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Traveling Salesman Problem
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Ein Reisender

Ein Reisender mochte alle grofden Stadte eines
Landes besuchen, dabei aber so wenig wie moglich
Zeit mit dem tatsachlichen Reisen verbringen.

Klar ist:
Der Reisende kann sich nicht aufteilen.

Also:
Entweder gehen wir von Stadt x zu Stadt y, oder
wir lassen es sein.

Wie kann der Reisende nun eine kiirzeste Tour
bestimmen?
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Brute Force

Es gibt (n — 1)! viele Touren durch n Stidte.

Angenommen, wir kdnnen 18 Milliarden
Touren in der Sekunde durchpriifen.

Der log-Plot zeigt dann die benétigte Zeit in
Stunden an, um die beste Losung zu finden.

Brute Force scheidet definitiv aus!

Anzahl Stadte
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Graphen vs. Punkte

Auf einem gegebenen Graph mit
beliebigen Kosten ist es schwer
gute Losungen zu finden.

Wie sieht das auf
realistischen”
Instanzen aus?

Es ist NP-schwer, TSP mit Faktor k zu approximieren.
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Euklidisches TSP - Definition

Gegeben: Punkte py, ..., p, € R?
Gesucht: Eine Permutation 7, sodass

n
> IpaoPrcsnl
i=1

mitt(n + 1) = (1) minimal ist.

Liange der Kante istdie | _——"

euklidische Distanz

Es existiert eine 1.5-Approximation fiir ETSP.
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TSP-Formulierung - Idee 1

Wie formuliert man
das als IP?

Erste Idee:

e Knotenvariablenu € {1, ...,n — 1}
Gibt die Permutation an.

« Kantenvariablen x,- € {0,1}
Gibt die ausgewahlte, gerichtete Kante an
(Wir orientieren die Tour)

Nimmt man einen Knoten aus einer Tour, miissen die
Knotenvariablen exakt aufsteigend sortiert sein.
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TSP-Formulierung - Miller, Tucker, Zemlin

min Cox c. sind die Kosten der Kante. Sind entweder
! e~e explizit (Graph) oder implizit (Punkte) gegeben.
eEPXP
S.t.
Xe = 1, Vp € P Genau eine ausgehende Kante
e€s*(p)
X, =1, Vp € P Genau eine eingehende Kante
e€s~(p)
U —u+nx;;<n—1, Vi +#j,i,j € P\{py} Knoten miissen geordnet sein
u; €{1,..,n—1} (xij=1=2wy =y +1)
x, € {0,1}

Vorteil: Polynomielle Grofie.
Nachteil: Nutzt Big-M Methode (Wenn Kante nicht gewahlt ist, darf die Differenz grof3 werden.)
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TSP-Formulierung - Andere Idee

Betrachte Kanten ungerichtet.

1. Anjedem Knoten liegen exakt zwei Kanten.
2. Die Tour ist zusammenhangend.

Constraint zu 1. ist einfach. Aber zu 2.?
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TSP-Formulierung - Andere Idee

Subtour S
@ Betrachte Kanten ungerichtet.
1. Anjedem Knoten liegen exakt zwei Kanten.
Subtour Sy 2. Die Tour ist zusammenhangend.

Constraint zu 1. ist einfach. Aber zu 2.?
Betrachte Menge S,
Wie viele Kanten miissen herausftihren?
- Mindestens zweil!
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TSP-Formulierung - Danzig, Fulkerson, Johnson

Subtour S7
min 2 CoXo
eEPXP
s.t.

Subtour Sy Degree-Constraint Z X = 2, Vp € P
e€d(p)
Subtour-Constraint Xe 2 2, Vo =S\ &P
ees(s)
xe E {011}
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Lazy Constraints

Problem:
Das IP hat exponentiell viele Constraints! min Z CeXe
eePxpP
Wir brauchen aber u.U. nicht alle. s.t.
Xe = 2, Vp € P

* Lose zundchst das IP ohne die Subtour- e&50h)

Constraints.
 Nach Erhalt der Losung, priife, ob Xe22, VO#FS\EP

Constraints verletzt sind. Fluge verletzte e€8(S)

Subtour-Constraints hinzu! xe € 10,1}

Wir fiigen Constraints also nur hinzu, wenn es unbedingt sein muss. Die Constraints werden
auch ,lazy constraints“ genannt.
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Finden von verletzten Subtour-Constraints

Integral:
Subtour Sy
Nutze einen Graphscan-Algorithmus
(DFS/BFS), um eine Komponente zu finden.
Enthalt die Komponente nicht alle Knoten,
dann wurde eine Subtour gefunden! Subtour Sy

In diesem Fall:

Z Xp=0<2

366(51)
= Fuge folgenden Constraint hinzu:

Xe = 2
866(51)
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Finden von verletzten Subtour-Constraints

Fraktional:

Wieder BFS/DFS fiir einzelne Komponenten.
Ansonsten:

Fir gultige Losungen muss jeder Cut mindestens
den Wert 2 besitzen.

Frage: Gibt es einen Cut, der kleiner als zwei ist?
Algorithmus:

Stoer-Wagner zum Finden eines globalen
Minimum Cuts (,minimum graph cut®).
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Minimum Graph Cut

Gegeben: Graph G = (V, E) und Kantenkosten w: E —» R*
Gesucht: S,T € V mitS,T # @und S UT = V,sodass },,¢4(s) We minimal.

In unserem Fall:
Setze w, = x, und ignoriere Kanten mit x, = 0.

Stoer-Wagner 16st das Problem
in Zeit O(|V||E| + |V|? log|V]).
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Live Demo

https://www.math.uwaterloo.ca/tsp/app/diy.html#
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https://www.math.uwaterloo.ca/tsp/app/diy.html

TSP - Cutting Planes
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Cutting Planes

Dieser Teil sieht interessant
aus! Versuchen wir das zu
verallgemeinern.
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Eine spezielle Situation

Alle Subtour-Constraints sind erfullt.
Fraktionale Losung geht fiir L — oo gegen 3L + 4.

Eine optimale, integrale Losung hat Wert mindestens 4L.

- (Asymptotischer) Integrality Gap ist mindestens 4/3.

Vermutung:
Der Integrality Gap der Danzig-
Formulierung ist 4/3.

- L >
® ® @ @
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Eine spezielle Situation

Konnen wir hier noch etwas tun?
In diesem Beispiel: Fiir miissen die linke / rechte Seite entweder 2-mal oder 4-mal verlassen.

Hier passiert es aber an drei Stellen!
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Comb-Ungleichungen

Handle

Tooth

1Ly
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Eine Aufteilung von Vin Knotenmengen H, Ty, T,, ..., T mit
s HNT;+ @flurallei=1,..,k
 T;\H=0firallei=1,..,k

T;nT; =@firallei #j € {1, ..., k}
* kungerade
wird Comb genannt. Dabei werden H der Handle und die
T; die Teeth des Combs genannt.

Betrachte was bei dem Handle bzgl. eines Tooth passiert!
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Comb-Ungleichungen

Handle
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Beide Knoten haben Grad 2. Fallunterscheidung fur
Handle H am Knoten v und Tooth T;!
Sei dazu ds die Anzahl an Kanten, die aus der Menge S
herausfiithrt und d(v) der Grad eines Knoten.
1. Beide Kanten von v laufen innerhalb von H.
Dann muss dr,(v) + dr,(w) = dr, = 3 sein.
2. Eine Kante von v lauft innerhalb von H.
Dann muss dy(v) = 1und dy, = 2 sein.
3. Keine Kante von v lauft innerhalb von H.
Dannist dy(v) = 2 und dr,(w) = 1.
Damit ist also
dy(v) +dr, = 3
Aufsummiert fiir alle Teeth:

k
dy + Z dr. > 3k
i=1

Arne Schmidt | MMA, VL 11 | Seite 22




Comb-Ungleichungen

Aufsummiert fiir alle Teeth:

k
dH+ZdTi23k

i=1
Nun miissen dy und dr, gerade sein!

Da k ungerade, ist also die linke Seite gerade und die
rechte Seite der Ungleichung ungerade.

Also muss auch gelten:

K
Handle dy + z dr, =23k +1

=1

Damit erhalten wir als Constraint:
k

Z xe+2 Z Xe =3k +1

e€S(H) i=1 eeb(T;)
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Comb-Ungleichungen

._
In dieser fraktionalen Losung:
K
o z Xe + Z 2 Xe =9
e€S(H) i=1e€d(Ty)
Gefordert sind aber 3k + 1 = 10.
P Wir konnen also einen neuen Constraint

hinzufiigen!
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Losung mit Comb-Ungleichungen
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Comb-Ungleichungen

Wie schwer ist es,
diese zu finden?

Es ist nicht bekannt, ob das Finden von Combs NP-schwer
ist oder ob diese effizient gefunden werden konnen.

Es existieren aber gute Heuristiken, z.B.:

Suche den Handle iiber Komponenten, die durch
fraktionale Kanten aufgespannt werden und Kanten als
Teeth, die diese Komponente verlassen.
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Branch-Cut-and-Price
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Losen von (E)TSP
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TSP lasst sich uiber diese Constraints in der Regel schon sehr gut
l0sen.

Sehr grofde Instanzen (tausende Knoten), haben allerdings das
Problem, dass der Speicher schnell zu wenig wird!

Gerade bei ETSP arbeiten wir implizit auf einem vollstandigen
Graphen. Alle Gewichte miissen irgendwo gespeichert werden!

Konnen wir nicht
eine Teilmenge von
Kanten betrachten?

Dann, nach und nach
Kanten mit aufnehmen?

Sehr lange Kanten
werden bspw. nicht
betrachtet!

Arne Schmidt | MMA, VL 11 | Seite 28




Branch-Cut-and-Price

Grundidee:

« Wahle Kandidatenmenge von Kanten

* Lose die Relaxierung inkl. Cutting Planes

* Prife, ob es Kanten gibt, die die Losung noch verbessern konnten.
* Losche ggf. Kanten und Cuts, die langer nicht mehr aktiv waren.

Dabei stellen sich die Fragen:
1. Wie wahle ich die Kanten aus?
2. Was passiert mit den Cutting Planes?
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Kanten und Cutting Planes

Zunachst: Wir sind optimal, wenn z;, = 0 ist, bzw. wenn wir dual zulassig sind.

Wenn es eine nicht-betrachtete Kante gibt, die unsere Losung verbessern konnte,
dann muss im dualen ein dazugehoriger Constraint existieren, der nicht erfullt ist!

Suche also Variablen, die einen verletzten dualen Constraint hat, und flige sie hinzu.
Ahnliches gilt auch fiir Cutting Planes: Sie entsprechen Variablen im dualen!

Doch wie sieht das duale Problem tiberhaupt aus?
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Das duale zu TSP

min 2 CoXp

eeEk
S.t.

Xe = 2, Vp € P
e€é(p)

Xe = 2, VO +S\EP
eed(S)

maxzz:yp+22ys Zye

DEP e€E
S.t.

Yo +Yw t+ Z Vs — Y{v,w} < Ce,
S:{v,w}es(s)

yy free, ye,ys = 0

v{v,w} € E
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TSP-Dual: Zone & Moat Packing

(Geometrische Vorstellung)
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Allgemeine Cut-Reprasentation fiur TSP

Jeder Cut (z.B. Subtour, Comb) fiir TSP kann allgemein
so festgehalten werden:

min 2 CoXe e SeiF = {Sl, o) S-} eine Menge von Knotenmengen.
eEE e ueN
Dann kann ein Cut folgendermafien dargestellt

z X, =2,  VpEP werden:
> Y e

SEF eeb(S)

Fur
e Subtours: F ={S}undu =2
« Combs:F ={H,Ty,..,Tiyundu =3k +1
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Generalisiertes Duales LP

Sei nun
*  e(F) = Uger 6(S) die Menge von Kanten, die eine Knotenmenge in F verlasst.
« x(e,F) die Anzahl an Knotenmengen, die e verlisst.

Dann ist das duale LP wie folgt:

maxZZyp +ny EYe

pEP eeE
s.t.

Yo+ Yw + Z x(e,F)yr — Yipw) < Ce viv,w} € E
F{v,w}es(F)
Yy free,ye,yr = 0

Suche nicht-betrachtete Kante e mit

de = Co — Yy — Yw — z X(e:T)YT+Ye<O
F{vw}led(F)
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Kostenabschitzung

Suche nicht-betrachtete Kante e mit =0,dax=0<1.

de =Co — Yo — Yw — z )((e,}")y 0
F{o,w}es(F)

x(e, F)ys
F{v,w}es(F)

Das Berechnen von

ist allerdings zeitaufwandig.

Bestimme ein a, < a,.
Betrachte fiir eine Kantee = {v,w} € E

yv::yv+z z YF und Ae =Co— Yy — Yw = ¢
F SeF:ves
Zahle also nur wie oft die Endknoten in den Mengen vorkommen. Dadurch wird ignoriert, dass die Kante

innerhalb einer Knotenmenge S verlaufen kann.
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Schlusswort

TSP lasst sich fir grofde Instanzen 16sen. Nutze dazu LP/IP

Techniken!
J

4 )

7 : )
: ) Lazy Constraints und Cutting
Viele Solver konnen das nur . .
. Planes konnen in der Regel
beschrankt umsetzen. . : -
\ A_einfach hinzugefiigt werden.
e Y .
Pricing kann durch Branch-Cut-and-Price ist
wiederholtes losen nicht in allen Solvern
\_umgesetzt werden. A_moglich. SCIP erlaubt es. )
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