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Graphenprobleme: Matchings
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Aufgabenverteilung

Personen Aufgaben

Arne

Christian

Marlin

Tobias

Putzen

Einkaufen

Kochen

Wäsche

Möchten sich einer Aufgabe zuweisen. Möchten einer Person zugewiesen werden.
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Matchings

Definition (Matchings)
Sei 𝐺 = 𝑉, 𝐸 ein Graph
(1) Eine Kantenmenge 𝑀 ⊆ 𝐸 heißt Matching, wenn 𝑒 ∩ 𝑓 = ∅ für je zwei Kanten 𝑒, 𝑓 ∈ 𝑀 gilt. 

(2) Kanten in 𝑀 heißen unabhängig.

(3) Ein Matching 𝑀 heißt perfektes Matching, wenn 2 𝑀 = 𝑉 gilt.

(4) Ein Matching heißt inklusionsmaximal (engl. maximal), wenn 𝑀 ∪ 𝑒 für jede Kante 𝑒 ∈
𝐸 ∖ 𝑀 kein Matching ist.

(5) Ein Matching heißt (kardinalitäts-)maximal (engl. maximum), wenn kein Matching 𝑀′
mit 𝑀 < 𝑀′ existiert.
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Algorithmus – Bipartite Graphen
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𝑣13

𝑣14

𝑣8

𝑣14

𝑣6

𝑣13

𝑣7

𝑣11

𝑣3

𝑣9

Alternierender Baum

Weiß: 𝑣8 muss gematcht werden.

Schwarz: 𝑣14 hat dann neuen Partner.

Weiß: 𝑣6 muss neu gematcht werden.



Arne Schmidt | MMA | Seite 6

Matching für bipartite Graphen

Algorithmus (Bipartite Matchings)
Eingabe: 

Bipartiter Graph 𝐺 = 𝑉, 𝐸
Ausgabe:

Maximales Matching𝑀

1. Function BIPARTITEMATCHING(𝐺)
2. Set 𝑀 ≔ ∅
3. for 𝑟 ∈ 𝑉1 mit 𝑟 ungematcht do
4. Setze 𝑇 ≔ 𝑟 , ∅ und 𝑊 𝑇 ≔ 𝑟
5. While (es ex. Kante 𝑣,𝑤 ∈ 𝐸 mit 𝑣 ∈ 𝑊(𝑇) und 𝑤 ∉ 𝑉 𝑇 )
6. If𝑤 ist ungematcht then
7. Benutze 𝑤, um augmentierenden Pfad zu bilden.
8. Augmentiere 𝑀
9. If es ex. Kein ungematchter Knoten mehr then
10. Return perfektes Matching𝑀
11. else
12. Gehe zu Zeile 3.
13. else
14. Sei {𝑤, 𝑧} Matchingkante an 𝑤.
15. Füge 𝑤, 𝑧 zu 𝑉(𝑇) hinzu und z zu 𝑊(𝑇)
16. Füge {𝑣, 𝑤}, {𝑤, 𝑧} zu 𝐸(𝑇) hinzu.
17. Return 𝑀
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Matching Polytop

max෍

𝑒∈𝐸

𝑥𝑒

s. t.

෍

𝑒∈𝛿(𝑣)

𝑥𝑒 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

𝛿 𝑣 ist die Menge an Kanten inzident zu 𝑣.

Definition:
Das Fraktionale Matching Polytop (FMP) ist das durch 
das LP beschriebene Polytop (Lösungsraum).

Sind die Variablen aus 0,1 , beschreibt die konvexe 
Hülle der ganzzahligen Lösungspunkte das (Integrale) 
Matching Polytop (MP).

Theorem: Das FMP für bipartite Graphen ist ganzzahlig.
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Allgemeine Graphen

Wie sieht das mit 
nicht-bipartiten 

Graphen aus?

Wert: 1.5 Wert: 1

Es existieren 
fraktionale 
Basislösungen!
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Allgemeine Graphen mit perfekten Matchings

Dieser Graph hatte kein perfektes 
Matching. Kann man unter der 

Annahme das perfekte Matchings 
existieren, mehr garantieren?



Arne Schmidt | MMA | Seite 10

Perfekte Matchings

max෍

𝑒∈𝐸

𝑥𝑒

s. t.

෍

𝑒∈𝐸( 𝑣 ,𝑉∖ 𝑣 )

𝑥𝑒 = 1, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝑥𝑒 ≥ 1, ∀𝐵 ∈ odd 𝑉

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Jeder Knoten muss gematcht sein.

Aus ungeraden Mengen muss eine 
Kante herausführen.

Theorem: Das PMP (perfekte Matching Polytop) für beliebige Graphen ist ganzzahlig.
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Problem: Ungerade Kreise

Wie vermeide ich Kreise 
falsch herum abzulaufen?

Ungerader Kreis minus ein 
Knoten lässt sich perfekt 

matchen!
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Shrink it!

Definition
Ein 𝑀-alternierender Weg 𝑣1, … , 𝑣ℓ heißt 𝑀-Blume, wenn
• 𝑣1 nicht von 𝑀 überdeckt ist.
• 𝑣1, … , 𝑣ℓ−1 paarweise verschieden sind.
• 𝑣𝑖 = 𝑣ℓ für ein ungerades 𝑖 ∈ 1, … , ℓ − 1 gilt.
Dabei heißt 𝑣1, … , 𝑣𝑖 𝑀-Stiel, 𝑣𝑖 , … , 𝑣ℓ 𝑀-Blüte und 𝑣𝑖 Basis.

Weg: 𝑣1, 𝑣2, 𝑣3, 𝑣7, 𝑣8, 𝑣5, 𝑣4, 𝑣3
Blüte: 𝑣3, 𝑣7, 𝑣8, 𝑣5, 𝑣4, 𝑣3
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Shrink it!

Idee: Schrumpfe 
Blüten und fahre mit 

der Suche fort.
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Beispiel

𝐺′ 𝑇
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Beispiel

𝐺′ 𝑇

Augmentierender Pfad gefunden!

Blüte auflösen
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Algorithmus von Edmonds

Algorithmus
Eingabe: 

Bipartiter Graph 𝐺 = 𝑉, 𝐸
Ausgabe:

Maximales Matching𝑀

1. Function BLOSSOM(𝐺)
2. Setze 𝑀′ = 𝑀 = ∅ und 𝐺′ = 𝐺
3. for 𝑟 ∈ 𝑉 mit 𝑟 ungematcht do
4. Setze 𝑇 ≔ 𝑟 , ∅ , 𝑊 𝑇 ≔ 𝑟 und 𝑆 𝑇 ≔ ∅
5. While (es ex. Kante 𝑣,𝑤 ∈ 𝐸′ mit 𝑣 ∈ 𝑊(𝑇) und 𝑤 ∉ 𝑆 𝑇 )
6. If𝑤 ist ungematcht then
7. Benutze 𝑣,𝑤 , um 𝑀′ zu augmentieren.
8. Erweitere 𝑀′ zu einem Matching𝑀 von 𝐺
9. Ersetze 𝑀′ durch 𝑀 und 𝐺′ durch 𝐺.
10. Gehe zu Zeile 3.
11. else if 𝑤 ∉ 𝑉 𝑇 , aber 𝑤 ist in 𝑀′ gematcht then
12. Benutze 𝑣,𝑤 , um 𝑇 zu erweitern.
13. else if 𝑤 ∈ 𝑊 𝑇 then
14. Benutze 𝑣,𝑤 zum Schrumpfen einer Blüte.
15. Aktualisiere 𝑀′, G′ und 𝑇 entsprechend.
16. Return 𝑀
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Gewichtete Matchings
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Gewichtete Matchings

Problem 5.24: Minimum Cost Perfect Matchings
Gegeben:

Graph 𝐺 = (𝑉, 𝐸) und Kantenkosten 𝑐: 𝐸 → ℝ+

Gesucht:
Perfektes Matching 𝑀 ⊆ 𝐸 mit σ𝑒∈𝑀 𝑐 𝑒 minimal.

Wichtig:
• Annahme 𝐺 enthält ein perfektes Matching
• ⇒ Für jeden Knoten existiert ein augmentierender Pfad
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IP und LP zu MinCost Perfect Matchings

min෍

𝑒∈𝐸

𝑥𝑒𝑐 𝑒

s. t.

෍

𝑒∈𝐸( 𝑣 ,𝑉∖ 𝑣 )

𝑥𝑒 = 1, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝑥𝑒 ≥ 1, ∀𝐵 ∈ odd 𝑉

𝑥𝑒 ∈ 0,1 , ∀𝑒 ∈ 𝐸

min෍

𝑒∈𝐸

𝑥𝑒𝑐 𝑒

s. t.

෍

𝑒∈𝐸( 𝑣 ,𝑉∖ 𝑣 )

𝑥𝑒 = 1, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝑥𝑒 ≥ 1, ∀𝐵 ∈ odd 𝑉

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

„Relaxierung“

Das rechte LP ist ganzzahlig!
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Zwei lineare Programme

min෍

𝑒∈𝐸

𝑥𝑒𝑐 𝑒

s. t.

෍

𝑒∈𝐸( 𝑣 ,𝑉∖ 𝑣 )

𝑥𝑒 = 1, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝑥𝑒 ≥ 1, ∀𝐵 ∈ odd 𝑉

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

max෍

𝑣∈𝑉

𝑦𝑣 + ෍

𝐵∈odd(𝑉)

𝑦𝐵

s. t.

𝑦𝑣 + 𝑦𝑤 + ෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝐵∈odd 𝑉

𝑦𝐵 ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸

𝑦𝐵 ≥ 0, ∀𝐵 ∈ odd 𝑉

Primal Dual
Was ist das für ein Problem?

Optimale Lösungswerte stimmen überein!
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Zwei lineare Programme

Dual
Was ist das für ein Problem?

Lass Kreise um Knoten 
möglichst groß wachsen, 
sodass sie sich nicht schneiden.

max෍

𝑣∈𝑉

𝑦𝑣 + ෍

𝐵∈odd(𝑉)

𝑦𝐵

s. t.

𝑦𝑣 + 𝑦𝑤 + ෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝐵∈odd 𝑉

𝑦𝐵 ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸

𝑦𝐵 ≥ 0, ∀𝐵 ∈ odd 𝑉



Arne Schmidt | MMA | Seite 22

Dualität

Aus komplementären Schlupf folgt:
Sei 𝐺 ein Graph und 𝑒 = 𝑣,𝑤 ∈ 𝐸. Dann gilt:

𝑥𝑒 = 1 ⇒ 𝑦𝑣 + 𝑦𝑤 + ෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝐵∈odd 𝑉

𝑦𝐵 = 𝑐 𝑒

Kante kann nur eine Matchingkante sein, wenn sie 
durch Kreise überdeckt ist!
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Primal-Dual-Algorithmen
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Idee

Lass im dualen die 
Zielfunktion langsam 

wachsen.

Passe im primalen die 
Lösung an, sodass der 

Wert identisch ist.
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Finden von augmentierenden Pfaden

Konstruiere alternierenden Baum 
nur über überdeckte Kanten.
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Aktualisieren der Dual-Werte

Suche kleinste reduzierte Kosten 
von Kanten, die herausführen.

⇒ 1

Erhöhe/Verringere Werte von 
Knoten um 1.

Aber wie?
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Nächste Iteration
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Nächste Iteration
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Ungarische Methode

Algorithmus
Eingabe: 

Bipartiter Graph 𝐺 = 𝑉 = 𝑉1 ሶ∪ 𝑉2, 𝐸 , Kantenkosten 𝑐: 𝐸 → ℝ+

Ausgabe:
Min Cost Perfect Matching𝑀

1. Function UNGARISCHEMETHODE 𝐺, 𝑐
2. Setze 𝑦𝑣 ≔ min

𝑣,𝑤 ∈𝐸
𝑐 𝑣, 𝑤 für alle 𝑣 ∈ 𝑉1.

3. Finde maximales Matching𝑀 auf überdeckten Kanten.
4. for 𝑟 ∈ 𝑉1 mit 𝑟 ungematcht do
5. Konstruiere alternierenden Baum 𝑇 mit 𝑟 als Start.
6. while 𝑇 enthält keinen augmentierenden Pfad do

7. Sei 𝑒 ∈ 𝐸 𝑊 𝑇 , 𝑉 ∖ 𝑊 𝑇 eine Kante mit ҧ𝑐 𝑒 minimal.

8. Setze 𝑦𝑣 ≔ 𝑦𝑣 + ҧ𝑐 𝑒 für alle 𝑣 ∈ 𝑊 𝑇 .
9. Setze 𝑦𝑤 ≔ 𝑦𝑤 − ҧ𝑐 𝑒 für alle 𝑤 ∈ 𝑉 𝑇 ∖𝑊 𝑇 .
10. Erweitere 𝑇
11. Augmentiere 𝑀
12. return 𝑀
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Ungerade Kreise

max෍

𝑣∈𝑉

𝑦𝑣 + ෍

𝐵∈odd(𝑉)

𝑦𝐵

s. t.

𝑦𝑣 + 𝑦𝑤 + ෍

𝑒∈𝐸(𝐵,𝑉∖𝐵)

𝐵∈odd 𝑉

𝑦𝐵 ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸

𝑦𝐵 ≥ 0, ∀𝐵 ∈ odd 𝑉
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Schrumpfen einer Blüte

10
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2

7

2 6

1

2

3

2

2

0

3

5

Kanten teilweise über Knoten im Kreis überdeckt.
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Die Probleme

Problem 1:
Erhöhen von Dualwerten von weißen Knoten kann 
Kanten zwischen weißen Knoten überdecken.

⇒ maximal um 
ҧ𝑐 𝑒

2
erhöhen.

Problem 2:
Nach Augmentieren: Eine Blüte B kann nur aufgelöst werden, 
wenn 𝑦𝐵 = 0.
⇒ B kann später als schwarzer Knoten existieren.
⇒ Schwarze Knoten dürfen um maximal 𝑦𝐵 verringert werden.
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Updateregeln

Betrachte:

1. 𝜀1 ≔ min ҧ𝑐 𝑒 | 𝑒 ∈ 𝐸 𝑊 𝑇 , 𝑉 ∖ 𝑊 𝑇

2. 𝜀2 ≔
1

2
min ҧ𝑐 𝑒 | 𝑒 = 𝑣,𝑤 mit 𝑣, 𝑤 ∈ 𝑊 𝑇

3. 𝜀3 ≔ min 𝑦𝐵 | Blüte 𝐵 ∈ 𝑆 𝑇

Sei 𝜀 ≔ min(𝜀1, 𝜀2, 𝜀3)
Erhöhe Knoten aus 𝑊 𝑇 um 𝜀 und verringere Knoten aus 
𝑆 𝑇 um 𝜀.

Auch hier:
Nach Aktualisieren sind bereits überdeckte Kanten immer 
noch überdeckt und reduzierte Kosten sind nicht-negativ.
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Primal-Dual Methode

Algorithmus
Eingabe: 

Graph 𝐺 = 𝑉, 𝐸 , Kantenkosten 𝑐: 𝐸 → ℝ+

Ausgabe:
Min Cost Perfect Matching𝑀

1. Function PRIMALDUAL 𝐺, 𝑐
2. Setze 𝐺′ ≔ 𝐺 und 𝑀′ = 𝑀 = ∅
3. for 𝑟 ∈ 𝑉 mit 𝑟 ungematcht do
4. Konstruiere alternierenden Baum 𝑇 mit 𝑟 als Start.
5. while 𝑇 enthält keinen augmentierenden Pfad do

6. Bestimme 𝜀 ≔ min(𝜀1, 𝜀2, 𝜀3)
7. Setze 𝑦𝑣 ≔ 𝑦𝑣 + 𝜀 für alle 𝑣 ∈ 𝑊 𝑇 .
8. Setze 𝑦𝑤 ≔ 𝑦𝑤 − 𝜀 für alle 𝑤 ∈ 𝑆 𝑇 .
9. Erweitere 𝑇 (solange möglich)
10. Augmentiere 𝑀′
11. Konstruiere Matching𝑀 für 𝐺 aus 𝑀′ in 𝐺′.
12. return 𝑀
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Primal-Duale-Algorithmen

Generell:
• Halte eine gültige primale Lösung mit einer unzulässigen dual-Lösung gleichen Wertes

(oder andersherum)
• Passe primale Lösung an, sodass die zugehörige, unzulässige dual-Lösung näher an eine 

gültige Lösung kommt.

Weitere Beispiele:
• "Ford-Fulkerson" (Maximale Flüsse).
• "Dijkstra" (Kürzeste Wege).

Primal-Duale-Algorithmen eignen sich auch für Approximationen.
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