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LPs und Simplex
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Fabrik - Bestmoglicher Profit?

Stahlrohre (1000€ / t)
240t pro Monat @ ,
[
ﬂ 0.8t Eisen + 0.4t Kohle pro t
/\/‘ wisen + 0.7t Kohle pro t
180t pro Monat
Kohle Stahltrager (1400€ / t)
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Etwas anders

Maximiere (1000, 1400) - Profit

240 Eisenlimit
< ..
—1\180 Kohlelimit

1Ly

Allgemein

Maximiere X

Unter Bedingungen

Ax < b
x =0
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Feasibility und Optimalitat

Eine Belegung von Variablen fur ein LP heif3t Losung (solution). Weiter
* Eine LOosung ist giiltig (feasible), wenn alle Constraints erfiillt werden.
* Eine Losung heifdst optimal, wenn der Losungswert dem Maximum entspricht.

Besitzt ein LP keine Losung, so ist das LP ungiiltig (infeasible).
Besitzt ein LP Losungen mit beliebig hohen Werten, dann ist das LP unbeschrankt (unbounded).

Lemma:
Ist ein LP feasible und bounded, dann hat das LP ein Optimum.

Beweis:

Sei X die Losungsmenge. Da das LP beschrankt ist, existiert ein Supremum s.

Da clinear ist, wird die abgeschlossene Menge X auf eine abgeschlossene Menge c[X] abgebildet.
Da s entweder in c[X] oder ein Haufungspunkt. Da c[x] abgeschlossen ist, muss s in c[X] sein.
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Graphische Darstellung

Maximiere: (1000, 1400) - ( )

X1

X2
(08 09y (%) 240
04 07/ \x,) = \180
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Ein Beispiel-LP mit Slack Variablen

Bei jeder gililtigen Losung ist die Differenz

max ¢ = Sxp+ 4xz+  3x3 zwischen der linken und rechten Seite der
st. wy= 5— 2x;— 3x;— X3 Ungleichungen nicht-negativ.
wy= 11— 4dx,— x— 2x3 — Fiihre Variablen ein, die diesen
ws = 8— 3x;1— 4x,— 2x; Unterschied angeben!

Wi, Wa, W3, X1, X2, X3 =0 Diese Variablen heif3en Slack-Variablen.

Idee: Starte nun mitirgendeiner Losung und schaue, wie diese verbessert werden kann!
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Startlosung und erste Verbesserung

max (= 5x1 + 4x, + 3x;3 Eine giiltige Losung ist
(xly xz; -).C3; Wl) WZJWB) — (0)010;5;1118)
st. wy=  5— 2x;— 3x,— X3
w, = 11— 4x; — Xy — 2X3 Wie kénnen wir das verbessern?
W3 - 8 - 3x1 - 4‘x2 - 2x3

Betrachte bspw. x;. Um wieviel durfen wir
Wy, Wy, W3, Xq,X5,X3 =0 die Variable erh6hen, sodass alle Slack-
Variablen nicht negativ werden?

5 11 8
W120:>X1S5, szoz'xlgjy W320$.X1S§

N =

5 L
Setze x; = pe damitwirdw; =0,w, =1, w; =

Ly
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Schritt 1: LP zu Dictionary

Umwandeln in ein Dictionary:

Die Koeffizienten im Vektor ¢ heifden auch
reduzierte Kosten.

L,

T

,ﬁ % Technische
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Seinun V,B € {1, 2, ...,n + m} die
Indexmenge der (Nicht-)Basisvariablen.

Dann ist zu Beginn:
N ={1,2,..,n}
B={n+1,n+2,..,.n+m}

Mit dieser Notation lasst sich das Dictionary
noch etwas anders aufschreiben!

Der Balken tiber Konstanten bedeutet, dass
diese sich uiber Iterationen verandern.
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Schritt 2: Pivotschritt

Das Dictionary:

1Ly
AT

Wiahle nunk € {j € V' | ¢; > 0}.
Existiert k nicht, dann sind wir optimal!
Erhohe nun x; so weit wie moglich.

Es muss fiir alle i € B gelten:
xX; < by — Qyexy
Da fiir ein i € B der Wert x; auf 0 gesetzt wird, erhalten

: b;
wir x;, < —.

Aik
. = b : —
Wahle £ € B mitay, > 0 und d—f kleinstmoglich.
‘k
b
Setze x, = 0,x, = —
Ark

Passe Dictionary liber den Variablentausch an!

,ﬁ % Technische
3% %E Universitit Arne Schmidt | MMA | Seite 12

E %% Braunschweig

4,
b«\rsce



Ein weiteres Beispiel

max —2x;1— Xy ¢ = —2X1 — X
st. —x1+ x; <-1 wi= -1+ X1— Xy
—X1 — 22Xy < —2 > lw, = =2+ X1+  2x;
x, <1 W3 = 1- Xy

x,X, =0

Die Losung (0,0,-1,-2,1) ist nicht giiltig!
Das LP hat aber eine Losung (z.B.x; = 2,x, = 0)

Generell: Das Dictionary ist genau dann giiltig, wenn alle b; > 0.
Wie bekommen wir ein gultiges Dictionary?

1Ly
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Ein Hilfsproblem

Wir erstellen uns ein Hilfsproblem, fiir welches

1) ein giiltiges Dictionary einfach zu finden ist.

2) eine giiltige Losung flir unser originales Problem bereitstellt, oder zeigt,
dass keine gliltige Losung existiert

max —Xg
S.t.
n
Zaijxj — Xy < bi, I € {1, 2, ,m}
j=1
xj = 0, j€{01,2,..,n}

Warum hat dieses LP immer eine Losung?
Wann zeigt dieses LP, dass flir das Ursprungsproblem keine Lésung existiert?

1Ly
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2-Phasen Simplex

Start Existiert

b; < 07

1L

Lose Hilfsproblem

Lose
Hauptproblem

LOosungs-
wert 0?

Nein

»

Problem
nicht losbar!
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Degenerierte Dictionaries und Pivots

¢ = 0+ xq + X
wy = 5— 2x, + 3x,
W, = 7 — 3x; — 7X5
W3 = 0 — Xy

¢ = 0+ X, — W3

5— 2xq + 3w,
7 — 3x1 — 7Ws
0 — W3

'+ Technische
M Universitit
§ Braunschweig

Ein solches Dictionary heifst degeneriert. Es
enthdlt ein b; = 0.

Dadurch entstehen degenerierte Pivots: Fiur
ein k € B existierteini € N mit
b,

Ak

Frage: Welche Pivots sind hier degeneriert und
welche nicht?

x, nicht degeneriert, x, ist degeneriert.

Arne Schmidt | MMA | Seite 16



ZyKkeln

Um zykeln zu vermeiden, werden spezielle Regeln eingefiihrt. Aber sogar die folgende Regel kann

zum Zykeln fiihren:

« Wabhle als Nichtbasisvariable die mit dem grofdten positiven Koeffizienten ¢j.

« Wabhle die Basisvariable nach lexikographischer Ordnung, wenn mehrere zur Auswahl stehen.
(Dabei in der Regel Schlupfvariablen als letztes, also x4, ..., X;,, Wy, ..., Wi,)

¢ = — T — 219 — 214
w) = — 0521+ 3.5xz2 + 2x3 — Aa 4
wo = —  0.521 + o+ 0.52z3 — 0.5x4
w3 = 1— T1

Probiert es selbst aus; nach 6 Iterationen sollte man wieder bei diesem Dictionary ankommen
(ggf. sind die Spalten / Zeilen permutiert).
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Pertubation

¢= 0+ 6x, + 4x, Notiz: Man kann auch einfach jede Zeile
wy = 0 + 9x, + 4x, pertubieren.

Wy = 0— 4x, — 2,
Ws = 1 _ %

¢= 0+ 6x; + 4x,

wi= 0+ €+ I, + 4x,

w, = 0+ €, — 4x; — 2x,

wy = 1 — X,

1Ly
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Fundamentalsatz

Theorem (Fundamentalsatz):
Fur jedes LP in Standardform, gelten die folgenden Aussagen:

* Wenn es keine optimale Losung gibt, ist das LP infeasible oder unbeschrankt.

*  Wenn es eine Losung gibt, dann existiert es eine Basislosung.

*  Wenn es eine optimale Losung gibt, dann existiert eine optimale Basislosung.

1Ly
AT

,ﬁ + Technische
3%%‘5 Universitit Arne Schmidt | MMA | Seite 19
% 1{_43 Braunschweig

4,
b«\rsce



Andere Pivotregeln

Bland's Rule:
Wahle aus allen moglichen Pivots immer den mit dem kleinsten Index.

Simplex zykelt mit dieser Regel nicht! Benotigt aber ggf. langer zum Konvergieren.

Random Rule:
Wahle aus allen moglichen Pivots immer zufallig einen aus.

Greatest Increase Rule / Steepest Edge:
Pivotisiere so, dass die Zielfunktion am stiarksten wachst.

1Ly
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Klee-Minty-Wiirfel

Mit f, = 98, 3 = 9800 sieht der Losungsraum so aus:

1lxq <1

41 + lxo < 100 :;

8r1+ 4z2+ 1lzz < 10000 - senn

z1, %2,  x3>0

Lemma: -
Mit der Grofdte-Pivot-Regel werden 2™ — 1 Iterationen
bendotigt. s

1Ly
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Dualitat
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Ableiten oberer Schranken

max 4x;+ x,+ 3x3 min  y; + 3y,
st. x;1+ 4x, <1 st. y; + 3y,
3x1— X+ x3 <3 4y, — Vo
X1,X9,%x3 =0 Vo

Y1, Y2

Betrachte nun
yl X (x1 + 4x2 S 1)
+y, X (3x; —x, + x3 < 3)

(y; + 3y2)|’<1 + (4y; — 3’2)|‘2 V2X3 S y1 + 3y

=1 = 3 | Minimiere!

1Ly
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Duales LP

Zu jedem LP existiert ein duales LP. Das duale LP eines dualen LPs wird auch primales LP
genannt. Ist das LP in Standardform, ist die Dualisierung ganz einfach.

Primal Dual
Maximiere X Minimiere bTy
Unter Bedingungen Unter Bedingungen

Ax < b Aly >

x =0 y=0

Ly
AT
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Schwache Dualitat

Theorem (Schwache Dualitat)
Sind x bzw. y zulassige Losungen eines primalen bzw. dualen LPs, dann gilt

cTx <bTy
Bewelis:
n m
T Primal Dual
cC' X = CiXj < aijYi | X;
j=1 j=1 \i=1 Maximiere € X Minimiere y
m n
= 2\ 2,0 | . .
= \i= Unter Bedingungen Unter’]]?edmgungen
m . Ax < Ay =
< z biy;=Db"y
> >
L x =0 y =0
ge% Q% Ti‘;t:::?lzie rne Schmi eite
%‘ﬁi%&* LBjraunsc}:y:eig Arne Schmidt | MMA | Seite 25

Ongen



Dualitit - Theoreme

Theorem (Starke Dualitat)
Besitzt das primale LP eine optimale Lésung x*, dann besitzt auch das duale LP eine optimale
Losung y* und es gilt

Theorem (Komplementirer Schlupf)

Angenommen, x = (X, ..., Xp) und y = (¥4, ..., ¥m) sind giiltige Losungen fiir das primale bzw.
duale LP. Dann sind diese genau dann optimal, wenn:

1. V] = 1, e, N ijj =0

2. Vi= 1, e, M YW = 0

Wobeiw = (wy, ..., wy,) und z = (z4, ..., Z,) die zugehorigen primalen bzw. dualen
Schlupfvariablen sind.

SLLgy
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Dual pivotisieren I

Betrachte komplementaren Schlupf: Wenn wir bspw. y, in die Basis aufnehmen, muss w, den
Wert 0 annehmen, geht also aus der Basis heraus!

Durch negativ-transponierte Matrix A: Nimm Basisvariable heraus, die die kleinste
Konstante besitzt.

( = 0— 1x;— 1x, —<&= 00— 4y;+ 8y, + 7y;
W, = 4 + 2x1 + 1x2 Z1 = 1-— 2y1 - 2y2 — 1y3
Wy = le — 4‘x2 Zy = 1-— 1y1 + 4‘y2 + 3y3
W3 == -7 + 1x1 - 3x2

Infeasible Dictionary! Feasible Dictionary!

1Ly
AT
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Dual pivotisieren I1

Wenn w, heraus geht, wer geht in die Basis rein?
Uber das duale erhalten wir z; oder z,. Da einer der beiden auf 0 geht, darf das entsprechende
X, bzw x, grofder werden!

Hier: Tausche y, mit z; im dualen Dictionary, also tausche w, mit x; im primalen Dictionary!

( = 0— 1x;— 1x, —<&= 00— 4y;+ 8y, + 7y;
W, = 4 + 2x1 + 1x2 Z1 = 1-— 2y1 - 2y2 — 1y3
Wy = 4‘x2 Zy = 1-— 1y1 + 4‘y2 + 3y3
W3 == -7 + 1x1 - 3x2

Infeasible Dictionary!\ Feasible Dictionary!

@
Grofdter negativer Quotient (J)

1Ly
AT
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Moglichkeiten fiir Phase I

s

Fur die Phase [ stehen 3 Moglichkeiten zur Verfligung! ]

_— i

>
Benutze das Hilfsproblem aus Vorlesung 2
und fiihre primalen Simplex aus.
> < = Phase I
Ersetze ¢, durch einen nicht-positiven Primaler Simplex
\Vektor und fiihre dualen Simplex aus. )
e N )
Ersetze b durch einen nicht-negativen __ Phasell
kVektor und fiihre primalen Simplex aus. ) Dualer Simplex

B .
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LPs

Wie kann man uber
Simplex erkennen, ob ...

.. das primale LP zulassig,
unzulassig, oder
unbeschrankt ist?

Was erkennt man wie uiber Phase 1?
Was erkennt man wie uiber primalen Simplex?
Was erkennt man wie tiiber dualen Simplex?

li&*@ .
2t Technische
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Simplex in Matrixform
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Primal Simplex Dual Simplex
Simplex in Matrixform
Suppose z; > 0
while (2}, 2 0) {

pick j € {j € N : 25 <0}

Suppose zx, > 0
while (z}; 2 0) {

* Was kostet an meisten Zeit? picki € {i € B:z} <0}
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*  Wo kann man etwas Zeit sparen? Azp = B~!Ne; Azy = —(B~'N)Te;
* Was fiir Moglichkeiten gibt es? -1 sl
A.’E,‘ AZJ‘
t = | max;ep — § = | max;en —;
7 :
C Az; ; ; AZ]‘
pick i € argmax;cp— - pick j € argmax ;¢ \r —-
i 2
Azy = —(B7IN)Te; Azp = B™1Ne;
P ¥
— J 7
8= } =
AZJ‘ AIZ‘
T; t T; ¢

&
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Tp ¢ T — tAzp

2 4—8

ZAr & 2 — 80ep
B« B\ {i}U{j}

Tp — v — tAzp

2 < 8

Zh — 2p — SAzys
B« B\ {i} U{j}




Idee: LU-Zerlegung

Faktorisiere die m X m-Matrix B in zwei m X m-Matrizen L und U, sodass:

1 0 0 U1 U2 0 Uim
32 1 1 0 O 0 u2 2 ce u,z m
L= N . . | U= : . . .
fm,l e fm,m— 1 1 0 e 0 Um,m
[ ) \ )
1 1
Untere Dreiecksmatrix Obere Dreiecksmatrix

Beispiel: Bestimme die LU-Zerlegung von
2 4 1 1 0 0 2 4
A=<4 9 3) L=(2 1 O),U=<O 1
1 3 2 05 1 1 0 0

Wichtig: BT = (LU)T = UTLT

1Ly
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Berechnen von Gleichungssystemen mit LU

Axp = B"'Ne; = B™'q; ist die Losung zu Bx = LUx = q,
Seiy == Ux, dann l6se

e erstly = a;,

e dannUx =y

Azyr = —=N"v, wobei v die Losung zu B"v = (LU)"v = UTLTv = ¢; ist.

Seiy := LTv, dann lose
« erstUTy =g,

« dannLTv =1y

1Ly
AT
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Sparsity

1 4 0 1 0 0O 1 01 O
2 1 2 3 4 O 01 0 1
0O 4 1 2 1 O 0 0 1 1
2 5 8 3 2 1 01 0 O
9 5 0 5 1 1 1 0 0 O
,Voll“ (dense) ,Dunn“ (sparse)

Generell: Je mehr Oen eine Matrix besitzt, desto diilnnbesetzter (sparser) ist die Matrix.

Diinnbesetzte Matrizen lassen sich einfacher und schneller in eine LU-Zerlegung teilen, und
benotigen deutlich weniger Speicher.

Ziel: Halte L und U Matrizen so diunnbesetzt wie moglich!

1Ly
AT
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Viele Pivotschritte

Wenn wir k Iterationen
durchgefiihrt haben, konnen
wir den niachsten Schritt tiber
die erste Basis berechnen

Dann ist By, =
BEyE; ...E;_4

Fiir B ist die LU-
Zerlegung bekannt
und die E-Matrizen
sind sehr einfach.

Wenn wir B,,,,, nicht
explizit berechnen,
dauert das ggf.
irgendwann sehr lange.

1Ly
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Basis- und Eta-Matrizen

Bei einem Pivotschritt (Basistausch) kann sich nur eine Zeile in B andern, d.h.
Bhew =B+ (aj —a;)ef = Bl(l + B (a; — al-)eiT)'.

T

E =

Also, nach k Iterationen miissen wir folgende Informationen speichern:
 Basismatrix B

,Eta-Matrizen“ E,, ..., E},_; (dafiir reicht es, Axé und einen Integer fiir die Spalte zu merken,
die sogenannte eta-file)

Irgendwann sollte man eine neue Basis mit seiner LU-Zerlegung neu berechnen!

Ly
AT
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Viele Variablen, wenig Constraints - Partial Pricing!

Viele Variablen
erzeugen viel Arbeit:

Welches Pivot als
nachstes?

Man muss die Lange
des Pivotschritts
berechnen.

Man muss
reduzierte Kosten
berechnen.

Missen wir immer
alle Variablen
anschauen?

Interessant sind
doch nur die , guten”
Variablen.

1Ly
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Allgemeine LP-Darstellung
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LPs in allgemeiner Form

maxc’x
maxc’x . . o s.t
st Sowohl die Contraints als auch die Variablen e
a besitzen eine obere und untere Schranke. Ax < b
a<Ax <b . —Ax < —qa
t<x=<u Das verdoppelt aber die Constraints! x<u
x =>4
maximize 3.’1,‘1 — XI9 [ —2
subjectto 1 < —z1+ 29 < 5 u 00 6
2 < —3x1 + 229 < 10 (= 31— x9=-—6
200 — 19 < 0 1 5|lw= —x1+ 290= 2
-2 < T 210 |wg = —3x1 4+ 219 = 6
0 < re < 6 —o0 0 |wg= 2x1 — x9=—4

Betrachte, was passiert, wenn Nicht-Basisvariablen sich in Richtung ihrer anderen Schranke bewegen!

Ein Dictionary ist degeneriert, wenn eine Basisvariable eine seiner Schranken annimmt.

1Ly,
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Part II - Integer Programming

1L,
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Definitionen und Sitze

Ein LP, welches nur ganzzahlige Variablen enthalt, heif3t Integer Program (IP).
LPs mit ganzzahligen und reellen Variablen, werden Mixed Integer Program (MIP) genannt.

LP mit nur 0-1-Variablen, werden 0-1-Program oder Binary Program (BP) genannt.

Theorem:
Das Losen von IPs, MIPs und BPs ist NP-schwer.

Ein LP, welches entsteht, wenn man die Ganzzahligkeit aus einem (M)IP entfernt, heifdt
Lineare Relaxierung des (M)IPs.

Lemma:
Sei I ein (M)IP und I das dazugehorige relaxierte LP fiir ein Maximierungsproblem. Dann ist
der Losungswert von I hochstens dem Losungswert von 1.
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Grundidee - Branch

Das Losen von LPs ist einfach. Lose
also zunachst die Relaxierung.

Nimm dann eine nicht-ganzzahlige
Variable x; mit Wert a.

Fiir eine optimale, ganzzahlige
LOosung muss dann gelten:
x; < |a] oder x; > [a]

Priife beide
Optionen!
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Beispiel (2)

maximize 17x; + 12z,

subjectto 10z; + Tzy < 40
1+ T2 < 5
Iy, T2 E 0

T1, T2 integers
Optimale Losung:
_ (5 10
*=\3'3

Betrachte Subprobleme mit
Xy <2undx; =3

Arne Schmidt | MMA | Seite 44




Branch-and-Bound-Idee

Also:

* Lose die LP Relaxierung unter den aktuell gebranchten Variablenbedingunen.
* Entscheide, ob und wie gebrancht werden muss.

Dazu:
* Gehe Knoten DFS-basiert durch. Das erfordert das Speichern von nur O(Tiefe) vielen Knoten.
- BFSwiirde pro Level Q(2¢¥¢!) Knoten speichern.
* Wie konnen wir weiter Arbeit sparen?
* Schneide den Teilbaume so frith wie moglich ab (,,prune®).
* Benutze Losung des Vaterknotens wieder (,Warmstart®).

1Ly
AT

f"ﬁs 3 Technische
2

'E = Universitat Arne Schmidt | MMA | Seite 45
LS Braunschweig

4,
b«\rsce




Branch-and-Cut
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Cutting Planes

Eine Cutting Plane C (oder kurz Cut) ist ein Constraint fiir LP P, welcher folgende Bedingungen erftillt
* Jedeintegrale Losunge zu P ist eine giiltige Losungin P U C.
* Die optimale Losung zu P ist ungiiltig in P U C.

N
Ll

A max y
3 - LPOpt

2 + 3y < 12

-9
. )
-
e

\{
8
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Gomory-Cuts (2)

>0 firx >0

€ Z <1

Also konnen wir festhalten:
X + zldujxj — |_X:<J <0
JEN
= Xx; + z lc_liijj < lxl*J
JEN
Damit haben wir einen neuen Constraint!
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Branch-and-Cut

Initialisiere eine (Priority-)Queue Q mit P,
Initialisiere B und vy (Beste bekannte Losung und Losungswert); Oder setze vy = —o00,B =1
Setze Menge von globalen Cuts C = @
Wiederhole, solange Q nicht leer:
1. Nimm P; aus @
2. Setze Menge lokaler Cuts C' = @
3. Wiederhole ,so lange wie es sinnvoll erscheint”
1. Bestimme optimale Losung x; mit Wert ¢; der LP-Relaxierung von P; U C U C’
Falls P; infeasible, oder {; < vp, starte nachste Iteration.
Falls x; ganzzahlig ist, setze vy = ({;, B = x; und starte nachste Iteration.
Suche einen guten globalen / lokalen Cut (a,b) mit a’x; > b
5. Falls gefunden, fliige (a,b) zu C bzw C*hinzu.
4. Wahle nicht-ganzzahligen Wert X mit Wert a.
5. Fige Probleme P;,; := P; U{X < lal} U C"und P;,, := P, U{X < [al]} U €’ zu Q hinzu.
5. Gib (B, vg) zuruck.

0N =

W N
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Cutting Plane - Techniken

Runden /

. Zero-Half-
Kiurzen

Cuts

Gomory-
Cuts y Presolve
Cover-
\ Cuts
\\_\_/‘//
3, et - -
“,%i%,ﬁ graunscl:wteig Arne Schmidt | MMA | Seite 50




Verschiedene Probleme
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Matchings - Bipartite Graphen

v v
V1 9 9 8 Weifd: vg muss gematcht werden.
1%
2 V1o ¢ V14  Schwarz: vy, hat dann neuen Partner.
U3
v Vg Weifd: vg muss neu gematcht werden.
V4 11
V13 V11
Us
V12
v
Vg 7 Q v;
V13
V; &— é Vo
Vg o— v _
14 Alternierender Baum
“’Dﬂliﬁt Technische
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Bliiten in allgemeinen Graphen - Shrink it!

Idee: Schrumpfe
Bliiten und fahre mit
der Suche fort.
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Gewichtete Matchings - Das duale Problem

Wiley-Interscience Series in Discrete Mathematics and Optimization

Lass Kreise um Knoten
moglichst grofd wachsen,
sodass sie sich nicht schneiden.

maxz Yy + z YB

VEV Beodd(V)
5. t.
Yo + Vi + Z ye <cle), Ve€E
e€E(B,V\B)
Beodd(V)

yp =0, VB € odd(V)

Kanten diirfen nur dann im Matching sein, wenn die Kreise sich beriihren!

3 g Technische
5 2 %‘i Universitit Arne Schmidt | MMA | Seite 58
2 Braunschweig

= <

£/
ON:C“#




Idee - Primal-Dual-Algorithmus

Lass im dualen die
Zielfunktion langsam
wachsen.

Passe im primalen die
LOosung an, sodass der
Wert identisch ist.
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Finden von augmentierenden Pfaden

Konstruiere alternierenden Baum
2 o nur uber tiberdeckte Kanten.
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Aktualisieren der Dual-Werte

2 o ( Suche kleinste reduzierte Kosten
von Kanten, die herausfiihren.

=1

Erhohe/Verringere Werte von
Knoten um 1.

Aber wie?
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Ein Reisender

Ein Reisender mochte alle grofden Stadte eines
Landes besuchen, dabei aber so wenig wie moglich
Zeit mit dem tatsachlichen Reisen verbringen.

Klar ist:
Der Reisende kann sich nicht aufteilen.

Also:
Entweder gehen wir von Stadt x zu Stadt y, oder
wir lassen es sein.

Wie kann der Reisende nun eine kiirzeste Tour
bestimmen?
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TSP-Formulierung - Danzig, Fulkerson, Johnson

Subtour S7
min 2 CoXo
eEPXP
s.t.

Subtour Sy Degree-Constraint Z X = 2, Vp € P
e€d(p)
Subtour-Constraint Xe 2 2, Vo =S\ &P
ees(s)
xe E {011}
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Lazy Constraints

Problem:
Das IP hat exponentiell viele Constraints! min Z CeXe
eePxpP
Wir brauchen aber u.U. nicht alle. s.t.
Xe = 2, Vp € P

* Lose zundchst das IP ohne die Subtour- e&50h)

Constraints.
 Nach Erhalt der Losung, priife, ob Xe22, VO#FS\EP

Constraints verletzt sind. Fluge verletzte e€8(S)

Subtour-Constraints hinzu! xe € 10,1}

Wir fiigen Constraints also nur hinzu, wenn es unbedingt sein muss. Die Constraints werden
auch ,lazy constraints“ genannt.
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TSP - Cutting Planes

Dieser Teil sieht interessant
aus! Versuchen wir das zu
verallgemeinern.
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Comb-Ungleichungen

Handle

1Ly

Damit erhalten wir als Constraint:
k

2 xe+z z Xe =3k +1

eeS(H) i=1e€é(T;)
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Pricing

Betrachte eine
Teilmenge von
Kanten.

Nimm Kanten nach und
nach auf, wenn sie fir duale
Unzulassigkeit sorgen

Losche ggf. Kanten / Constraints
wieder heraus, wenn sie lange
nicht mehr betrachtet wurden.
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