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Traveling Salesman Problem
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Ein Reisender

Ein Reisender möchte alle großen Städte eines 
Landes besuchen, dabei aber so wenig wie möglich 
Zeit mit dem tatsächlichen Reisen verbringen.

Klar ist: 
Der Reisende kann sich nicht aufteilen. 

Also: 
Entweder gehen wir von Stadt x zu Stadt y, oder 
wir lassen es sein.

Wie kann der Reisende nun eine kürzeste Tour 
bestimmen?
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Brute Force

Stunden

Anzahl Städte

Es gibt 𝑛 − 1 ! viele Touren durch 𝑛 Städte.

Angenommen, wir können 18 Milliarden 
Touren in der Sekunde durchprüfen.

Der log-Plot zeigt dann die benötigte Zeit in 
Stunden an, um die beste Lösung zu finden.

Brute Force scheidet definitiv aus!
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Graphen vs. Punkte

Auf einem gegebenen Graph mit 
beliebigen Kosten ist es schwer 

gute Lösungen zu finden.

Wie sieht das auf 
„realistischen“ 
Instanzen aus?

Es ist NP-schwer, TSP mit Faktor 𝑘 zu approximieren.
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Euklidisches TSP - Definition

Gegeben: Punkte 𝑝1, … , 𝑝𝑛 ∈ ℝ2

Gesucht: Eine Permutation 𝜋, sodass 

෍

𝑖=1

𝑛

𝑝𝜋 𝑖 𝑝𝜋 𝑖+1

mit 𝜋 𝑛 + 1 = 𝜋 1 minimal ist.

Länge der Kante ist die 
euklidische Distanz

Es existiert eine 1.5-Approximation für ETSP.
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TSP-Formulierung – Idee 1

Wie formuliert man 
das als IP?

Erste Idee:
• Knotenvariablen 𝑢 ∈ 1,… , 𝑛 − 1

Gibt die Permutation an.
• Kantenvariablen 𝑥𝑒→ ∈ 0,1

Gibt die ausgewählte, gerichtete Kante an
(Wir orientieren die Tour)

Nimmt man einen Knoten aus einer Tour, müssen die 
Knotenvariablen exakt aufsteigend sortiert sein. 
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TSP-Formulierung – Miller, Tucker, Zemlin

min ෍

𝑒∈𝑃×𝑃

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿+ 𝑝

𝑥𝑒 = 1, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿− 𝑝

𝑥𝑒 = 1, ∀𝑝 ∈ 𝑃

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1, ∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑃 ∖ 𝑝1
𝑢𝑖 ∈ 1,… , 𝑛 − 1
𝑥𝑒 ∈ 0,1

Genau eine ausgehende Kante

Genau eine eingehende Kante

Knoten müssen geordnet sein
(𝑥𝑖𝑗 = 1 ⇒ 𝑢𝑗 ≥ 𝑢𝑖 + 1)

Vorteil: Polynomielle Größe.
Nachteil: Nutzt Big-M Methode (Wenn Kante nicht gewählt ist, darf die Differenz groß werden.)

𝑐𝑒 sind die Kosten der Kante. Sind entweder 
explizit (Graph) oder implizit (Punkte) gegeben.
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TSP-Formulierung – Andere Idee

Betrachte Kanten ungerichtet.

1. An jedem Knoten liegen exakt zwei Kanten.
2. Die Tour ist zusammenhängend.

Constraint zu 1. ist einfach. Aber zu 2.?
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TSP-Formulierung – Andere Idee

Betrachte Kanten ungerichtet.

1. An jedem Knoten liegen exakt zwei Kanten.
2. Die Tour ist zusammenhängend.

Constraint zu 1. ist einfach. Aber zu 2.?

Betrachte Menge 𝑆1
Wie viele Kanten müssen herausführen?
→ Mindestens zwei!
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TSP-Formulierung – Danzig, Fulkerson, Johnson

min ෍

𝑒∈𝑃×𝑃

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

𝑥𝑒 ∈ 0,1

Subtour-Constraint

Degree-Constraint
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Lazy Constraints

min ෍

𝑒∈𝑃×𝑃

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

𝑥𝑒 ∈ 0,1

Problem:
Das IP hat exponentiell viele Constraints!

Wir brauchen aber u.U. nicht alle.

• Löse zunächst das IP ohne die Subtour-
Constraints. 

• Nach Erhalt der Lösung, prüfe, ob 
Constraints verletzt sind. Füge verletzte 
Subtour-Constraints hinzu!

Wir fügen Constraints also nur hinzu, wenn es unbedingt sein muss. Die Constraints werden 
auch „lazy constraints“ genannt.
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Finden von verletzten Subtour-Constraints

Integral:

Nutze einen Graphscan-Algorithmus 
(DFS/BFS), um eine Komponente zu finden. 

Enthält die Komponente nicht alle Knoten, 
dann wurde eine Subtour gefunden!

In diesem Fall:

෍

𝑒∈𝛿 𝑆1

𝑥𝑒 = 0 < 2

⇒ Füge folgenden Constraint hinzu:

෍

𝑒∈𝛿 𝑆1

𝑥𝑒 ≥ 2
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Finden von verletzten Subtour-Constraints

Fraktional:

Wieder BFS/DFS für einzelne Komponenten.

Ansonsten:
Für gültige Lösungen muss jeder Cut mindestens 
den Wert 2 besitzen.

Frage: Gibt es einen Cut, der kleiner als zwei ist?

Algorithmus:
Stoer-Wagner zum Finden eines globalen 
Minimum Cuts („minimum graph cut“).
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Minimum Graph Cut

Gegeben: Graph 𝐺 = 𝑉, 𝐸 und Kantenkosten 𝑤: 𝐸 → ℝ+

Gesucht: 𝑆, 𝑇 ⊂ 𝑉 mit 𝑆, 𝑇 ≠ ∅ und 𝑆 ሶ∪ 𝑇 = 𝑉, sodass σ𝑒∈𝛿 𝑆 𝑤𝑒 minimal. 

In unserem Fall:
Setze 𝑤𝑒 ≔ 𝑥𝑒 und ignoriere Kanten mit 𝑥𝑒 = 0. 

Stoer-Wagner löst das Problem 
in Zeit 𝑂 𝑉 𝐸 + 𝑉 2 log 𝑉 .
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Live Demo

https://www.math.uwaterloo.ca/tsp/app/diy.html#

https://www.math.uwaterloo.ca/tsp/app/diy.html
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TSP – Cutting Planes
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Cutting Planes

Dieser Teil sieht interessant 
aus! Versuchen wir das zu 
verallgemeinern.
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Eine spezielle Situation

Alle Subtour-Constraints sind erfüllt.
Fraktionale Lösung geht für 𝐿 → ∞ gegen 3𝐿 + 4.
Eine optimale, integrale Lösung hat Wert mindestens  4𝐿.
→ (Asymptotischer) Integrality Gap ist mindestens 4/3.

Vermutung:
Der Integrality Gap der Danzig-
Formulierung ist 4/3. 
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Eine spezielle Situation

Können wir hier noch etwas tun?
In diesem Beispiel: Für müssen die linke / rechte Seite entweder 2-mal oder 4-mal verlassen.

Hier passiert es aber an drei Stellen!
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Comb-Ungleichungen

Handle

Tooth

v w

Eine Aufteilung von V in Knotenmengen 𝐻, 𝑇1, 𝑇2, … , 𝑇𝑘 mit 
• 𝐻 ∩ 𝑇𝑖 ≠ ∅ für alle 𝑖 = 1,… , 𝑘
• 𝑇𝑖 ∖ 𝐻 ≠ ∅ für alle 𝑖 = 1, … , 𝑘
• 𝑇𝑖 ∩ 𝑇𝑗 = ∅ für alle 𝑖 ≠ 𝑗 ∈ 1,… , 𝑘

• k ungerade
wird Comb genannt. Dabei werden H der Handle und die 
𝑇𝑖 die Teeth des Combs genannt.

Betrachte was bei dem Handle bzgl. eines Tooth passiert!
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Comb-Ungleichungen

Handle

Tooth

Beide Knoten haben Grad 2.  Fallunterscheidung für 
Handle H am Knoten v und Tooth 𝑇𝑖! 
Sei dazu 𝑑𝑆 die Anzahl an Kanten, die aus der Menge S
herausführt und 𝑑 𝑣 der Grad eines Knoten.
1. Beide Kanten von v laufen innerhalb von H. 

Dann muss 𝑑𝑇𝑖 𝑣 + 𝑑𝑇𝑖 𝑤 = 𝑑𝑇𝑖 ≥ 3 sein.

2. Eine Kante von v läuft innerhalb von H. 
Dann muss 𝑑𝐻 𝑣 = 1 und 𝑑𝑇𝑖 ≥ 2 sein.

3. Keine Kante von v läuft innerhalb von H.
Dann ist 𝑑𝐻 𝑣 = 2 und 𝑑𝑇𝑖 𝑤 ≥ 1.

Damit ist also
𝑑𝐻 𝑣 + 𝑑𝑇𝑖 ≥ 3

Aufsummiert für alle Teeth:

𝑑𝐻 +෍

𝑖=1

𝑘

𝑑𝑇𝑖 ≥ 3𝑘

v w
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Comb-Ungleichungen

Handle

Tooth

Aufsummiert für alle Teeth:

𝑑𝐻 +෍

𝑖=1

𝑘

𝑑𝑇𝑖 ≥ 3𝑘

Nun müssen 𝑑𝐻 und 𝑑𝑇𝑖 gerade sein! 

Da k ungerade, ist also die linke Seite gerade und die 
rechte Seite der Ungleichung ungerade.

Also muss auch gelten:

𝑑𝐻 +෍

𝑖=1

𝑘

𝑑𝑇𝑖 ≥ 3𝑘 + 1

Damit erhalten wir als Constraint:

෍

𝑒∈𝛿 𝐻

𝑥𝑒 +෍

𝑖=1

𝑘

෍

𝑒∈𝛿 𝑇𝑖

𝑥𝑒 ≥ 3𝑘 + 1

v w
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Comb-Ungleichungen

In dieser fraktionalen Lösung:

෍

𝑒∈𝛿 𝐻

𝑥𝑒 +෍

𝑖=1

𝑘

෍

𝑒∈𝛿 𝑇𝑖

𝑥𝑒 = 9

Gefordert sind aber 3𝑘 + 1 = 10.

Wir können also einen neuen Constraint
hinzufügen!
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Lösung mit Comb-Ungleichungen
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Comb-Ungleichungen

Wie schwer ist es, 
diese zu finden?

Es ist nicht bekannt, ob das Finden von Combs NP-schwer 
ist oder ob diese effizient gefunden werden können.

Es existieren aber gute Heuristiken, z.B.:
Suche den Handle über Komponenten, die durch 
fraktionale Kanten aufgespannt werden und Kanten als 
Teeth, die diese Komponente verlassen.
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Branch-Cut-and-Price
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Lösen von (E)TSP

Können wir nicht 
eine Teilmenge von 
Kanten betrachten?

TSP lässt sich über diese Constraints in der Regel schon sehr gut 
lösen. 

Sehr große Instanzen (tausende Knoten), haben allerdings das 
Problem, dass der Speicher schnell zu wenig wird!

Gerade bei ETSP arbeiten wir implizit auf einem vollständigen 
Graphen. Alle Gewichte müssen irgendwo gespeichert werden!

Dann, nach und nach 
Kanten mit aufnehmen?

Sehr lange Kanten 
werden bspw. nicht 

betrachtet!
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Branch-Cut-and-Price

Grundidee:
• Wähle Kandidatenmenge von Kanten
• Löse die Relaxierung inkl. Cutting Planes
• Prüfe, ob es Kanten gibt, die die Lösung noch verbessern könnten.
• Lösche ggf. Kanten und Cuts, die länger nicht mehr aktiv waren.

Dabei stellen sich die Fragen:
1. Wie wähle ich die Kanten aus?
2. Was passiert mit den Cutting Planes?
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Kanten und Cutting Planes

Zunächst: Wir sind optimal, wenn 𝑧𝒩
∗ ≥ 0 ist, bzw. wenn wir dual zulässig sind.

Wenn es eine nicht-betrachtete Kante gibt, die unsere Lösung verbessern könnte, 
dann muss im dualen ein dazugehöriger Constraint existieren, der nicht erfüllt ist!

Suche also Variablen, die einen verletzten dualen Constraint hat, und füge sie hinzu.

Ähnliches gilt auch für Cutting Planes: Sie entsprechen Variablen im dualen!

Doch wie sieht das duale Problem überhaupt aus?
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Das duale zu TSP

min෍

𝑒∈𝐸

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

0 ≤ 𝑥𝑒 ≤ 1

max2෍

𝑝∈𝑃

𝑦𝑝 +2෍

𝑆

𝑦𝑆 −෍

𝑒∈𝐸

𝑦𝑒

s.t.

𝑦𝑣 + 𝑦𝑤 + ෍

𝑆: 𝑣,𝑤 ∈𝛿 𝑆

𝑦𝑆 − 𝑦 𝑣,𝑤 ≤ 𝑐𝑒 , ∀ 𝑣, 𝑤 ∈ 𝐸

𝑦𝑣 free, ye, yS ≥ 0
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TSP-Dual: Zone & Moat Packing
(Geometrische Vorstellung)
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Allgemeine Cut-Repräsentation für TSP

min෍

𝑒∈𝐸

𝑐𝑒𝑥𝑒

s.t.

෍

𝑒∈𝛿 𝑝

𝑥𝑒 = 2, ∀𝑝 ∈ 𝑃

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 2, ∀∅ ≠ 𝑆\ ⊊ 𝑃

0 ≤ 𝑥𝑒 ≤ 1

Jeder Cut (z.B. Subtour, Comb) für TSP kann allgemein 
so festgehalten werden:

• Sei ℱ = 𝑆1, … , 𝑆𝑗 eine Menge von Knotenmengen.

• 𝜇 ∈ ℕ
Dann kann ein Cut folgendermaßen dargestellt 
werden:

෍

𝑆∈ℱ

෍

𝑒∈𝛿 𝑆

𝑥𝑒 ≥ 𝜇

Für 
• Subtours: ℱ = 𝑆 und 𝜇 = 2
• Combs: ℱ = 𝐻, 𝑇1, … , 𝑇𝑘 und 𝜇 = 3𝑘 + 1
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Generalisiertes Duales LP

max2෍

𝑝∈𝑃

𝑦𝑝 +෍

ℱ

𝑦ℱ −෍

𝑒∈𝐸

𝑦𝑒

s.t.

𝑦𝑣 + 𝑦𝑤 + ෍

ℱ: 𝑣,𝑤 ∈𝛿 ℱ

𝜒 𝑒, ℱ 𝑦ℱ − 𝑦 𝑣,𝑤 ≤ 𝑐𝑒 , ∀ 𝑣, 𝑤 ∈ 𝐸

𝑦𝑣 free, ye, yℱ ≥ 0

Sei nun 
• 𝑒 ℱ = 𝑆∈ℱڂ 𝛿 𝑆 die Menge von Kanten, die eine Knotenmenge in ℱ verlässt.

• 𝜒 𝑒, ℱ die Anzahl an Knotenmengen, die 𝑒 verlässt.

Dann ist das duale LP wie folgt:

Suche nicht-betrachtete Kante 𝑒 mit

𝛼𝑒 = 𝑐𝑒 − 𝑦𝑣 − 𝑦𝑤 − ෍

ℱ: 𝑣,𝑤 ∈𝛿 ℱ

𝜒 𝑒, ℱ 𝑦ℱ + 𝑦𝑒 < 0
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Kostenabschätzung

Suche nicht-betrachtete Kante 𝑒 mit

𝛼𝑒 = 𝑐𝑒 − 𝑦𝑣 − 𝑦𝑤 − ෍

ℱ: 𝑣,𝑤 ∈𝛿 ℱ

𝜒 𝑒, ℱ 𝑦ℱ + 𝑦𝑒 < 0

= 0, da 𝑥 = 0 < 1.

Das Berechnen von

෍

ℱ: 𝑣,𝑤 ∈𝛿 ℱ

𝜒 𝑒, ℱ 𝑦ℱ

ist allerdings zeitaufwändig. 

Bestimme ein ത𝛼𝑒 ≤ 𝛼𝑒 .
Betrachte für eine Kante 𝑒 = 𝑣, 𝑤 ∈ 𝐸

ത𝑦𝑣 ≔ 𝑦𝑣 +෍

ℱ

෍

𝑆∈ℱ: 𝑣∈𝑆

𝑦ℱ und ത𝛼𝑒 = 𝑐𝑒 − ത𝑦𝑣 − ത𝑦𝑤 ≤ 𝛼𝑒

Zähle also nur wie oft die Endknoten in den Mengen vorkommen. Dadurch wird ignoriert, dass die Kante 

innerhalb einer Knotenmenge 𝑆 verlaufen kann. 
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Schlusswort

TSP lässt sich für große Instanzen lösen. Nutze dazu LP/IP 
Techniken!

Viele Solver können das nur 
beschränkt umsetzen.

Pricing kann durch 
wiederholtes lösen 
umgesetzt werden.

Lazy Constraints und Cutting 
Planes können in der Regel 
einfach hinzugefügt werden.

Branch-Cut-and-Price ist 
nicht in allen Solvern 
möglich. SCIP erlaubt es.
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