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Ein Reisender

Ein Reisender mochte alle grofden Stadte eines
Landes besuchen, dabei aber so wenig wie moglich
Zeit mit dem tatsachlichen Reisen verbringen.

Klar ist:
Der Reisende kann sich nicht aufteilen.

Also:
Entweder gehen wir von Stadt x zu Stadt y, oder
wir lassen es sein.

Wie kann der Reisende nun eine kirzeste Tour
bestimmen?
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Brute Force

Stunden

Es gibt (n — 1)! viele Touren durch n Stadte.

Angenommen, wir konnen 18 Milliarden
Touren in der Sekunde durchpriifen.

Der log-Plot zeigt dann die benétigte Zeit in
Stunden an, um die beste Losung zu finden.

Brute Force scheidet definitiv aus!

Anzahl Stadte
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Moon helium deal is biggest — prit et
purchase of natural resources
from space

The feasibility of moon mining is not yet proven, but the future of
supercomputing may depend on the ability to extract Helium-3 from the
lunar surface.

To understand the computer’s potency, take this common thought
experiment: A salesperson must travel to 22 cities, visiting each city only
once and returning to the first city in the most efficient route. It sounds
simple, but a laptop computer would take about 1,000 years to figure

out the best course. A quantum computer could one day compute the

l‘% . . Ll -
B eohrisehe solution in minutes, or maybe even seconds.
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Wie bekommt man das schneller?

Was ist Branch-

- ?
1,002 and 2.392 cities, respectively. The CPU times and-Cut

on the NBS CYBER 205 for the 1,002-city prob-
lem were 7 hours and 18 minutes and 27 hours
and 20 minutes for the 2,392-city problem, respec-
tively. ' :

Worauf
basiert das?

Aus: Optimization of a 532-City Symmetric
Traveling Salesman Problem by Branch and Cut.
(1987, Padberg und Rinaldi)
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Integer Programming
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Ein anderes Problem: Minimum Vertex Cover

Gegeben: Ein Graph G = (V, E).
Gesucht: Eine kleinste Menge VC <€ V, sodass fiir jede Kante e = {u, v} entweder u € VC oder v € VC.

Vertex Cover

Minimum Vertex Cover ﬁ @—O
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Minimum Vertex Cover als LP

min Z Xy Minimiere Anzahl der ausgewahlten Knoten.
vev
s.t.
Xy +xy =1, Ve ={v,w} €V Jede Kante muss iiberdeckt sein.
1=x,=0, VveV Jeder Knoten darf maximal einmal ausgewahlt sein.

Wie lautet eine optimale Losung des LPs fiir diesen Graphen?
=> Jeder Knoten wird zur Halfte gewahlt!
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Komplexitat von Vertex Cover und LPs

Simplex benotigt zwar exponentielle Laufzeit im Worst-Case, es gibt aber andere Algorithmen,
die LPs in effizienter Zeit (polynomiell im Input) 16sen kénnen,

— LPEP

Vertex Cover auf der anderen Seite ist NP-schwer. D.h. es existiert vermutlich kein Algorithmus,
der das Vertex Cover Problem in polynomieller Zeit I16sen kann.

— LPs konnen Vertex Cover nicht losen. (Es sei denn P = NP gilt.)

Konnen wir LPs etwas erweitern, sodass wir NP-schwere Probleme modellieren konnen?
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Minimum Vertex Cover als LP

min Z Xy Minimiere Anzahl der ausgewahlten Knoten.
vEV
S.t.
X, +x, =1, ve={v,w}eV Jede Kante muss Uberdeckt sein.
1=x,=0, VveV Jede Kante darf maximal einmal ausgewahlt sein.
X, € Z, Vv EV Nur ganzzahlige Werte sind erlaubt!

Wie lautet jetzt eine optimale Losung flir diesen Graphen?
=> Zwei Knoten werden gewahlt!
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3-Satisfiability

DAS Problem fiir NP-schwere ist 3-Satisfiability (3-SAT).

Gegeben: Eine boolesche Formel ¢(x) = AT2,(#,; V £,; V £3;), wobei £} ; ein
Literal in der Form x; oder x; einer der n Variablen ist.
Gesucht: Eine Belegung von x, sodass ¢(x) mit wahr evaluiert wird.
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Um dieses Problem tiber ein LP zu modellieren, stellen wir folgende Fragen.
* Worlber treffen wir Entscheidungen? — Variablen x;

- Wann isteine Klausel (£, ; V £,; V £3;) erfilllt? > zB.(x; V &, V x3) wird zu
x1+(1—X2)+X3 >1
 Was istdie Zielfunktion? - min/max 0
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Implikationen

Das Losen von LPs mit
ganzzahligen Variablen
muss NP-schwer sein

Sogar das Entscheiden, ob
es Uberhaupt eine Losung
gibt, muss NP-schwer sein!

Was konnen wir nun tun,
um Probleme trotzdem
damit zu losen?
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Definitionen und Sitze

Ein LP, welches nur ganzzahlige Variablen enthalt, heif3t Integer Program (IP).
LPs mit ganzzahligen und reellen Variablen, werden Mixed Integer Program (MIP) genannt.

LP mit nur 0-1-Variablen, werden 0-1-Program oder Binary Program (BP) genannt.

Theorem:
Das Losen von IPs, MIPs und BPs ist NP-schwer.

Ein LP, welches entsteht, wenn man die Ganzzahligkeit aus einem (M)IP entfernt, heifdt
Lineare Relaxierung des (M)IPs.

Lemma:
Sei I ein (M)IP und I das dazugehorige relaxierte LP fiir ein Maximierungsproblem. Dann ist
der Léosungswert von I hochstens dem Losungswert von I.
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Branch-and-Bound
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Grundidee - Branch

Das Losen von LPs ist einfach. Lose
also zunachst die Relaxierung.

Nimm dann eine nicht-ganzzahlige
Variable x; mit Wert a.

Fir eine optimale, ganzzahlige
Losung muss dann gelten:
x; < |a] oder x; > [a]

Priife beide
Optionen!
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Grundidee - Branch: Etwas allgemeiner

Angenommen, wir haben ein Subproblem P;, dessen LP Relaxierung eine nicht-ganzzahlige,
optimale Losung besitzt.

Splitte P; in k neue Subprobleme P, ., ..., P; 1, sodass

1. Jede ganzzahlige Losung von P; ist in einem der Subprobleme P, 1, ..., P;;; enthalten.
2. Keines der Subprobleme P; 4, ..., P;4} enthalt die nicht-ganzzahlige Losung von P;.

3. (Optional) Die Losungsraume aller Subprobleme P; 4, ..., P;; sind disjunkt.

Am einfachsten:
Erstelle zwei neue Subprobleme, in welchen fiir ein x mit Wert a die Constraints x < |[a] bzw. x
> [a] fir die Probleme P;,; bzw. P;,, hinzugefiigt werden.

Die beste Losung von P; ist dann die beste Losung, die rekursiv in den Subproblemen
P11, ..., Pi;) gefunden wird.
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Beispiel (1)

maximize 17x; + 12z,

subjectto 10z; + Tzy < 40
1+ T2 < 5
Iy, T2 E 0

T1, T2 integers
Optimale Losung:
_ (5 10
*=\3'3

Betrachte Subprobleme mit
Xy <lundx; =2

Arne Schmidt | MMA, VL 08 | Seite 18
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Beispiel (2)

maximize 17x; + 12z,
subjectto 10z; + Tzy < 40
r1+ T2 < 5
x1, x2 = 0

T1, T2 integers
Optimale Losung:
_ (5 10
*=\3'3

Betrachte Subprobleme mit
Xy <lundx; =2
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Beispiel (3)

maximize 17z, 4+ 12z,
subjectto 10z, + 7zo < 40
r1+ x2 < 5
Ty, x2 = 0

Pﬂ: x1=1 .67, x2=3.33
{=68.33

xlﬂl/ x122

1, To Integers

Wir bauen uns nach und nach

Pl:x1=1,x2=4 P

=65

einen Enumerationsbaum auf.

P1 besitzt ganzzahlige, optimale
Losung; P2 nicht.

g

'&% Technische
%ﬁ Universitit Arne Schmidt | MMA, VL 08 | Seite 20
s Braunschweig

cwt

I
v

e
o
%)
L
<
Y i3S
%
K
&,
N




Beispiel (4) P,:x=1.67,x,-333

{=68.33
maximize 17z, 4+ 12z,
_ x,<1 x,22
subjectto 10z, + 7zo < 40
Tt T2 S5 Pix=1,x,=4 Pix,=2,x,=2.86
=
71, 23 2 0 £=65 £=68.29
1, To Integers
15 =2 g x,<2 / \xZEB

Wir bauen uns nach und nach P,:x,=2.6,x,=2
einen Enumerationsbaum auf. {=68.2
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Beispiel (5)

maximize 17z, 4+ 12z,
subjectto 10z, + 7zo < 40
)

Iy, T2 2 0

IA A

r1+ T2

1, To Integers

Wir bauen uns nach und nach
einen Enumerationsbaum auf.

Pu: x1=1.67, x2=3.33

(=68.33

xlfl/

PI: xl=1, x2=4
(=65

P4: xl=2, J:2=2
=58

\x123

Ps: xl=3,xz=1.43

{=68.14
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Beispiel (n)

maximize 17z, 4+ 12z,
subjectto 10z, + 7zo < 40
r1+ x2 < 5
Ty, x2 = 0

1, To Integers

Wir bauen uns nach und nach
einen Enumerationsbaum auf.

Die beste ganzzahlige Losung ist
alsox = (4,0).

Py x1=1.67, x2=3.33

(=68.33

xlsl/

o

Pi:x=1,x,=4
=65
xzfz /
Py x,=2.6,x,=2
(=68.2

P9: Infeasible

\x 123

Py x,=3,x,=143

(=68.14

\1222

Ppix=2,x,=2
=58
xzﬁl/
Pgx,=33,x,=1
(=68.1

xlﬁ/
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Pyx,=3,x,~1
=63

Pw: Infeasible

\x124

Pg: x,=4,x,=0
=68




Was ware wenn

maximize 17z, 4+ 12z,
subjectto 10z, + 7zo < 40
r1+ x2 < 5
Ty, x2 = 0

1, To Integers

Wir bauen uns nach und nach einen
Enumerationsbaum auf.

Was ware, wenn umrandete Losung einen
relaxierten Losungswert von bspw. 57 hatte?
- Wir hatten nicht weiter such miissen, wir
kennen bereits bessere Losungen!

Py x1=1.67, x2=3.33

(=68.33

xlsl/

o

Pi:x=1,x,=4
=65
xzsz /
Py x,=2.6,x,=2
(=68.2

P9: Infeasible

\x 123

Py x,=3,x,=143

(=68.14

\1222

Ppix=2,x,=2
=58
xzfl/
Pgx,=33,x,=1
(=68.1

Pw: Infeasible

xlﬁ/
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=63

\x124

Pg: x,=4,x,=0
=68




Branch-and-Bound-Idee

Also:

* Lose die LP Relaxierung unter den aktuell gebranchten Variablenbedingunen.
* Entscheide, ob und wie gebrancht werden muss.

Dazu:
* Gehe Knoten DFS-basiert durch. Das erfordert das Speichern von nur O(Tiefe) vielen Knoten.
- BFSwiirde pro Level Q(2¢¥¢!) Knoten speichern.
* Wie konnen wir weiter Arbeit sparen?
* Schneide Teilbdume so frith wie moglich ab (,prune®).
* Benutze Losung des Vaterknotens wieder (,Warmstart®).
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Warmstart

Das optimale Dictionary im Wurzelknoten (Py): ¢ = 205 _ §'w1 _
3 3
> ! +
r] = - —  —w
1 3 3 1
10 n 1
To = — —wp —
2 3 5w

Fligen wir die Bedingung x; = 2 hinzu, erhalten wir die Slackvariable

g1 =% —2 205 5
S SAL S S
3 3 3 5 1 N
r1 = - — — W
1 3 w1
10 n 1
T2 = — —wi —
2 3 3w
Fiihre einen dualen Pivotschritt aus! 1 1
p= —3;- guit
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Branch-and-Bound-Algorithmus

1. Initialisiere eine (Priority-)Queue Q mit P,

2. Initialisiere B und vy (Beste bekannte Losung und Losungswert); Oder setze vg = —o0, B =1
3. Wiederhole, solange Q nicht leer:

Nimm P; aus Q

Bestimme optimale Losung x; mit Wert {; der LP-Relaxierung von P;

Falls P; infeasible, oder {; < vg, starte nachste Iteration.

Falls x; ganzzahlig ist, setze vy = (;, B = x; und starte nachste Iteration.

i & W b -

Wahle nicht-ganzzahligen Wert X mit Wert a.
6. Fiige Probleme P;,, := P; U{X < |a]} und P, := P; U{X = [a]} zu Q hinzu.
4. Gib (B, vg) zuriick.

Wichtig: [stam Ende B =1, dann ist das IP infeasible.
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Fragen

Damit haben wir eine
generelle Technik, um
[Ps zu losen.

So ein Baum kann
sehr grofd werden!

Wie konnen wir
Teilbaume friuhzeitig
abschneiden?
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Branch-and-Cut
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Idee

Wenn wir eine Losung
der LP Relaxierung
besitzen...

Konnen wir darin
erkennen, ob Constraints
existieren, die...

Durch alle ganzzahligen
Losungen erfiillt
werden, aber...

Nicht durch die Losung
der aktuellen LP
Relaxierung?
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Cutting Planes

Eine Cutting Plane C (oder kurz Cut) ist ein Constraint fir LP P, welcher folgende Bedingungen

erfullt
* Jedeintegrale Losunge zu P ist eine gultige Losungin P U C.

* Die optimale Losung zu P ist ungultig in P U C.

Y
A I max y A

2 + 3y < 12

<

-9
. )
-
e
\{
8
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Gomory-Cuts (1)

Betrachte eine Zeile des optimalen Dictionaries.

— * - * -
Xi = X; —Zaijxjc)xi —xi+2aijxj

JEN jEN
Wenn wir die Koeffizienten in einen ganzzahligen Teil und einen fractionalen Teil
aufteilen, erhalten wir folgende Zeile.

1+ G = D =+ Y gl + Y (@ = [ag])x;

JEN JEN
Separieren von Ganzzahlen und fractionalen Werten liefert:

x Y [ayhg — gl = G = D = Y (@ -~ [a,])y

jen JEN
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Gomory-Cuts (2)

>0 firx >0

€ Z <1

Also konnen wir festhalten:
X + zlaujx] — |_X:<J <0
JEN
= Xx; + z laiijj < lxl*J
JEN
Damit haben wir einen neuen Constraint!
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Gomory-Cut Beispiel - Ein neuer Contraint

179 7 73
Wie lautet ein moglicher Gomory-Cut? = N Y
X, ist nicht ganzzahlig. Betrachte also 11 5 1
L2 5 il 1 11 r1 = ? — 5—41U1 — aTUQ
X w =—
1754154727 3 - 1 .
Flige also den Constraint Ty = -+ —w1 4+ —ws
3 27 54
x1+OW1+OW2S3®X1S3 5 8
hinzu. w3 = 13 — §w1 — §w2

ﬁ 1- Technische
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Gomory-Cut Beispiel - Eine neue Zeile

179 7 73
Das Hinzuftigen von x; < 3 liefert eine ¢= N Y
(ganzzahlige) Basis-Schlupfvariable 1 5 1
11 5 1 T = — — —wy — — W9
W4—3_X1—3__+ W1+ 3 54 54
54 54— 7 1 5
2 5 1 Tro = - 4+ —wi + — W9
=——4+—w; +— 3 27 54
3 54 54 5 8
Fiihre eine Iteration des dualen Slmplex aus. w3 = 13 — §w1 — §w2
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Gomory-Cut Beispiel - Eine neue Iteration

Wie lautet ein moglicher Gomory-Cut?

X, ist nicht ganzzahlig. Betrachte also ¢ = 289 Em 3 BwQ
2 23 13 5 5 10
2T sWaTo70"2 T 5 z1 = 3 — wy
Also 13 2 23
Xy, — 1w, — 1w, < 2 vz 5 50T on™?
Und damit die neue Zeile 7
3,3 247 w3 = 9-  bwa-— g w2
We=—=+-wW, +—w -
5T 575°*%7270"° w; — §+ ?wr éwg
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Gomory-Cut Beispiel - Eine neue Iteration

Wie lautet ein moglicher Gomory-Cut? ¢ = 289 1_4w4 _ 13
X, ist nicht ganzzahlig. Betrachte also 5 5 10
2 23 13 x1 = 3 — wyq
Xop =Wy — 0 Wo = 13 2 23
5 270 5 — g Cwit+ =
Also 5 5 270
7
X2 — 1wy — 1w, < 2 ws = 9 — 6wy — —wo
Und damit die neue Zeile 36 - ?
We=——+—-w, +—Ww
> 5 5 %7270 2
3 n 3w n 247w
w5 = —= - —
5 5 270

Fihre wieder einen dualen Pivotschritt aus!
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Gomory-Cuts: Vor- und Nachteile

-
Gomory-Cuts schneiden keine
integralen Losungen ab.
\.

In der Praxis nur Gomory-
Cuts nutzen ist ineffizient!

AN

~

Numerische Probleme
konnen auftauchen!

Mit jedem Cut erhalten
wir eine andere Losung

> <
Erhalten wir ein

infeasible LP, gibt es

\_keine integrale Losung! b

>
Irgendwann werden

wir tatsachlich

\_terminieren! y
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Branch-and-Cut

Initialisiere eine (Priority-)Queue Q mit P,
Initialisiere B und vy (Beste bekannte Losung und Losungswert); Oder setze vy = —o00,B =1
Setze Menge von globalen Cuts C = @
Wiederhole, solange Q nicht leer:
1. Nimm P; aus @
2. Setze Menge lokaler Cuts C' = @
3. Wiederhole ,so lange wie es sinnvoll erscheint”
1. Bestimme optimale Losung x; mit Wert ¢; der LP-Relaxierung von P; U C U C’
Falls P; infeasible, oder {; < vp, starte nachste Iteration.
Falls x; ganzzahlig ist, setze vy = ({;, B = x; und starte nachste Iteration.
Suche einen guten globalen / lokalen Cut (a,b) mit a’x; > b
5. Falls gefunden, fliige (a,b) zu C bzw C*hinzu.
4. Wahle nicht-ganzzahligen Wert X mit Wert a.
5. Fige Probleme P;,; := P; U{X < lal} U C"und P;,, := P, U{X < [al]} U €’ zu Q hinzu.
5. Gib (B, vg) zuruck.

0N =

W N
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Globale vs. Lokale Cuts

Globale Cuts gelten fiir den

gesamten Enumerationsbaum.
A

Z
<

Lokale Cuts gelten nur
fir den Teilbaum.

Aufpassen: Gomory-Cuts sind nicht immer globale Cuts!
Wiinschenswert sind immer globale Cuts.

Welche Arten von Cutting Planes gibt es noch?
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Konvexe Hiille

L] [ ]

L N ) o000

C 0 B [ N N N N )

o000 O0OOODS o000 O OO
00000 O0OOS o000 OOOS
o000 0SSO OS o000 OO0 OOS
o000 OOOOS o000 OOOOODS
L B B o000 OOOOODS
C G B B B o000 O0OOOOS
o000 O0OOOOS o000 OOOOODS
L B B o000 OOOOOPS
o000 O0OOOOS o000 OOOOODS
o000 00O OOS o000 OOOOSODS
o000 00O OOS o000 OOONOSODS
o000 0O OOOS o000 ORGSO

LP Losungsraum Konvexe Hille der Integer-Losungen

Idee: Finde Cuts, die die konvexe Hiille der integralen Losungen beschreiben.
Die starksten Cuts, die wir hinzufligen konnen, definieren die Facetten der konvexen Hiille.
Konnen wir diese immer finden?
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Das Separationsproblem

Gegeben sei ein Polyeder Q € R" und ein Vektor ¥ € R™. Entscheide, ob ¥ € Q und falls nicht,
gib einen linearen Constraint (a,b) an, sodass a”% > b und a’x < b fiir alle x € Q.

Dabei ist in der Regel Q die konvexe Hiille der ganzzahligen Losungen und X die optimale
Losung der LP Relaxierung.

Die Ellipsoid Methode (16st LPs in polynomieller Zeit!), kann tiber Q ohne explizite
Beschreibung von Q optimieren. Dabei wird nur ein Separationsorakel benotigt.

Diese Methode hat polynomielle Laufzeit, wenn das Separationsorakel eine polynomielle
Laufzeit besitzt.

Korollar: Wenn wir das Separationsproblem in polynomieller Zeit 16sen konnen, konnen
lineare Optimierungsprobleme tiber Q in polynomieller Zeit gelost werden.
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Cutting Plane - Techniken
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Runden und Kkiirzen

. . . 5 .
Gibt es fraktionale Bounds zu Variablen, z.B. x < 0 dann kann dieser Wert abgerundet werden.
>x<1

Schwieriger wird es, wenn mehrere Variablen in einem Constraint auftauchen:
x+2y+4z=4

-sup(2y+x) 1

=2

: . : 4
Sind x, y nur binar Variablen, muss z > also z >1 gelten.

Besitzt ein Constraint nur ganzzahlige Variablen und ganzzahlige Koeffizienten, konnen wir
diesen Constraint vereinfachen. Sei dazu g der ggT der Koeffizienten.
Dann ist ein neuer (oder nur vereinfachter) Constraint:

(lj b
Z—Xj <
g

g
Die linke Seite besitzt immer noch nur ganzzahlige Koeffizienten, also muss die rechte Seite
auch ganzzahlig sein!
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Zero-Half-Cuts

Sei x4, ..., x5 € Z und betrachte folgende Constraints.
X1 +x, +x3+3x4 +2x5 < 10
X1+ X, +3x3+ x4 +2x5 <5

Addieren wir beide Constraints, erhalten wir
2xq + 2x5 + 4x3 + 4x4 + 4x5 < 15

Linke Seite ist gerade, rechte Seite ist ungerade. Wir den folgenden Constraint hinzufiigen:
x1+x2+2X3+ZX4+2X5 <7

Generell: Versuche Constraints so zu addieren, dass die Koeffizienten gerade sind, die rechte
Seite aber ungerade.
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Clique Cuts
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5

Zwei binare Variablen heifsen inkompatibel, wenn sie nicht gleichzeitig den Wert 1
annehmen konnen.

Eine Clique ist eine Menge paarweise inkompatibler Binarvariablen B:
C < B:Vx;,x; € C: x;, x; sind inkompatibel

Ein Clique-Cut ist dann der Constraint Y ;0 x; < 1

Beispiel:
x+y<lx+z<1ly+z<1l=>x+y+z<1

Die Constraints miissen nicht immer so einfach zu erkennen sein, sondern man muss
propagieren (betrachte, was passiert, wenn eine Variable auf 0 bzw. 1 gesetzt wird).
Etwas verallgemeinert kann die Kombination von 0-1-Belegungen betrachtet werden!
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Cover Cuts

Betrachte einen Constraint der Form
a’x <z
Wenn x € {0,1}", ist es einfach kleine Mengen C zu finden, die folgende Eigenschaft hat.

Zaixi >z

ieC

Ein Cover Cut bzgl. C ist dann ein Constraint der Form

EXiS|C|—1

i€C
Gerade beim Knapsack Problem tauchen diese Cuts haufig auf (,,welche Auswahl ist sowieso
zu schwer”), daher werden sie oft auch Knapsack Cut genannt.
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Presolve

N
Viele dieser Cuts konnen bereits vor dem
eigentlich Losungsprozess eingebunden werden
— L J
<
Dieser Schritt nennt
sich presolve.
y,

Ein Presolve dient dazu:
e Redundante Informationen zu entfernen
« Starkere Constraints einzufligen
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Wir wissen, was wir
allgemein fiir IPs
ausfiilhren konnen.

Konnen wir fur spezielle
Probleme noch andere
Techniken ausschopfen?
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