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Graphenprobleme: Matchings
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Aufgabenverteilung

Personen Aufgaben
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Christian

Marlin Kochen

Einkaufen

Mochten sich einer Aufgabe zuweisen. Mochten einer Person zugewiesen werden.
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Matchings

Definition (Matchings)

Sei G = (V,E) ein Graph

(1) Eine Kantenmenge M < E heifd3t Matching, wenn e N f = @ fiir je zwei Kanten e, f € M gilt.
(2) Kanten in M heifsen unabhangig.

(3) Ein Matching M heif3t perfektes Matching, wenn 2| M| = |V| gilt.

(4) Ein Matching heif3t inklusionsmaximal (engl. maximal), wenn M U {e} fiir jede Kante e €
E \ M kein Matching ist.

(5) Ein Matching heif3t (kardinalitits-)maximal (engl. maximum), wenn kein Matching M’
mit |[M| < |M’| existiert.
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Algorithmus - Bipartite Graphen

v v
V1 9 9 8 Weifd: vg muss gematcht werden.
[
V1o ¢ V14  Schwarz: vy, hat dann neuen Partner.
U3
Vg Weifd: vg muss neu gematcht werden.
Uy V11
V13 V11
Us
V12
v
Vg 7 Q v;
1%
V-, e 13 S
Vg
Vg o—
V14 Alternierender Baum
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Matching fir bipartite Graphen

Algorithmus (Bipartite Matchings)| 1.  Function BIPARTITEMATCHING (G)
Eingabe: 2. SetM =@
Bipartiter Graph G = (V, E) 3. for r € V;, mitr ungematcht do
Ausgabe: 4, Setze T == ({r},®) und W(T) = {r}
Maximales Matching M 5. While (es ex. Kante {v,w} € E mitv € W(T) undw ¢ V(T))
6. If w ist ungematcht then
7. Benutze w, um augmentierenden Pfad zu bilden.
8. Augmentiere M
0. If es ex. Kein ungematchter Knoten mehr then
10. Return perfektes Matching M
11. else
12. Gehe zu Zeile 3.
13. else
14. Sei {w, z} Matchingkante an w.
15. Fige w,z zu V(T) hinzu und z zu W (T)
16. Flige {v,w}, {w, z} zu E(T) hinzu.
17. Return M
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Matching Polytop

Definition:
max z Xe Das Fraktionale Matching Polytop (FMP) ist das durch
St eek das LP beschriebene Polytop (Losungsraum).
Xe <1, Yv eV Sind die Variablen aus {0,1}, beschreibt die konvexe
e€s(v) Hulle der ganzzahligen Losungspunkte das (Integrale)
Xe = 0, Ve € E Matching Polytop (MP).

§(v) ist die Menge an Kanten inzident zu v.

Theorem: Das FMP fiir bipartite Graphen ist ganzzahlig.
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Allgemeine Graphen

Wie sieht das mit
nicht-bipartiten
Graphen aus?

VAN Es existieren
O--------- O fraktionale
L |
Wert: 1.5 Wert: 1 Basislosungen!
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Allgemeine Graphen mit perfekten Matchings

Dieser Graph hatte kein perfektes
Matching. Kann man unter der
Annahme das perfekte Matchings
existieren, mehr garantieren?
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Perfekte Matchings

z /-I Jeder Knoten muss gematcht sein.
max Xe
e€E
S. t.
Xe =1, Vv eV Aus ungeraden Mengen muss eine
ecE({vtv\{vh / Kante herausfiihren.
x, =1, VB € odd(V) v
e€E(B,V\B)
X, =0, Ve € E

Theorem: Das PMP (perfekte Matching Polytop) fiir beliebige Graphen ist ganzzahlig.
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Problem: Ungerade Kreise

Ug U7 Us (o Us
L
Us Us
L & o &
N o Uq iy " Ua Vg 4

Wie vermeide ich Kreise
falsch herum abzulaufen?

Ungerader Kreis minus ein
Knoten lasst sich perfekt
matchen!
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Shrink it!

v v Weg: (vq, vy, V3, V7, Vg, Us, Uy, U3)
Bliite: (v3, v, Vg, Us, Uy, V3)

Us

U1 U2 U3 U4
Basis

Definition

Ein M-alternierender Weg (v, ..., v,) heifRt M-Blume, wenn

* v, nichtvon M uberdeckt ist.

* Vy,..,Up_1 paarweise verschieden sind.

e v; = v, fiir ein ungeradesi € {1, ..., ¢ — 1} gilt.

Dabei heif3t (v4, ..., v;) M-Stiel, (v;, ..., v,) M-Bliite und v; Basis.
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Shrink it!

Idee: Schrumpfe
Bliten und fahre mit
der Suche fort.

Basis
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Beispiel

G’ T
Ug U7 Ug
[
Us
[ L . O L
(] (%) U3 Uy U1 U9
Vs UG
o L
U1 U2 {?)3,?)4,?)5,’07,?)8} U1 U2 {(03??)41 Us, U7, US}
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Beispiel

Gl
Vg
U1 U2 {vs, v4, v5,v7, v}
Ug
) vy {wvs, vy, U5, 07,08}

T
Ug
[ &
U1 U2 {{03?@’4705:7”75 US}

Augmentierender Pfad gefunden!

Ug (% Ug

Bliite auflosen

2
(%) (25 U3 (%
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Algorithmus von Edmonds

Algorithmus 1.  Function BLossoM(G)
Eingabe: 2. Setze M' =M =@undG' =G
Bipartiter Graph G = (V, E) 3. for r € V mitr ungematcht do
Ausgabe: 4, Setze T == ({r},®), W(T) = {r} und S(T) =0
Maximales Matching M 5. While (es ex. Kante {v,w} € E' mitv € W(T) undw ¢ S(T))
6. If w ist ungematcht then
7. Benutze {v, w}, um M’ zu augmentieren.
8. Erweitere M’ zu einem Matching M von G
0. Ersetze M’ durch M und G’ durch G.
10. Gehe zu Zeile 3.
11. elseifw ¢ V(T), aber w istin M’ gematcht then
12. Benutze {v, w}, um T zu erweitern.
13. elseif w € W(T) then
14. Benutze {v, w} zum Schrumpfen einer Bliite.
15. Aktualisiere M’, G’ und T entsprechend.
16. Return M
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Gewichtete Matchings
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Gewichtete Matchings

Problem 5.24: Minimum Cost Perfect Matchings
Gegeben:

Graph G = (V, E) und Kantenkosten c: E - R
Gesucht:

Perfektes Matching M € E mit ), c(e) minimal.

Wichtig:
* Annahme G enthalt ein perfektes Matching
* = Fir jeden Knoten existiert ein augmentierender Pfad
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IP und LP zu MinCost Perfect Matchings

»,Relaxierung”
— \5
min z xec(e) min Z xec(e)
e€E e€E
S. t. S. t.
Xe = 1, VveV Xe = 1, VveVlV
e€E({v}V\{v}) e€E({v},V\{v})
Z Xe = 1, VB € odd(V) z x,>1, VB € odd(V)
e€E(B,V\B) e€E(B,V\B)
x, € {0,1}, Ve € E X, =0, Ve € E
Das rechte LP ist ganzzahlig!
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Zwei lineare Programme

Optimale Losungswerte stimmen tiberein!

min z xqc(e) maxz Yy + BY:;
e€E VEV Beodd(V)
S. t. S. t.
Xe =1, Vv eV Vo + Vi + Z yp < c(e), Ve €EE
e€E({v},V\{v}) e€E(B,V\B)
Beodd(V)
> %21 VBEodd®V) v =0, VB E€odd(V)
e€E(B,V\B)
Xe = 0, Ve € E
Primal Dual
Was ist das fiir ein Problem?
éf% g% Eiﬁt:::&:: ) Arne Schmidt | MMA | Seite 20
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Zwei lineare Programme

maxz Yy T z VB
VEV Beodd(V)
S. t.
Votut D ypscle), Ve€k
e€E(B,V\B)
Beodd(V)
yg = 0, VB € odd(V)
Lass Kreise um Knoten
moglichst grofd wachsen,
sodass sie sich nicht schneiden. Dual

1L,
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Was ist das fiir ein Problem?
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Dualitat

Aus komplementaren Schlupf folgt:
Sei G ein Graph und e = {v,w} € E. Dann gilt:

Xe=1= y,+y,+ Z ye = c(e)
e€E(B,V\B)
Beodd(V)

Wiley-Interscience Series in Discrete Mathematics and Optimization

Kante kann nur eine Matchingkante sein, wenn sie
durch Kreise tiberdeckt ist!
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Primal-Dual-Algorithmen
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Idee

Lass im dualen die
Zielfunktion langsam
wachsen.

Passe im primalen die
LOosung an, sodass der
Wert identisch ist.
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Finden von augmentierenden Pfaden

Konstruiere alternierenden Baum
2 o nur uber tiberdeckte Kanten.
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Aktualisieren der Dual-Werte

2 o ( Suche kleinste reduzierte Kosten
von Kanten, die herausfiihren.

=1

Erhohe/Verringere Werte von
Knoten um 1.

Aber wie?
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Nachste Iteration
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Nachste Iteration
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Ungarische Methode

Algorithmus
Eingabe:

Bipartiter Graph G = (V = V; U V,, E), Kantenkosten c: E —» R*
Ausgabe:

Min Cost Perfect Matching M

Function UNGARISCHEMETHODE(G, ¢)
Setze y, :== min c({v,w}) fir alle v € ;.
{v,w}€eE

1
2
3. Finde maximales Matching M auf iiberdeckten Kanten.

4. forr € V; mitr ungematcht do

5. Konstruiere alternierenden Baum T mit r als Start.

6 while T enthélt keinen augmentierenden Pfad do

7 Seie € E(W(T), '\ W(T)) eine Kante mit ¢(e) minimal.
8 Setze y, =y, + c(e) fiir alle v € W(T).

9' Setze y,, = y,, — ¢(e) fir allew € V(T) \ W(T).
10. Erweitere T
11. Augmentiere M
12. return M
a",.vlu'?,‘Q h . h
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Ungerade Kreise

Wiley-Interscience Series in Discrete Mathematics and Optimization

1Ly
o v &
St | e

maxz Yy + 2 VB

vEV Beodd(V)
S. t.

Yo T Yw
e€E(B,V\B)
Beodd(V)

Ve € E

VB € odd(V)
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Schrumpfen einer Bliite
2 2

Wiley-Interscience Series in Discrete Mathematics and Optimization

Kanten teilweise liber Knoten im Kreis tiberdeckt.
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Die Probleme

Problem 1:
Erhohen von Dualwerten von weifden Knoten kann
Kanten zwischen weifden Knoten tiberdecken.

(e, L
(] (%2 V3 Vg

; c(e) .
= maximal um - erhohen.

Problem 2:

Nach Augmentieren: Eine Bliite B kann nur aufgelost werden,
wenn yg = 0.

= B kann spater als schwarzer Knoten existieren.

= Schwarze Knoten diirfen um maximal yy verringert werden.

yg = 0, VB € odd(V)
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Updateregeiln

Betrachte:

1. & :=min{c(e) |e € E(W(T),V\W(T))}

2 &= %min{c_(e) |e = {v,w}mitv,w € W(T)}
3. &3 := min{yg | Blite B € S(T)}

Sei € := min(gq, &5, €3)
Erhohe Knoten aus W (T) um ¢ und verringere Knoten aus
S(T) um «.

Auch hier:
Nach Aktualisieren sind bereits iiberdeckte Kanten immer
noch tiberdeckt und reduzierte Kosten sind nicht-negativ.
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Primal-Dual Methode

Algorithmus
Eingabe:

Graph G = (V,E), Kantenkosten c: E —» R*
Ausgabe:

Min Cost Perfect Matching M
1. Function PRIMALDUAL(G, ¢)
2. SetzeG':=GundM' =M=0
3. forr € V mitr ungematcht do o

. . . Erweitere T
4, Konstruiere alternierenden Baum T mit r als Start. Case 3 Bliite B € S(T) mit yp = 0:
5. while T enthalt keinen augmentierenden Pfad do Lise Hliitt ]m. “ yg =L
: I 0S¢ » aul.
g' SB:tSZtémm_e_g ._+rrgllfr1'ljg~g;1’1221;ges)w/(T) Passe G', M' und T entsprechend an.
' Yo =Wy ) ' Case Bliite B gefunden:

8. Setze y,, = y,, — € fur alle w € S(T). Schr fo B
9. Erweitere T (solange moglich) . : . m“!: ‘ . -
10. Augmentiere M’ Passe G'. M' und T entsprechend an.
11. Konstruiere Matching M fiir G aus M’ in G'. Ca?'ae hf‘”mt:, - _ ‘
12. return M Erweitere T iiber iiberdeckte Kanten.
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Primal-Duale-Algorithmen

Generell:
* Halte eine giiltige primale Losung mit einer unzulassigen dual-Losung gleichen Wertes
(oder andersherum)

* Passe primale Losung an, sodass die zugehorige, unzulassige dual-Losung naher an eine
gultige Losung kommt.

Weitere Beispiele:
* "Ford-Fulkerson" (Maximale Fliisse).
* "Dijkstra” (Kiirzeste Wege).

Primal-Duale-Algorithmen eignen sich auch fiir Approximationen.
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