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LPs und Simplex
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Fabrik – Bestmöglicher Profit?

Eisen

Kohle

240t pro Monat

180t pro Monat

Stahlträger (1400€ / t)

Stahlrohre (1000€ / t)

0.8t Eisen + 0.4t Kohle pro t

0.9t Eisen + 0.7t Kohle pro t
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Etwas anders Allgemein

Maximiere: 1000, 1400 ⋅ 𝑅𝑜ℎ𝑟𝑒
𝑇𝑟ä𝑔𝑒𝑟 Profit

Eisenlimit

Kohlelimit

𝑅𝑜ℎ𝑟𝑒

𝑇𝑟ä𝑔𝑒𝑟
≥

0

0

0.8 0.9
0.4 0.7

⋅
𝑅𝑜ℎ𝑟𝑒

𝑇𝑟ä𝑔𝑒𝑟
≤

240

180

Maximiere 𝑐𝑇𝑥

Unter Bedingungen

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0
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Feasibility und Optimalität

Eine Belegung von Variablen für ein LP heißt Lösung (solution). Weiter
• Eine Lösung ist gültig (feasible), wenn alle Constraints erfüllt werden.
• Eine Lösung heißt optimal, wenn der Lösungswert dem Maximum entspricht.

Besitzt ein LP keine Lösung, so ist das LP ungültig (infeasible).
Besitzt ein LP Lösungen mit beliebig hohen Werten, dann ist das LP unbeschränkt (unbounded).

Lemma:
Ist ein LP feasible und bounded, dann hat das LP ein Optimum.

Beweis:
Sei X die Lösungsmenge. Da das LP beschränkt ist, existiert ein Supremum s. 
Da c linear ist, wird die abgeschlossene Menge X auf eine abgeschlossene Menge c[X] abgebildet.
Da s entweder in c[X] oder ein Häufungspunkt. Da c[x] abgeschlossen ist, muss s in c[X] sein.
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Graphische Darstellung

Maximiere: 1000, 1400 ⋅ 𝑥1
𝑥2

𝑥1
𝑥2

≥
0

0

0.8 0.9
0.4 0.7

⋅
𝑥1
𝑥2

≤
240

180
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Ein Beispiel-LP mit Slack Variablen

𝑚𝑎𝑥 𝜁 = 5𝑥1 + 4𝑥2 + 3𝑥3

s.t. 𝑤1 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑤2 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3

𝑤3 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3

𝑤1, 𝑤2, 𝑤3, 𝑥1, 𝑥2, 𝑥3 ≥ 0

Idee: Starte nun mit irgendeiner Lösung und schaue, wie diese verbessert werden kann!

Bei jeder gültigen Lösung ist die Differenz 
zwischen der linken und rechten Seite der 
Ungleichungen nicht-negativ.

 Führe Variablen ein, die diesen 
Unterschied angeben!

Diese Variablen heißen Slack-Variablen.



Arne Schmidt | MMA | Seite 10

Startlösung und erste Verbesserung

𝑚𝑎𝑥 𝜁 = 5𝑥1 + 4𝑥2 + 3𝑥3

s.t. 𝑤1 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑤2 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3

𝑤3 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3

𝑤1, 𝑤2, 𝑤3, 𝑥1, 𝑥2, 𝑥3 ≥ 0

Eine gültige Lösung ist
ሶ𝑥1, ሶ𝑥2, ሶ𝑥3, ሶ𝑤1, ሶ𝑤2, ሶ𝑤3 = 0,0,0,5,11,8

Wie können wir das verbessern?

Betrachte bspw. 𝑥1. Um wieviel dürfen wir 
die Variable erhöhen, sodass alle Slack-
Variablen nicht negativ werden?

𝑤1 ≥ 0 ⇒ 𝑥1 ≤
5

2
, 𝑤2 ≥ 0 ⇒ 𝑥1 ≤

11

4
, 𝑤3 ≥ 0 ⇒ 𝑥1 ≤

8

3

Setze 𝑥1 =
5

2
, damit wird 𝑤1 = 0,𝑤2 = 1,𝑤3 =

1

2
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Schritt 1: LP zu Dictionary

Umwandeln in ein Dictionary:

𝜁 = ҧ𝜁 + ෍

𝑗∈𝒩

𝑛

ҧ𝑐𝑗𝑥𝑗

𝑥𝑖 = ത𝑏𝑖 −෍

𝑗=1

𝑛

ത𝑎𝑖𝑗𝑥𝑗 , 𝑖 ∈ ℬ

Sei nun 𝒩,ℬ ⊆ 1, 2, … , 𝑛 + 𝑚 die 
Indexmenge der (Nicht-)Basisvariablen.

Dann ist zu Beginn:
𝒩 = 1, 2, … , 𝑛
ℬ = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑚

Mit dieser Notation lässt sich das Dictionary 
noch etwas anders aufschreiben!

Der Balken über Konstanten bedeutet, dass 
diese sich über Iterationen verändern.

Die Koeffizienten im Vektor ҧ𝑐 heißen auch 
reduzierte Kosten. 
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Schritt 2: Pivotschritt

Das Dictionary:

𝜁 = ҧ𝜁 + ෍

𝑗∈𝒩

𝑛

ҧ𝑐𝑗𝑥𝑗

𝑥𝑖 = ത𝑏𝑖 −෍

𝑗=1

𝑛

ത𝑎𝑖𝑗𝑥𝑗 , 𝑖 ∈ ℬ

• Wähle nun 𝑘 ∈ 𝑗 ∈ 𝒩 ҧ𝑐𝑗 > 0}.

• Existiert 𝑘 nicht, dann sind wir optimal!
• Erhöhe nun 𝑥𝑘 so weit wie möglich.

• Es muss für alle 𝑖 ∈ ℬ gelten:

𝑥𝑖 ≤ ത𝑏𝑖 − ത𝑎𝑖𝑘𝑥𝑘
• Da für ein 𝑖 ∈ ℬ der Wert 𝑥𝑖 auf 0 gesetzt wird, erhalten 

wir 𝑥𝑘 ≤
ത𝑏𝑖

ത𝑎𝑖𝑘
. 

• Wähle ℓ ∈ ℬ mit ത𝑎ℓ𝑘 > 0 und 
ത𝑏ℓ

ത𝑎ℓ𝑘
kleinstmöglich. 

• Setze 𝑥ℓ = 0, 𝑥𝑘 =
ത𝑏ℓ

ത𝑎ℓ𝑘

• Passe Dictionary über den Variablentausch an!
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Ein weiteres Beispiel

𝑚𝑎𝑥 −2𝑥1 − 𝑥2

s.t. −𝑥1 + 𝑥2 ≤ −1

−𝑥1 − 2𝑥2 ≤ −2

𝑥2 ≤ 1

𝑥1, 𝑥2 ≥ 0

𝜁 = −2𝑥1 − 𝑥2

𝑤1 = −1 + 𝑥1 − 𝑥2

𝑤2 = −2 + 𝑥1 + 2𝑥2

𝑤3 = 1 − 𝑥2

Die Lösung (0,0,-1,-2,1) ist nicht gültig!
Das LP hat aber eine Lösung (z.B. 𝑥1 = 2, 𝑥2 = 0) 

Generell: Das Dictionary ist genau dann gültig, wenn alle ത𝑏𝑖 > 0.
Wie bekommen wir ein gültiges Dictionary?
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Ein Hilfsproblem

Wir erstellen uns ein Hilfsproblem, für welches
1) ein gültiges Dictionary einfach zu finden ist.
2) eine gültige Lösung für unser originales Problem bereitstellt, oder zeigt, 

dass keine gültige Lösung existiert

max−𝑥0
s.t.

෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 − 𝑥0 ≤ 𝑏𝑖 , 𝑖 ∈ 1, 2, … ,𝑚

𝑥𝑗 ≥ 0, 𝑗 ∈ 0,1, 2, … , 𝑛

Warum hat dieses LP immer eine Lösung?

Wann zeigt dieses LP, dass für das Ursprungsproblem keine Lösung existiert?
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2-Phasen Simplex

Existiert 
𝑏𝑖 < 0?

Löse Hilfsproblem

Löse 
Hauptproblem

Lösungs-
wert 0?

Start

Ja

Nein Ja

Nein

Problem 
nicht lösbar!
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Degenerierte Dictionaries und Pivots

𝜁 = 0 + 𝑥1 + 𝑥2

𝑤1 = 5 − 2𝑥1 + 3𝑥2

𝑤2 = 7 − 3𝑥1 − 7𝑥2

𝑤3 = 0 − 𝑥2

Ein solches Dictionary heißt degeneriert. Es 
enthält ein ത𝑏𝑖 = 0.

Dadurch entstehen degenerierte Pivots: Für 
ein 𝑘 ∈ ℬ existiert ein 𝑖 ∈ 𝒩 mit

ത𝑏𝑖
ത𝑎𝑖𝑘

= 0

Frage: Welche Pivots sind hier degeneriert und 
welche nicht?

𝑥1 nicht degeneriert, 𝑥2 ist degeneriert. 

𝜁 = 0 + 𝑥1 − 𝑤3

𝑤1 = 5 − 2𝑥1 + 3𝑤3

𝑤2 = 7 − 3𝑥1 − 7𝑤3

𝑥2 = 0 − 𝑤3
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Zykeln

Um zykeln zu vermeiden, werden spezielle Regeln eingeführt. Aber sogar die folgende Regel kann 
zum Zykeln führen:
• Wähle als Nichtbasisvariable die mit dem größten positiven Koeffizienten ҧ𝑐𝑘 .
• Wähle die Basisvariable nach lexikographischer Ordnung, wenn mehrere zur Auswahl stehen.

(Dabei in der Regel Schlupfvariablen als letztes, also 𝑥1, … , 𝑥𝑛 , 𝑤1, … , 𝑤𝑚)

Probiert es selbst aus; nach 6 Iterationen sollte man wieder bei diesem Dictionary ankommen 
(ggf. sind die Spalten / Zeilen permutiert).
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Pertubation

𝜁 = 0 + 6𝑥1 + 4𝑥2

𝑤1 = 0 + 9𝑥1 + 4𝑥2

𝑤2 = 0 − 4𝑥1 − 2𝑥2

𝑤3 = 1 − 𝑥2

𝜁 = 0 + 6𝑥1 + 4𝑥2

𝑤1 = 0 + 𝜖1 + 9𝑥1 + 4𝑥2

𝑤2 = 0 + 𝜖2 − 4𝑥1 − 2𝑥2

𝑤3 = 1 − 𝑥2

Notiz: Man kann auch einfach jede Zeile 
pertubieren. 
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Fundamentalsatz

Theorem (Fundamentalsatz):
Für jedes LP in Standardform, gelten die folgenden Aussagen:

• Wenn es keine optimale Lösung gibt, ist das LP infeasible oder unbeschränkt.

• Wenn es eine Lösung gibt, dann existiert es eine Basislösung.

• Wenn es eine optimale Lösung gibt, dann existiert eine optimale Basislösung.
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Andere Pivotregeln

Bland‘s Rule:
Wähle aus allen möglichen Pivots immer den mit dem kleinsten Index.

Random Rule:
Wähle aus allen möglichen Pivots immer zufällig einen aus.

Greatest Increase Rule / Steepest Edge:
Pivotisiere so, dass die Zielfunktion am stärksten wächst.

Simplex zykelt mit dieser Regel nicht! Benötigt aber ggf. länger zum Konvergieren.



Arne Schmidt | MMA | Seite 21

Klee-Minty-Würfel

Mit 𝛽2 = 98, 𝛽3 = 9800 sieht der Lösungsraum so aus:

Lemma: 
Mit der Größte-Pivot-Regel werden 2𝑛 − 1 Iterationen 
benötigt.
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Dualität
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Ableiten oberer Schranken

𝑚𝑎𝑥 4𝑥1 + 𝑥2 + 3𝑥3

s.t. 𝑥1 + 4𝑥2 ≤ 1

3𝑥1 − 𝑥2 + 𝑥3 ≤ 3

𝑥1, 𝑥2, 𝑥3 ≥ 0

Betrachte nun
𝑦1 × 𝑥1 + 4𝑥2 ≤ 1

+𝑦2 × 3𝑥1 − 𝑥2 + 𝑥3 ≤ 3
------------------------------------------------------------------

𝑦1 + 3𝑦2 𝑥1 + 4𝑦1 − 𝑦2 𝑥2 + 𝑦2𝑥3 ≤ 𝑦1 + 3𝑦2

Minimiere!≥ 4 ≥ 1 ≥ 3

𝑚𝑖𝑛 𝑦1 + 3𝑦2

s.t. 𝑦1 + 3𝑦2 ≥ 4

4𝑦1 − 𝑦2 ≥ 1

𝑦2 ≥ 3

𝑦1, 𝑦2 ≥ 0
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Duales LP

Maximiere 𝑐𝑇𝑥

Unter Bedingungen

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Minimiere 𝑏𝑇𝑦

Unter Bedingungen

𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Zu jedem LP existiert ein duales LP. Das duale LP eines dualen LPs wird auch primales LP 
genannt. Ist das LP in Standardform, ist die Dualisierung ganz einfach.

Primal Dual
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Schwache Dualität

Theorem (Schwache Dualität)
Sind x bzw. y zulässige Lösungen eines primalen bzw. dualen LPs, dann gilt

𝑐𝑇𝑥 ≤ 𝑏𝑇𝑦

Beweis:

𝑐𝑇𝑥 = ෍

𝑗=1

𝑛

𝑐𝑗𝑥𝑗 ≤෍

𝑗=1

𝑛

෍

𝑖=1

𝑚

𝑎𝑖𝑗𝑦𝑖 𝑥𝑗

= ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 𝑦𝑖

≤ ෍

𝑖=1

𝑚

𝑏𝑖𝑦𝑖 = 𝑏𝑇𝑦

Maximiere 𝑐𝑇𝑥

Unter Bedingungen

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Minimiere 𝑏𝑇𝑦

Unter Bedingungen

𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Primal Dual
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Dualität – Theoreme

Theorem (Starke Dualität)
Besitzt das primale LP eine optimale Lösung 𝑥∗, dann besitzt auch das duale LP eine optimale 
Lösung 𝑦∗ und es gilt

𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗

Theorem (Komplementärer Schlupf)
Angenommen, 𝑥 = (𝑥1, … , 𝑥𝑛) und 𝑦 = (𝑦1, … , 𝑦𝑚) sind gültige Lösungen für das primale bzw. 
duale LP. Dann sind diese genau dann optimal, wenn:
1. ∀𝑗 = 1,… , 𝑛: 𝑥𝑗𝑧𝑗 = 0

2. ∀𝑖 = 1,… ,𝑚: 𝑦𝑖𝑤𝑖 = 0
Wobei 𝑤 = (𝑤1, … , 𝑤𝑚) und 𝑧 = (𝑧1, … , 𝑧𝑛) die zugehörigen primalen bzw. dualen 
Schlupfvariablen sind.
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Dual pivotisieren I

Betrachte komplementären Schlupf: Wenn wir bspw. 𝑦2 in die Basis aufnehmen, muss 𝑤2 den 
Wert 0 annehmen, geht also aus der Basis heraus! 

Durch negativ-transponierte Matrix A: Nimm Basisvariable heraus, die die kleinste 
Konstante besitzt.

𝜁 = 0 − 1𝑥1 − 1𝑥2

𝑤1 = 4 + 2𝑥1 + 1𝑥2

𝑤2 = −8 + 2𝑥1 − 4𝑥2

𝑤3 = −7 + 1𝑥1 − 3𝑥2

−𝜉 = 0 − 4𝑦1 + 8𝑦2 + 7𝑦3

𝑧1 = 1 − 2𝑦1 − 2𝑦2 − 1𝑦3

𝑧2 = 1 − 1𝑦1 + 4𝑦2 + 3𝑦3

Infeasible Dictionary! Feasible Dictionary!
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Dual pivotisieren II

Wenn 𝑤2 heraus geht, wer geht in die Basis rein? 
Über das duale erhalten wir 𝑧1 oder 𝑧2. Da einer der beiden auf 0 geht, darf das entsprechende 
𝑥1 bzw 𝑥2 größer werden!

Hier: Tausche 𝑦2 mit 𝑧1 im dualen Dictionary, also tausche 𝑤2 mit 𝑥1 im primalen Dictionary!

𝜁 = 0 − 1𝑥1 − 1𝑥2

𝑤1 = 4 + 2𝑥1 + 1𝑥2

𝑤2 = −8 + 2𝑥1 − 4𝑥2

𝑤3 = −7 + 1𝑥1 − 3𝑥2

−𝜉 = 0 − 4𝑦1 + 8𝑦2 + 7𝑦3

𝑧1 = 1 − 2𝑦1 − 2𝑦2 − 1𝑦3

𝑧2 = 1 − 1𝑦1 + 4𝑦2 + 3𝑦3

Infeasible Dictionary! Feasible Dictionary!

Größter negativer Quotient 
𝑎𝑖𝑗

𝑐𝑗
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Möglichkeiten für Phase I

Für die Phase I stehen 3 Möglichkeiten zur Verfügung!

Benutze das Hilfsproblem aus Vorlesung 2 
und führe primalen Simplex aus.

Ersetze 𝑐𝒩 durch einen nicht-positiven 
Vektor und führe dualen Simplex aus.

Phase II: 
Primaler Simplex

Ersetze 𝑏 durch einen nicht-negativen 
Vektor und führe primalen Simplex aus.

Phase II: 
Dualer Simplex
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LPs

Wie kann man über 
Simplex erkennen, ob ...

... das primale LP zulässig, 
unzulässig, oder 

unbeschränkt ist?

Was erkennt man wie über Phase 1?
Was erkennt man wie über primalen Simplex?
Was erkennt man wie über dualen Simplex?
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Simplex in Matrixform
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Simplex in Matrixform

• Was kostet an meisten Zeit?
• Wo kann man etwas Zeit sparen?
• Was für Möglichkeiten gibt es?
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Idee: LU-Zerlegung

Faktorisiere die 𝑚 ×𝑚-Matrix 𝐵 in zwei 𝑚 ×𝑚-Matrizen  𝐿 und 𝑈, sodass:

𝐿 =

1 0 ⋯ 0
ℓ2,1 1 0 0

⋮ ⋱ ⋱ ⋮
ℓ𝑚,1 ⋯ ℓ𝑚,𝑚−1 1

, 𝑈 =

𝑢1,1 𝑢1,2 ⋯ 𝑢1,𝑚
0 𝑢2,2 ⋯ 𝑢2,𝑚
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑢𝑚,𝑚

Untere Dreiecksmatrix Obere Dreiecksmatrix

Beispiel: Bestimme die LU-Zerlegung von

𝐴 =
2 4 1
4 9 3
1 3 2

𝐿 =
1 0 0
2 1 0
0.5 1 1

, 𝑈 =
2 4 1
0 1 1
0 0 0.5

Wichtig: 𝐵𝑇 = 𝐿𝑈 𝑇 = 𝑈𝑇𝐿𝑇
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Berechnen von Gleichungssystemen mit LU

Δ𝑥ℬ = 𝐵−1𝑁𝑒𝑗 = 𝐵−1𝑎𝑗 ist die Lösung zu 𝐵𝑥 = 𝐿𝑈𝑥 = 𝑎𝑗

Sei 𝑦 ≔ 𝑈𝑥, dann löse
• erst 𝐿𝑦 = 𝑎𝑗 , 

• dann 𝑈𝑥 = 𝑦

Δ𝑧𝒩 = −𝑁𝑇𝑣, wobei 𝑣 die Lösung zu 𝐵𝑇𝑣 = 𝐿𝑈 𝑇𝑣 = 𝑈𝑇𝐿𝑇𝑣 = 𝑒𝑗 ist.

Sei 𝑦 ≔ 𝐿𝑇𝑣 , dann löse
• erst 𝑈𝑇𝑦 = 𝑒𝑗 , 

• dann 𝐿𝑇𝑣 = 𝑦
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Sparsity

1 4 0 1 0
2 1 2 3 4
0 4 1 2 1
2 5 8 3 2
9 5 0 5 1

0 1 0 1 0
0 0 1 0 1
0 0 0 1 1
1 0 1 0 0
1 1 0 0 0

„Voll“ (dense) „Dünn“ (sparse)

Generell: Je mehr 0en eine Matrix besitzt, desto dünnbesetzter (sparser) ist die Matrix.

Dünnbesetzte Matrizen lassen sich einfacher und schneller in eine LU-Zerlegung teilen, und 
benötigen deutlich weniger Speicher.

Ziel: Halte L und U Matrizen so dünnbesetzt wie möglich!
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Viele Pivotschritte

Wenn wir 𝑘 Iterationen 
durchgeführt haben, können 

wir den nächsten Schritt über 
die erste Basis berechnen 

Dann ist 𝐵𝑛𝑒𝑤 =
𝐵𝐸0𝐸1…𝐸𝑘−1

Für B ist die LU-
Zerlegung bekannt 
und die E-Matrizen 
sind sehr einfach.

Wenn wir 𝐵𝑛𝑒𝑤 nicht 
explizit berechnen,  

dauert das ggf. 
irgendwann sehr lange. 
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Basis- und Eta-Matrizen

Bei einem Pivotschritt (Basistausch) kann sich nur eine Zeile in B ändern, d.h. 

𝐵𝑛𝑒𝑤 = 𝐵 + 𝑎𝑗 − 𝑎𝑖 𝑒𝑖
𝑇 = 𝐵 𝐼 + 𝐵−1 𝑎𝑗 − 𝑎𝑖 𝑒𝑖

𝑇 .

𝐸 ≔

Also, nach k Iterationen müssen wir folgende Informationen speichern:
• Basismatrix B

• „Eta-Matrizen“ 𝐸0, … , 𝐸𝑘−1 (dafür reicht es, Δ𝑥ℬ
𝑗

und einen Integer für die Spalte zu merken, 

die sogenannte eta-file)

Irgendwann sollte man eine neue Basis mit seiner LU-Zerlegung neu berechnen!
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Viele Variablen, wenig Constraints → Partial Pricing!

Viele Variablen 
erzeugen viel Arbeit: Welches Pivot als 

nächstes?

Man muss die Länge 
des Pivotschritts 

berechnen. Man muss 
reduzierte Kosten 

berechnen.
Müssen wir immer 

alle Variablen 
anschauen? Interessant sind 

doch nur die „guten“ 
Variablen.
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Allgemeine LP-Darstellung
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LPs in allgemeiner Form

max𝑐𝑇𝑥
s.t. 

𝑎 ≤ 𝐴𝑥 ≤ 𝑏
ℓ ≤ 𝑥 ≤ 𝑢

Sowohl die Contraints als auch die Variablen 
besitzen eine obere und untere Schranke.

Das verdoppelt aber die Constraints!

max𝑐𝑇𝑥
s.t. 

𝐴𝑥 ≤ 𝑏
−𝐴𝑥 ≤ −𝑎

𝑥 ≤ 𝑢
𝑥 ≥ ℓ

Betrachte, was passiert, wenn Nicht-Basisvariablen sich in Richtung ihrer anderen Schranke bewegen!

Ein Dictionary ist degeneriert, wenn eine Basisvariable eine seiner Schranken annimmt.
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Part II – Integer Programming
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Definitionen und Sätze

Ein LP, welches nur ganzzahlige Variablen enthält, heißt Integer Program (IP).

LPs mit ganzzahligen und reellen Variablen, werden Mixed Integer Program (MIP) genannt.

LP mit nur 0-1-Variablen, werden 0-1-Program oder Binary Program (BP) genannt.

Theorem:
Das Lösen von IPs, MIPs und BPs ist NP-schwer.

Ein LP, welches entsteht, wenn man die Ganzzahligkeit aus einem (M)IP entfernt, heißt 
Lineare Relaxierung des (M)IPs.

Lemma:
Sei 𝐼 ein (M)IP und ҧ𝐼 das dazugehörige relaxierte LP für ein Maximierungsproblem. Dann ist 
der Lösungswert von 𝐼 höchstens dem Lösungswert von ҧ𝐼.
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Grundidee - Branch

Das Lösen von LPs ist einfach. Löse 
also zunächst die Relaxierung.

Nimm dann eine nicht-ganzzahlige 
Variable 𝑥𝑖  mit Wert 𝑎.

Für eine optimale, ganzzahlige 
Lösung muss dann gelten: 
𝒙𝒊 ≤ ⌊𝒂⌋ oder 𝒙𝒊 ≥ ⌈𝒂⌉ 

Prüfe beide 
Optionen!
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Beispiel (2)

Optimale Lösung:

𝑥 =
5

3
,
10

3

Betrachte Subprobleme mit 
𝑥1 ≤ 2 und 𝑥1 ≥ 3
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Branch-and-Bound-Idee

Also:
• Löse die LP Relaxierung unter den aktuell gebranchten Variablenbedingunen.
• Entscheide, ob und wie gebrancht werden muss.

Dazu:
• Gehe Knoten DFS-basiert durch. Das erfordert das Speichern von nur O(Tiefe) vielen Knoten.

• BFS würde pro Level Ω 2𝑙𝑒𝑣𝑒𝑙 Knoten speichern. 

• Wie können wir weiter Arbeit sparen?
• Schneide den Teilbäume so früh wie möglich ab („prune“).
• Benutze Lösung des Vaterknotens wieder („Warmstart“).
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Branch-and-Cut
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Cutting Planes

Eine Cutting Plane C (oder kurz Cut) ist ein Constraint für LP P, welcher folgende Bedingungen erfüllt
• Jede integrale Lösunge zu P ist eine gültige Lösung in 𝑃 ∪ 𝐶.
• Die optimale Lösung zu P ist ungültig in 𝑃 ∪ 𝐶.
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Gomory-Cuts (2) 

𝑥𝑖 + ෍

𝑗∈𝒩

ത𝑎𝑖𝑗 𝑥𝑗 − 𝑥𝑖
∗ = 𝑥𝑖

∗ − 𝑥𝑖
∗ − ෍

𝑗∈𝒩

ത𝑎𝑖𝑗 − ത𝑎𝑖𝑗 𝑥𝑗

< 1
≥ 0 für 𝑥 ≥ 0

∈ ℤ < 1

Also können wir festhalten:

𝑥𝑖 + ෍

𝑗∈𝒩

ത𝑎𝑖𝑗 𝑥𝑗 − 𝑥𝑖
∗ ≤ 0

⇒ 𝑥𝑖 + ෍

𝑗∈𝒩

ത𝑎𝑖𝑗 𝑥𝑗 ≤ 𝑥𝑖
∗

Damit haben wir einen neuen Constraint!
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Branch-and-Cut

1. Initialisiere eine (Priority-)Queue Q mit 𝑃0
2. Initialisiere B und 𝑣𝐵 (Beste bekannte Lösung und Lösungswert); Oder setze 𝑣𝐵 = −∞,𝐵 =⊥
3. Setze Menge von globalen Cuts 𝐶 = ∅
4. Wiederhole, solange Q nicht leer:

1. Nimm 𝑃𝑖 aus Q
2. Setze Menge lokaler Cuts 𝐶′ = ∅
3. Wiederhole „so lange wie es sinnvoll erscheint“

1. Bestimme optimale Lösung 𝑥𝑖 mit Wert 𝜁𝑖 der LP-Relaxierung von 𝑃𝑖 ∪ 𝐶 ∪ 𝐶′

2. Falls 𝑃𝑖 infeasible, oder 𝜁𝑖 ≤ 𝑣𝐵 , starte nächste Iteration.
3. Falls 𝑥𝑖 ganzzahlig ist, setze 𝑣𝐵 = 𝜁𝑖 , 𝐵 = 𝑥𝑖 und starte nächste Iteration.
4. Suche einen guten globalen / lokalen Cut (a,b) mit 𝑎𝑇𝑥𝑖 > 𝑏
5. Falls gefunden, füge (a,b) zu C bzw C‘ hinzu.

4. Wähle nicht-ganzzahligen Wert ො𝑥 mit Wert 𝑎.
5. Füge Probleme 𝑃𝑖+1 ≔ 𝑃𝑖 ∪ ො𝑥 ≤ 𝑎 ∪ 𝐶′ und 𝑃𝑖+2 ≔ 𝑃𝑖 ∪ ො𝑥 ≤ 𝑎 ∪ 𝐶′ zu Q hinzu. 

5. Gib (B, 𝑣𝐵) zurück.
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Cutting Plane - Techniken

Runden / 
Kürzen

Gomory-
Cuts

Zero-Half-
Cuts

Cover-
Cuts

Presolve
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Verschiedene Probleme
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Matchings – Bipartite Graphen

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

𝑣13

𝑣14

𝑣8

𝑣14

𝑣6

𝑣13

𝑣7

𝑣11

𝑣3

𝑣9

Alternierender Baum

Weiß: 𝑣8 muss gematcht werden.

Schwarz: 𝑣14 hat dann neuen Partner.

Weiß: 𝑣6 muss neu gematcht werden.
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Blüten in allgemeinen Graphen – Shrink it!

Idee: Schrumpfe 
Blüten und fahre mit 

der Suche fort.
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Gewichtete Matchings – Das duale Problem

Kanten dürfen nur dann im Matching sein, wenn die Kreise sich berühren!

Lass Kreise um Knoten 
möglichst groß wachsen, 
sodass sie sich nicht schneiden.

max෍

𝑣∈𝑉

𝑦𝑣 + ෍

𝐵∈odd(𝑉)

𝑦𝐵

s. t.

𝑦𝑣 + 𝑦𝑤 + ෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝐵∈odd 𝑉

𝑦𝐵 ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸

𝑦𝐵 ≥ 0, ∀𝐵 ∈ odd 𝑉
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Idee – Primal-Dual-Algorithmus

Lass im dualen die 
Zielfunktion langsam 

wachsen.

Passe im primalen die 
Lösung an, sodass der 

Wert identisch ist.
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Finden von augmentierenden Pfaden

Konstruiere alternierenden Baum 
nur über überdeckte Kanten.
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Aktualisieren der Dual-Werte

Suche kleinste reduzierte Kosten 
von Kanten, die herausführen.

⇒ 1

Erhöhe/Verringere Werte von 
Knoten um 1.

Aber wie?
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Ein Reisender

Ein Reisender möchte alle großen Städte eines 
Landes besuchen, dabei aber so wenig wie möglich 
Zeit mit dem tatsächlichen Reisen verbringen.

Klar ist: 
Der Reisende kann sich nicht aufteilen. 

Also: 
Entweder gehen wir von Stadt x zu Stadt y, oder 
wir lassen es sein.

Wie kann der Reisende nun eine kürzeste Tour 
bestimmen?
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TSP-Formulierung – Danzig, Fulkerson, Johnson

min ෍

𝑒∈𝑃×𝑃

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

𝑥𝑒 ∈ 0,1

Subtour-Constraint

Degree-Constraint
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Lazy Constraints

min ෍

𝑒∈𝑃×𝑃

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

𝑥𝑒 ∈ 0,1

Problem:
Das IP hat exponentiell viele Constraints!

Wir brauchen aber u.U. nicht alle.

• Löse zunächst das IP ohne die Subtour-
Constraints. 

• Nach Erhalt der Lösung, prüfe, ob 
Constraints verletzt sind. Füge verletzte 
Subtour-Constraints hinzu!

Wir fügen Constraints also nur hinzu, wenn es unbedingt sein muss. Die Constraints werden 
auch „lazy constraints“ genannt.
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TSP – Cutting Planes

Dieser Teil sieht interessant 
aus! Versuchen wir das zu 
verallgemeinern.
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Comb-Ungleichungen

Handle

Tooth

Damit erhalten wir als Constraint:

෍

𝑒∈𝛿 𝐻

𝑥𝑒 +෍

𝑖=1

𝑘

෍

𝑒∈𝛿 𝑇𝑖

𝑥𝑒 ≥ 3𝑘 + 1
v w
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Pricing

Betrachte eine 
Teilmenge von 

Kanten.
Nimm Kanten nach und 

nach auf, wenn sie für duale 
Unzulässigkeit sorgen

Lösche ggf. Kanten / Constraints 
wieder heraus, wenn sie lange 
nicht mehr betrachtet wurden.
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