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Computational Geometry
Tutorial #5 — Voronoi diagrams and enclosing disks
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A Voronoi diagram  partitions a 
metric space based on which element of 
the discrete point set  is closest. 
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Higher order

A Voronoi diagram  partitions a 
metric space based on which element of 
the discrete point set  is closest. 
 

What if we wanted to divide based on 
which two points are closest?
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Higher order

An th order Voronoi diagram of  divides 
a metric space based on which  points of 
a discrete set  are closest. 

Here: Second order Voronoi diagram. 
 

How can we derive this?
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Higher order

An th order Voronoi diagram  
divides a metric space based on which  
points of the discrete set  are closest. 

 
Basic idea for Vor(P, i+1): 

For region R in Vor(P, i) do: 

Let PR = sites in P that define R 

Ri+1 = Vor(P PR, i)  R 

Replace R by Ri+1

i Vor(P, i)
i

P

∖ ∩
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Higher order

An th order Voronoi diagram  divides a 
metric space based on which  points of the 
discrete set  are closest. 

 
Using better methods: 
Theorem E4.1 (Chan and Tsakalidis, 2015): 
The th order Voronoi diagram of  points in the 
plane can be computed in . 

Theorem E4.2 (Chan et al, 2023): 

[… or] in   expected time. 

i Vor(P, i)
i

P

i n
𝒪(n log n + ni log i)

𝒪(n log n + ni)
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Degenerate case: Collinearity
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Farthest point

An th order Voronoi diagram 
divides a metric space based on which 
element of a discrete point set  is 
farthest. 

 
What can you say about this diagram? 

How many regions? 
What’s the graph topology?

(n − 1)

P
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Farthest point

An th order Voronoi diagram 
divides a metric space based on which 
element of a discrete point set  is 
farthest. 

 
Can you think of some relation to the 

convex hull ?

(n − 1)

P

conv(P)
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Farthest point

An th order Voronoi diagram 
divides a metric space based on which 
element of a discrete point set  is 
farthest. 

All cells are unbounded, i.e., the dual 
graph is a tree. A point  has a non-
empty Voronoi region exactly if it lies on 
the boundary of the convex hull .

(n − 1)

P

p ∈ P

conv(P)
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Farthest point

An th order Voronoi diagram 
(farthest-point Voronoi diagram) divides 
a metric space based on which element of 
a discrete point set  is farthest. 

For first order, we had the empty 
circumcircle property (what’s this?). 

 
Does a similar property hold for every 
vertex and edge of the farthest point 
Voronoi diagram?

(n − 1)

P
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Voronoi diagrams
Farthest point
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Edges are equidistant to two 
sites, closer to all other.

Vertices are equidistant to 
three sites, closer to all others.



Farthest point

An th order Voronoi diagram 
divides a metric space based on which 
element of a discrete point set  is 
farthest. 

Theorem E4.2 (Cheong et al., 2011): 
The farthest point Voronoi diagram of  
points in the plane can be computed in 

 time.

(n − 1)

P

n

𝒪(n log3 n)
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Farthest point

An th order Voronoi diagram 
divides a metric space based on which 
element of a discrete point set  is 
farthest. 

Using a DCEL, this graph structure can be 
stored such that the corresponding sites 
to each face, vertex, and edge can be 
accessed in  time!

(n − 1)

P

𝒪(1)
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Supplementary Material

Voronoi diagrams
Circle properties

An th order Voronoi diagram  divides 
a metric space based on which  points of the 
discrete set  are closest. 

For  points , there is a non-empty 
Voronoi region in this diagram if there exists a 
disk that encloses  but none of . 

The Voronoi region of  is the set of all 
centres of such circles:  need not be 
contained in their region.

i Vor(P, i)
i

P
i M ⊂ P

M P∖M
M
M

19Peter Kramer   |  December 18th, 2025



Min enclosing disk
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Given: Points  in the Euclidean plane, 
in general position (no four concyclic points). 

Wanted: An enclosing disk  of minimal radius .

P := p1, …, pn

md(P) r

Can you think of a fast approximation method? 
Which factor can you achieve?



A -approximation2

Given: Points  in the 
plane, in general position. 

Idea: Compute in  an axis-aligned 
bounding box via  and  coordinates, 
use the smallest enclosing disk of those. 

The diameter of this disk is at most  times 

larger than , which bounds the 
diameter of any enclosing disk from below. 

Note:  is not necessarily equal to .

𝒫 := p1, …, pn

𝒪(n)
min max

2
diam(𝒫)

r
1
2

diam(𝒫)

Min enclosing disk
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Given: Points  in the Euclidean plane, 
in general position (no four concyclic points). 

Wanted: An enclosing disk  of minimal radius .

P := p1, …, pn

md(P) r

Let’s try to solve it! :)



Thank you 
… and see you next year :)


