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Ein neues Kapitel
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Ein Reisender

Ein Reisender möchte alle großen Städte eines 
Landes besuchen, dabei aber so wenig wie möglich 
Zeit mit dem tatsächlichen Reisen verbringen.

Klar ist: 
Der Reisende kann sich nicht aufteilen. 

Also: 
Entweder gehen wir von Stadt x zu Stadt y, oder 
wir lassen es sein.

Wie kann der Reisende nun eine kürzeste Tour 
bestimmen?
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Brute Force

Stunden

Anzahl Städte

Es gibt 𝑛 − 1 ! viele Touren durch 𝑛 Städte.

Angenommen, wir können 18 Milliarden 
Touren in der Sekunde durchprüfen.

Der log-Plot zeigt dann die benötigte Zeit in 
Stunden an, um die beste Lösung zu finden.

Brute Force scheidet definitiv aus!
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https://www.washingtonpost.com/technology/2025/09/
16/moon-mining-helium-quantum-computing/
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Wie bekommt man das schneller?

Aus: Optimization of a 532-City Symmetric
Traveling Salesman Problem by Branch and Cut. 

(1987, Padberg und Rinaldi)

Was ist Branch-
and-Cut?

Worauf 
basiert das?
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Integer Programming
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Ein anderes Problem: Minimum Vertex Cover

Gegeben: Ein Graph 𝐺 = 𝑉, 𝐸 .
Gesucht: Eine kleinste Menge 𝑉𝐶 ⊆ 𝑉, sodass für jede Kante 𝑒 = 𝑢, 𝑣 entweder 𝑢 ∈ 𝑉𝐶 oder 𝑣 ∈ 𝑉𝐶.

Vertex Cover

Minimum Vertex Cover
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Minimum Vertex Cover als LP

min෍

𝑣∈𝑉

𝑥𝑣

s.t.
𝑥𝑣 + 𝑥𝑤 ≥ 1, ∀𝑒 = 𝑣,𝑤 ∈ 𝑉

1 ≥ 𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

Minimiere Anzahl der ausgewählten Knoten.

Jede Kante muss überdeckt sein.

Jeder Knoten darf maximal einmal ausgewählt sein.

Wie lautet eine optimale Lösung des LPs für diesen Graphen?
=> Jeder Knoten wird zur Hälfte gewählt!
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Komplexität von Vertex Cover und LPs

Simplex benötigt zwar exponentielle Laufzeit im Worst-Case, es gibt aber andere Algorithmen, 
die LPs in effizienter Zeit (polynomiell im Input) lösen können.

 LP ∈ 𝑃

Vertex Cover auf der anderen Seite ist NP-schwer. D.h. es existiert vermutlich kein Algorithmus, 
der das Vertex Cover Problem in polynomieller Zeit lösen kann.

 LPs können Vertex Cover nicht lösen. (Es sei denn 𝑃 = 𝑁𝑃 gilt.)

Können wir LPs etwas erweitern, sodass wir NP-schwere Probleme modellieren können?



Arne Schmidt | MMA, VL 08 | Seite 11

Minimum Vertex Cover als LP

min෍

𝑣∈𝑉

𝑥𝑣

s.t.
𝑥𝑣 + 𝑥𝑤 ≥ 1, ∀𝑒 = 𝑣,𝑤 ∈ 𝑉

1 ≥ 𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉

𝑥𝑣 ∈ ℤ, ∀𝑣 ∈ 𝑉

Minimiere Anzahl der ausgewählten Knoten.

Jede Kante muss überdeckt sein.

Jede Kante darf maximal einmal ausgewählt sein.

Wie lautet jetzt eine optimale Lösung für diesen Graphen?
=> Zwei Knoten werden gewählt!

Nur ganzzahlige Werte sind erlaubt!
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3-Satisfiability

DAS Problem für NP-schwere ist 3-Satisfiability (3-SAT).

→ Variablen 𝑥𝑗

→ z.B. 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 wird zu 
𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1

→min/max 0

Gegeben: Eine boolesche Formel 𝜑 𝑥 = 𝑖=1ٿ
𝑚 ℓ1,𝑖 ∨ ℓ2,𝑖 ∨ ℓ3,𝑖 , wobei ℓ𝑘,𝑖 ein 

Literal in der Form 𝑥𝑗 oder ҧ𝑥𝑗 einer der 𝑛 Variablen ist.

Gesucht: Eine Belegung von 𝑥, sodass 𝜑 𝑥 mit wahr evaluiert wird.

Um dieses Problem über ein LP zu modellieren, stellen wir folgende Fragen.
• Worüber treffen wir Entscheidungen?

• Wann ist eine Klausel ℓ1,𝑖 ∨ ℓ2,𝑖 ∨ ℓ3,𝑖 erfüllt?

• Was ist die Zielfunktion?
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Implikationen

Das Lösen von LPs mit 
ganzzahligen Variablen 
muss NP-schwer sein

Sogar das Entscheiden, ob 
es überhaupt eine Lösung 

gibt, muss NP-schwer sein!

Was können wir nun tun, 
um Probleme trotzdem 

damit zu lösen?
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Definitionen und Sätze

Ein LP, welches nur ganzzahlige Variablen enthält, heißt Integer Program (IP).

LPs mit ganzzahligen und reellen Variablen, werden Mixed Integer Program (MIP) genannt.

LP mit nur 0-1-Variablen, werden 0-1-Program oder Binary Program (BP) genannt.

Theorem:
Das Lösen von IPs, MIPs und BPs ist NP-schwer.

Ein LP, welches entsteht, wenn man die Ganzzahligkeit aus einem (M)IP entfernt, heißt 
Lineare Relaxierung des (M)IPs.

Lemma:
Sei 𝐼 ein (M)IP und ҧ𝐼 das dazugehörige relaxierte LP für ein Maximierungsproblem. Dann ist 
der Lösungswert von 𝐼 höchstens dem Lösungswert von ҧ𝐼.
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Branch-and-Bound
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Grundidee – Branch

Das Lösen von LPs ist einfach. Löse 
also zunächst die Relaxierung.

Nimm dann eine nicht-ganzzahlige 
Variable 𝑥𝑖  mit Wert 𝑎.

Für eine optimale, ganzzahlige 
Lösung muss dann gelten: 
𝒙𝒊 ≤ ⌊𝒂⌋ oder 𝒙𝒊 ≥ ⌈𝒂⌉ 

Prüfe beide 
Optionen!
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Grundidee – Branch: Etwas allgemeiner

Angenommen, wir haben ein Subproblem 𝑃𝑖 , dessen LP Relaxierung eine nicht-ganzzahlige, 
optimale Lösung besitzt.

Splitte 𝑃𝑖 in 𝑘 neue Subprobleme 𝑃𝑖+1, … , 𝑃𝑖+𝑘 , sodass
1. Jede ganzzahlige Lösung von 𝑃𝑖 ist in einem der Subprobleme 𝑃𝑖+1, … , 𝑃𝑖+𝑘 enthalten.
2. Keines der Subprobleme 𝑃𝑖+1, … , 𝑃𝑖+𝑘 enthält die nicht-ganzzahlige Lösung von 𝑃𝑖 .
3. (Optional) Die Lösungsräume aller Subprobleme 𝑃𝑖+1, … , 𝑃𝑖+𝑘 sind disjunkt.

Am einfachsten:
Erstelle zwei neue Subprobleme, in welchen für ein 𝑥 mit Wert 𝑎 die Constraints 𝑥 ≤ ⌊𝑎⌋ bzw. 𝑥
≥ ⌈𝑎⌉ für die Probleme 𝑃𝑖+1 bzw. 𝑃𝑖+2 hinzugefügt werden.

Die beste Lösung von 𝑃𝑖 ist dann die beste Lösung, die rekursiv in den Subproblemen
𝑃𝑖+1, … , 𝑃𝑖+𝑘 gefunden wird. 
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Beispiel (1)

Optimale Lösung:

𝑥 =
5

3
,
10

3

Betrachte Subprobleme mit 
𝑥1 ≤ 1 und 𝑥1 ≥ 2
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Beispiel (2)

Optimale Lösung:

𝑥 =
5

3
,
10

3

Betrachte Subprobleme mit 
𝑥1 ≤ 1 und 𝑥1 ≥ 2
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Beispiel (3)

Wir bauen uns nach und nach 
einen Enumerationsbaum auf.

P1 besitzt ganzzahlige, optimale 
Lösung; P2 nicht.
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Beispiel (4)

Wir bauen uns nach und nach 
einen Enumerationsbaum auf.
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Beispiel (5)

Wir bauen uns nach und nach 
einen Enumerationsbaum auf.
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Beispiel (n)

Wir bauen uns nach und nach 
einen Enumerationsbaum auf.

Die beste ganzzahlige Lösung ist 
also 𝑥 = 4,0 .
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Was wäre wenn

Wir bauen uns nach und nach einen 
Enumerationsbaum auf.

Was wäre, wenn umrandete Lösung einen 
relaxierten Lösungswert von bspw. 57 hätte?
→Wir hätten nicht weiter such müssen, wir 
kennen bereits bessere Lösungen!



Arne Schmidt | MMA, VL 08 | Seite 25

Branch-and-Bound-Idee

Also:
• Löse die LP Relaxierung unter den aktuell gebranchten Variablenbedingunen.
• Entscheide, ob und wie gebrancht werden muss.

Dazu:
• Gehe Knoten DFS-basiert durch. Das erfordert das Speichern von nur O(Tiefe) vielen Knoten.

• BFS würde pro Level Ω 2𝑙𝑒𝑣𝑒𝑙 Knoten speichern. 

• Wie können wir weiter Arbeit sparen?
• Schneide Teilbäume so früh wie möglich ab („prune“).
• Benutze Lösung des Vaterknotens wieder („Warmstart“).
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Warmstart

Das optimale Dictionary im Wurzelknoten (𝑃0):

Fügen wir die Bedingung 𝑥1 ≥ 2 hinzu, erhalten wir die Slackvariable 
𝑔1 = 𝑥1 − 2

= −
1

3
−
𝑤1

3
+
7𝑤2

3

Führe einen dualen Pivotschritt aus!
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Branch-and-Bound-Algorithmus

1. Initialisiere eine (Priority-)Queue Q mit 𝑃0

2. Initialisiere B und 𝑣𝐵 (Beste bekannte Lösung und Lösungswert); Oder setze 𝑣𝐵 = −∞,𝐵 =⊥

3. Wiederhole, solange Q nicht leer:

1. Nimm 𝑃𝑖 aus Q

2. Bestimme optimale Lösung 𝑥𝑖 mit Wert 𝜁𝑖 der LP-Relaxierung von 𝑃𝑖

3. Falls 𝑃𝑖 infeasible, oder 𝜁𝑖 ≤ 𝑣𝐵 , starte nächste Iteration.

4. Falls 𝑥𝑖 ganzzahlig ist, setze 𝑣𝐵 = 𝜁𝑖 , 𝐵 = 𝑥𝑖 und starte nächste Iteration.

5. Wähle nicht-ganzzahligen Wert ො𝑥 mit Wert 𝑎.

6. Füge Probleme 𝑃𝑖+1 ≔ 𝑃𝑖 ∪ ො𝑥 ≤ 𝑎 und 𝑃𝑖+2 ≔ 𝑃𝑖 ∪ ො𝑥 ≥ ⌈𝑎⌉ zu Q hinzu. 

4. Gib (B, 𝑣𝐵) zurück.

Wichtig: Ist am Ende 𝐵 =⊥, dann ist das IP infeasible.  
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Fragen

Damit haben wir eine 
generelle Technik, um 

IPs zu lösen.

So ein Baum kann 
sehr groß werden!

Wie können wir 
Teilbäume frühzeitig 

abschneiden?
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Branch-and-Cut
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Idee

Wenn wir eine Lösung 
der LP Relaxierung 

besitzen...
Können wir darin 

erkennen, ob Constraints 
existieren, die...

Durch alle ganzzahligen 
Lösungen erfüllt 

werden, aber...
Nicht durch die Lösung 

der aktuellen LP 
Relaxierung?
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Cutting Planes

Eine Cutting Plane C (oder kurz Cut) ist ein Constraint für LP P, welcher folgende Bedingungen 
erfüllt
• Jede integrale Lösunge zu P ist eine gültige Lösung in 𝑃 ∪ 𝐶.
• Die optimale Lösung zu P ist ungültig in 𝑃 ∪ 𝐶.
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Gomory-Cuts (1)

Betrachte eine Zeile des optimalen Dictionaries.

𝑥𝑖 = 𝑥𝑖
∗ − ෍

𝑗∈𝒩

𝑎𝑖𝑗𝑥𝑗 ⇔ 𝑥𝑖
∗ = 𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗𝑥𝑗

Wenn wir die Koeffizienten in einen ganzzahligen Teil und einen fractionalen Teil 
aufteilen, erhalten wir folgende Zeile.

𝑥𝑖
∗ + 𝑥𝑖

∗ − 𝑥𝑖
∗ = 𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 𝑥𝑗 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 − 𝑎𝑖𝑗 𝑥𝑗

Separieren von Ganzzahlen und fractionalen Werten liefert:

𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 𝑥𝑗 − 𝑥𝑖
∗ = 𝑥𝑖

∗ − 𝑥𝑖
∗ − ෍

𝑗∈𝒩

𝑎𝑖𝑗 − 𝑎𝑖𝑗 𝑥𝑗
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Gomory-Cuts (2) 

𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 𝑥𝑗 − 𝑥𝑖
∗ = 𝑥𝑖

∗ − 𝑥𝑖
∗ − ෍

𝑗∈𝒩

𝑎𝑖𝑗 − 𝑎𝑖𝑗 𝑥𝑗

< 1
≥ 0 für 𝑥 ≥ 0

∈ ℤ < 1

Also können wir festhalten:

𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 𝑥𝑗 − 𝑥𝑖
∗ ≤ 0

⇒ 𝑥𝑖 + ෍

𝑗∈𝒩

𝑎𝑖𝑗 𝑥𝑗 ≤ 𝑥𝑖
∗

Damit haben wir einen neuen Constraint!
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Gomory-Cut Beispiel – Ein neuer Contraint

Wie lautet ein möglicher Gomory-Cut?
𝑥1 ist nicht ganzzahlig. Betrachte also

𝑥1 +
5

54
𝑤1 +

1

54
𝑤2 =

11

3
Füge also den Constraint

𝑥1 + 0𝑤1 + 0𝑤2 ≤ 3 ⇔ 𝑥1 ≤ 3
hinzu.
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Gomory-Cut Beispiel – Eine neue Zeile

Das Hinzufügen von 𝑥1 ≤ 3 liefert eine 
(ganzzahlige) Basis-Schlupfvariable 

𝑤4 = 3 − 𝑥1 = 3 −
11

3
+

5

54
𝑤1 +

1

54
𝑤2

= −
2

3
+

5

54
𝑤1 +

1

54
𝑤2

Führe eine Iteration des dualen Simplex aus.
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Gomory-Cut Beispiel – Eine neue Iteration

Wie lautet ein möglicher Gomory-Cut?
𝑥2 ist nicht ganzzahlig. Betrachte also

𝑥2 −
2

5
𝑤4 −

23

270
𝑤2 =

13

5
Also

𝑥2 − 1𝑤4 − 1𝑤2 ≤ 2
Und damit die neue Zeile

𝑤5 = −
3

5
+
3

5
𝑤4 +

247

270
𝑤2
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Gomory-Cut Beispiel – Eine neue Iteration

Wie lautet ein möglicher Gomory-Cut?
𝑥2 ist nicht ganzzahlig. Betrachte also

𝑥2 −
2

5
𝑤4 −

23

270
𝑤2 =

13

5
Also

𝑥2 − 1𝑤4 − 1𝑤2 ≤ 2
Und damit die neue Zeile

𝑤5 = −
3

5
+
3

5
𝑤4 +

247

270
𝑤2

Führe wieder einen dualen Pivotschritt aus!
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Gomory-Cuts: Vor- und Nachteile

Gomory-Cuts schneiden keine 
integralen Lösungen ab.

Mit jedem Cut erhalten 
wir eine andere Lösung

Erhalten wir ein 
infeasible LP, gibt es 
keine integrale Lösung!

Irgendwann werden 
wir tatsächlich 
terminieren!

In der Praxis nur Gomory-
Cuts nutzen ist ineffizient!

Numerische Probleme 
können auftauchen!
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Branch-and-Cut

1. Initialisiere eine (Priority-)Queue Q mit 𝑃0
2. Initialisiere B und 𝑣𝐵 (Beste bekannte Lösung und Lösungswert); Oder setze 𝑣𝐵 = −∞,𝐵 =⊥
3. Setze Menge von globalen Cuts 𝐶 = ∅
4. Wiederhole, solange Q nicht leer:

1. Nimm 𝑃𝑖 aus Q
2. Setze Menge lokaler Cuts 𝐶′ = ∅
3. Wiederhole „so lange wie es sinnvoll erscheint“

1. Bestimme optimale Lösung 𝑥𝑖 mit Wert 𝜁𝑖 der LP-Relaxierung von 𝑃𝑖 ∪ 𝐶 ∪ 𝐶′

2. Falls 𝑃𝑖 infeasible, oder 𝜁𝑖 ≤ 𝑣𝐵 , starte nächste Iteration.
3. Falls 𝑥𝑖 ganzzahlig ist, setze 𝑣𝐵 = 𝜁𝑖 , 𝐵 = 𝑥𝑖 und starte nächste Iteration.
4. Suche einen guten globalen / lokalen Cut (a,b) mit 𝑎𝑇𝑥𝑖 > 𝑏
5. Falls gefunden, füge (a,b) zu C bzw C‘ hinzu.

4. Wähle nicht-ganzzahligen Wert ො𝑥 mit Wert 𝑎.
5. Füge Probleme 𝑃𝑖+1 ≔ 𝑃𝑖 ∪ ො𝑥 ≤ 𝑎 ∪ 𝐶′ und 𝑃𝑖+2 ≔ 𝑃𝑖 ∪ ො𝑥 ≤ 𝑎 ∪ 𝐶′ zu Q hinzu. 

5. Gib (B, 𝑣𝐵) zurück.
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Globale vs. Lokale Cuts

Globale Cuts gelten für den 
gesamten Enumerationsbaum.

Lokale Cuts gelten nur 
für den Teilbaum.

Aufpassen: Gomory-Cuts sind nicht immer globale Cuts!
Wünschenswert sind immer globale Cuts.

Welche Arten von Cutting Planes gibt es noch?
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Konvexe Hülle

LP Lösungsraum Konvexe Hülle der Integer-Lösungen

Idee: Finde Cuts, die die konvexe Hülle der integralen Lösungen beschreiben.
Die stärksten Cuts, die wir hinzufügen können, definieren die Facetten der konvexen Hülle.
Können wir diese immer finden?
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Das Separationsproblem

Gegeben sei ein Polyeder 𝑄 ⊆ ℝ𝑛 und ein Vektor ෤𝑥 ∈ ℝ𝑛 . Entscheide, ob ෤𝑥 ∈ 𝑄 und falls nicht, 
gib einen linearen Constraint (a,b) an, sodass 𝑎𝑇 ෤𝑥 > 𝑏 und 𝑎𝑇𝑥 ≤ 𝑏 für alle 𝑥 ∈ 𝑄. 

Dabei ist in der Regel 𝑄 die konvexe Hülle der ganzzahligen Lösungen und ෤𝑥 die optimale 
Lösung der LP Relaxierung.

Die Ellipsoid Methode (löst LPs in polynomieller Zeit!), kann über 𝑄 ohne explizite 
Beschreibung von 𝑄 optimieren. Dabei wird nur ein Separationsorakel benötigt.

Diese Methode hat polynomielle Laufzeit, wenn das Separationsorakel eine polynomielle 
Laufzeit besitzt.

Korollar: Wenn wir das Separationsproblem in polynomieller Zeit lösen können, können 
lineare Optimierungsprobleme über 𝑄 in polynomieller Zeit gelöst werden.
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Cutting Plane - Techniken
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Runden und kürzen
Gibt es fraktionale Bounds zu Variablen, z.B. 𝑥 ≤

5

3
, dann kann dieser Wert abgerundet werden.

⇒ 𝑥 ≤ 1

Schwieriger wird es, wenn mehrere Variablen in einem Constraint auftauchen:
𝑥 + 2𝑦 + 4𝑧 = 4

Sind x, y nur binär Variablen, muss 𝑧 ≥
4 −sup 2𝑦+𝑥

4
=

1

4
, also 𝑧 ≥1 gelten.

Besitzt ein Constraint nur ganzzahlige Variablen und ganzzahlige Koeffizienten, können wir 
diesen Constraint vereinfachen. Sei dazu g der ggT der Koeffizienten.
Dann ist ein neuer (oder nur vereinfachter) Constraint:

෍
𝑎𝑗

𝑔
𝑥𝑗 ≤

𝑏

𝑔

Die linke Seite besitzt immer noch nur ganzzahlige Koeffizienten, also muss die rechte Seite 
auch ganzzahlig sein!
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Zero-Half-Cuts

Sei 𝑥1, … , 𝑥5 ∈ ℤ und betrachte folgende Constraints.
𝑥1 + 𝑥2 + 𝑥3 + 3𝑥4 + 2𝑥5 ≤ 10
𝑥1 + 𝑥2 + 3𝑥3 + 𝑥4 + 2𝑥5 ≤ 5

Addieren wir beide Constraints, erhalten wir
2𝑥1 + 2𝑥2 + 4𝑥3 + 4𝑥4 + 4𝑥5 ≤ 15

Linke Seite ist gerade, rechte Seite ist ungerade. Wir den folgenden Constraint hinzufügen:
𝑥1 + 𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5 ≤ 7

Generell: Versuche Constraints so zu addieren, dass die Koeffizienten gerade sind, die rechte 
Seite aber ungerade.
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Clique Cuts

Zwei binäre Variablen heißen inkompatibel, wenn sie nicht gleichzeitig den Wert 1 
annehmen können.

Eine Clique ist eine Menge paarweise inkompatibler Binärvariablen B: 
𝐶 ⊆ 𝐵: ∀𝑥𝑖 , 𝑥𝑗 ∈ 𝐶: 𝑥𝑖 , 𝑥𝑗 sind inkompatibel

Ein Clique-Cut ist dann der Constraint σ𝑗∈𝐶 𝑥𝑗 ≤ 1

Beispiel:
𝑥 + 𝑦 ≤ 1, 𝑥 + 𝑧 ≤ 1, 𝑦 + 𝑧 ≤ 1 ⇒ 𝑥 + 𝑦 + 𝑧 ≤ 1

Die Constraints müssen nicht immer so einfach zu erkennen sein, sondern man muss 
propagieren (betrachte, was passiert, wenn eine Variable auf 0 bzw. 1 gesetzt wird).
Etwas verallgemeinert kann die Kombination von 0-1-Belegungen betrachtet werden!
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Cover Cuts

Betrachte einen Constraint der Form 
𝑎𝑇𝑥 ≤ 𝑧

Wenn 𝑥 ∈ 0,1 𝑛 , ist es einfach kleine Mengen C zu finden, die folgende Eigenschaft hat.

෍

𝑖∈𝐶

𝑎𝑖𝑥𝑖 > 𝑧

Ein Cover Cut bzgl. C ist dann ein Constraint der Form

෍

𝑖∈𝐶

𝑥𝑖 ≤ 𝐶 − 1

Gerade beim Knapsack Problem tauchen diese Cuts häufig auf („welche Auswahl ist sowieso 
zu schwer“), daher werden sie oft auch Knapsack Cut genannt.
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Presolve

Viele dieser Cuts können bereits vor dem 
eigentlich Lösungsprozess eingebunden werden

Dieser Schritt nennt 
sich presolve.

Ein Presolve dient dazu:
• Redundante Informationen zu entfernen
• Stärkere Constraints einzufügen
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Wir wissen, was wir 
allgemein für IPs 

ausführen können.

Können wir für spezielle 
Probleme noch andere 

Techniken ausschöpfen?
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