 

 

4.1 Software and Hardware setup 

We implemented an end-to-end prototype for the approach detailed in Section 3, 

including (a) automated data pre-processing, (b) automated model learning, (c) auto-

mated prediction and result evaluation/visualization. The implementation was done in 

a combination of R, Jags [10] and scripts.  

We performed experiments using the prototype on a compute server running Ub-

untu 10.04 LTS. It has 8 Intel Xeon E5640 CPUs, each with 4 cores running at 

2.67GHz, 16Gb of physical RAM and 300Gb of swap space.   

4.2 Evaluation Method and Metrics 

We divide our data into a training set and a test set. For our population-level predic-

tions, we use the model to predict visits of users that are not used in training. At the 

individual level, since there is often sparse data regarding the visits of a particular 

user to a particular fine-grained venue, we use a leave-k%-out strategy to estimate the 

TP, FP, FN, TN given a set of training data. The first (100 – k) % of the data will be 

used for training and the last k% used for testing and computing the TP, FP, FN, TN.  

In order to reveal more interesting insights, we contrasted three different visit 

probability models: (1) weekday, (2) daysSince and (3) weekday + daysSince. They 

respectively use weekday, daysSince and the combination as contextual features in 

the logistic regression. Two baseline methods, namely AlwaysVisit, NoVisit, were 

used, where the baseline always predicts there is or is not a visit, respectively.  

 We use the following metrics to gauge the quality of prediction:  

 Accuracy = TP + TN / total 

 Precision = TP / (Predict Visit) 

 True Positive Rate (aka Recall) = TP / Visit 

 False Positive Rate = FP / No Visit 

 F-Score = 2*Precision*Recall / (Precision+Recall) 



More business driven metrics for contextual service applications can include adver-

tisement click-through rate lift and Return-of-Investment (ROI) lift. We are not in a 

position to measure these with the four square data set, but plan to do so by integrat-

ing our approach with a live application in the future.  

 

4.3 Overall performance results 

We compared the overall performance of our models against the baseline models, on 

average, across a subset of 2000 users and across all venue types defined by Four-

square.  Figure 4 presents the results of this comparison. The most notable and busi-

ness-relevant highlights are:  

 At the population level, our approach is up to around 2x more accurate vs. baseline 

(76% vs. 40%) and produces around 10x less false alarms (8% vs. 100% ) 

 At the individual level, our approach is up to around 1.5x more accurate vs. base-

line (58% vs. 40%) and produces around 2.5x less false alarms (43% vs. 100% ) 

  

Fig. 4.  Overall performance – population (left), individual right). Each bar group compares 3 

of our models against 2 baselines regarding a different metric. A higher score is better for the 

first 4 metrics, while a lower score is better for false positive rate (fpr).   

It is interesting that the weekday model performs considerably worse than the days 

model overall (considerably worse at the population level). This prompted us to inves-

tigate the difference in the next subsection. Furthermore, using more features does not 

guarantee better results. (e.g. see weekday and days vs. daysSince alone in terms of 

recall and precision in the population case).  

4.4 Model sensitivity to venue types 

In order to unearth the reason behind the dramatic difference between weekday and 

daysSince model performance seen in Figure 4, we compared weekday and daysSince 



model performance for each venue type and observed that the daysSince model was 

far superior in most venue types, but for some venue types, the weekday model was 

more accurate.  Figure 5 shows two venue types where the latter is the case. This can 

be explained by the that the weekday is a powerful predictor when it comes to places 

like hotels and bus stops where traveler activities tend to exhibit strong weekday pat-

terns like the hotel being more busy during the week than on weekends.  

 

       

Fig. 5. Results for two example venue types where the weekday model is more accurate than 

the daysSince model. The style of presentation was the same as in Figure 4. 

4.5 Model sensitivity to training set size 

We also explored the sensitivity of our approach to training set size. This is partic-

ular relevant at the individual level, as not much data may be available for certain 

individuals and/or venues. Figure 6 illustrates the overall sensitivity of the daysSince 

and weekday models, average across all venue types and different users. The weekday 

model is more sensitive, because there are more logistic regression parameters to 

learn due to the categorical variable conversion in Section 3.2. The sensitivity is high-

er when there is little data available, but less so where there is more data.  

 

Fig. 6. Overall daysSince and weekday model sensitivity to training data size 



5 Related Work 

While many projects have looked at location as a context variable to be condi-

tioned on, relatively few projects in the pervasive community have looked at estimat-

ing the probability of location visits themselves. Estimating location visit probabilities 

however, is key to accurately targeting services appropriate to future user locations.  

Partridge [2] points out that the problem of training a classifier to predict user ac-

tivities from GPS traces inherently faces the challenging problem of sparseness and 

ambiguous labeling. Partridge exploits detailed activity census data collected for gov-

ernment social services work to get around the sparseness and lack of labels in GPS 

data sets.  In our case, however, we need to predict actual locations in the real world.  

Activity labels, or even abstract locations such as ‘workplace’ are insufficient.  

Like our work, the CLAR system [6] tries to predict user behavior from GPS traces 

but the behavior of interest for them is the user’s activity given a location or a loca-

tion given an activity. They do not deal directly with the problem of trying to infer the 

probability of a visit to a location. The GM-FCF system [5] directly makes location 

aware recommendations to users using a novel combination of social relations and 

geographic information.  Again, although they exploit location to improve recom-

mendation, the probability of visiting a location is not explicitly inferred.  The Magitti 

recommender system [1] incorporated mechanism to infer user activities from unla-

beled GPS traces. Using many observations of the user over time, a non-parametric 

nearest neighbors approach could extract the significant attributes of regions over 

time in order to extract a model of what type of activity the user prefers at a given 

time (say eating on Fridays at 1 pm) and well as important attributes of this activity 

(prefer Asian food, restaurants with patios and non-smoking venues). Again, the em-

phasis here was on predicting activity preferences rather than the probability of visit-

ing a particular location. 

The FLAP system [4] exploits Twitter users whose location is known with high ac-

curacy to predict the location of friends whose location is unknown. Message overlap, 

collocation features and the overlap of friends lists are used in a Markov Random 

field to infer the friendship graph.  Given the friendship graph a dynamic Bayes net in 

which the users past location, the location of all the user’s friends, the time of day and 

the status of the day (work/free) is used to predict the user’s current location.  The 

authors demonstrate the method on twitter populations from LA and New York and 

show that the model predicts user locations quite accurately even for users with no 

explicit location data (54%). While these results are impressive, exploiting social 

relationships is not practical in our intended application area.  In the NextPlace sys-

tem [3], repeating temporal patterns associated with individual locations are extracted 

by non-parametric time series analysis. To predict a visit to a location at a time t, a 

vector of length m preceding the time to predict is extracted. This prefix is then 

matched against all possible previous positions in the history for this location. The 

authors use the best match to predict the time of the next visit. The NextPlace model 

can capture the fine micro structure of sequences of events predicting a visit to places, 

but the prediction model does not take full advantage of probabilistic representations 



to combine data. It might be possible to combine our hierarchical statistical model 

with such as system to increase accuracy.   

6  Conclusions and Future work 

This paper has presented a method for predicting future user visits to venues, for 

the purpose of providing better contextual recommendation service to the user. Rather 

than a complex model, we opted for a simpler, efficient logistic regression model that 

proves reasonably accurate against a real-world data set. Instead of focusing our ef-

forts solely on the probability model (as is in many related works), we proposed a 

novel way to configure the model with the aim of providing the optimal decision in-

put into a contextual recommendation environment. 

We have conducted experiments against the four square data set, including empiri-

cal validation of the accuracy of our approach, and empirical understanding of our 

approach’s sensitivity to venue type and training data set size. 

Our experience with the Foursquare data has enlightened us to a number of ideas: 

 Application integration: We aim to integrate the prediction with a prototype cou-

pon recommendation engine, so that coupons may be recommended to users at the 

right moment ahead of time. This capability may dramatically improve user ac-

ceptance of the offer, as people can now receive the recommendation when there is 

still time to change their plans and actions (for example, switching to an airline 

with a discount offer before they have already committed to a non-refundable tick-

et from some other airline. The integration would also allow us to measure more 

business-driven metrics such as advertisement click-through rate lift and Return-

of-Investment (ROI) lift. 

 Segmented model: The current embodiment is a method of determining a general-

ized decision tree (also known as logistic regression tree), in that the leaves of the 

tree are logistic regression models (vs. a prediction value). The input to the model 

is a set of feature variables, including contextual factors (such as time of day, loca-

tion etc) and past activity history (such as time since last visit to a venue) from the 

same or other users, the output of the model is the probability of an activity for a 

given user. 

 Scalability: The kind of analytics described in this paper often need be conducted 

in a real-time manner. This problem is particularly challenging as it scales, that is, 

when we are continuously collecting and analyzing data about millions of mobile 

users from dozens or even hundreds of sensors and providing service. The newer 

generations of phones are becoming increasingly powerful processing platforms. In 

the mean time, the emergence of cloud infrastructure provides economical and vast 

compute and storage resources for conducting advanced analytics at large scale. 

We feel that uniting these two trends can address the challenge of large-scale user 

activity analytics, via a hybrid architecture that spans both cloud and mobile devic-

es. 

 Privacy: Population level predictions can only happen naturally in the cloud where 

data from all users are gathered. Data privacy is a critical issue, as cloud infrastruc-



ture is often controlled by third-party providers and security and privacy mecha-

nisms for the cloud are far from mature. We plan to explore sampling techniques to 

minimize the number of users having to submit data to the cloud.  

 Prediction at finer time granularity: Time of day can be a useful indicator of 

whether the user will check into a particular place.  Visual examination of the four-

square data shows that some places (e.g. restaurants, shops) are usually visited dur-

ing daytime or evening hours.  Other places (like home) can be visited at other 

times. Building a model that can effectively predict the times at which a user 

checks in is challenging.  It seems non-parametric methods such as bucketing may 

be easiest. Perhaps more desirable would be to use a model with a small number of 

parameters.  
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