

Computational Geometry

Tutorial #5 — Voronoi diagrams and enclosing disks

Voronoi diagrams

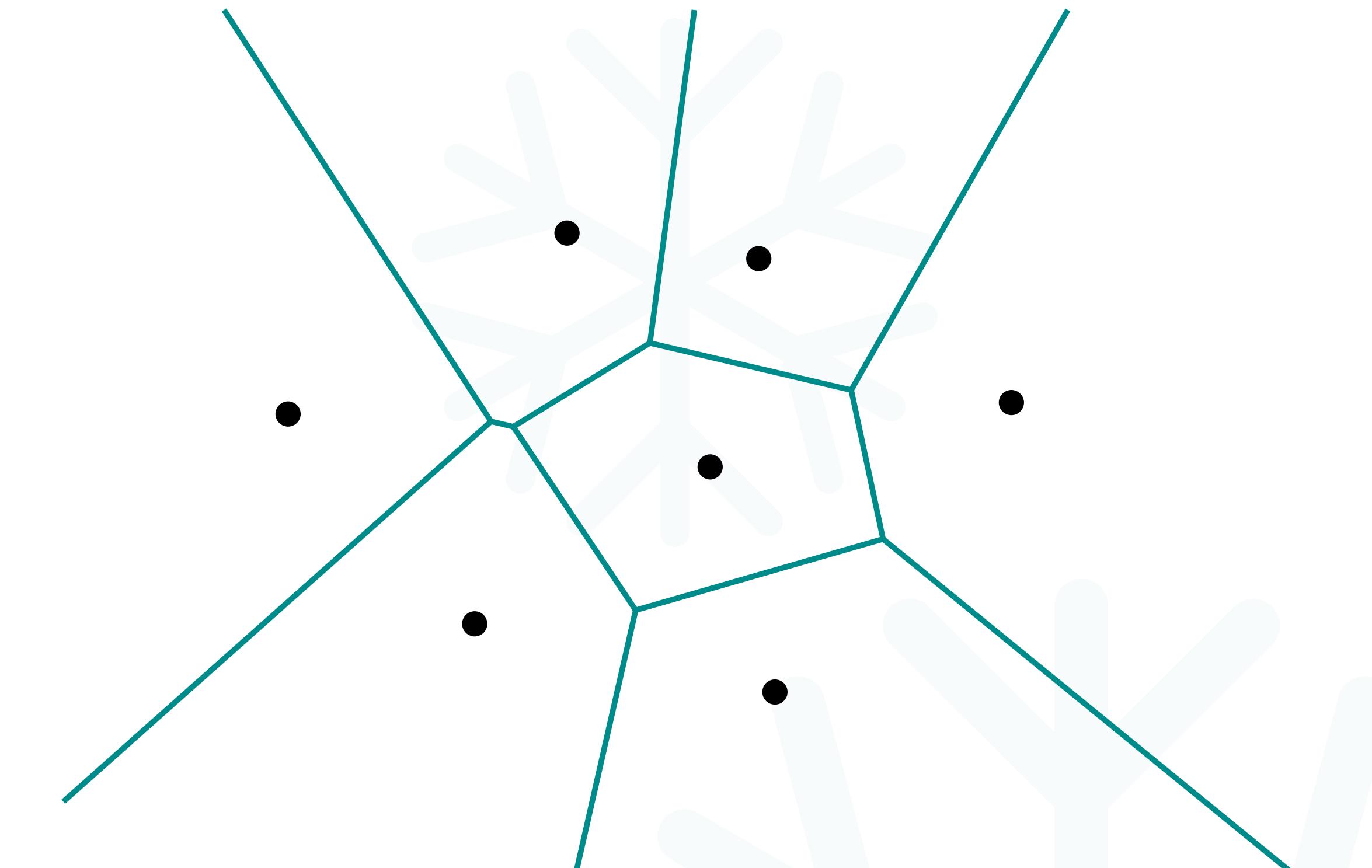
Higher order

Farthest point



Voronoi diagrams

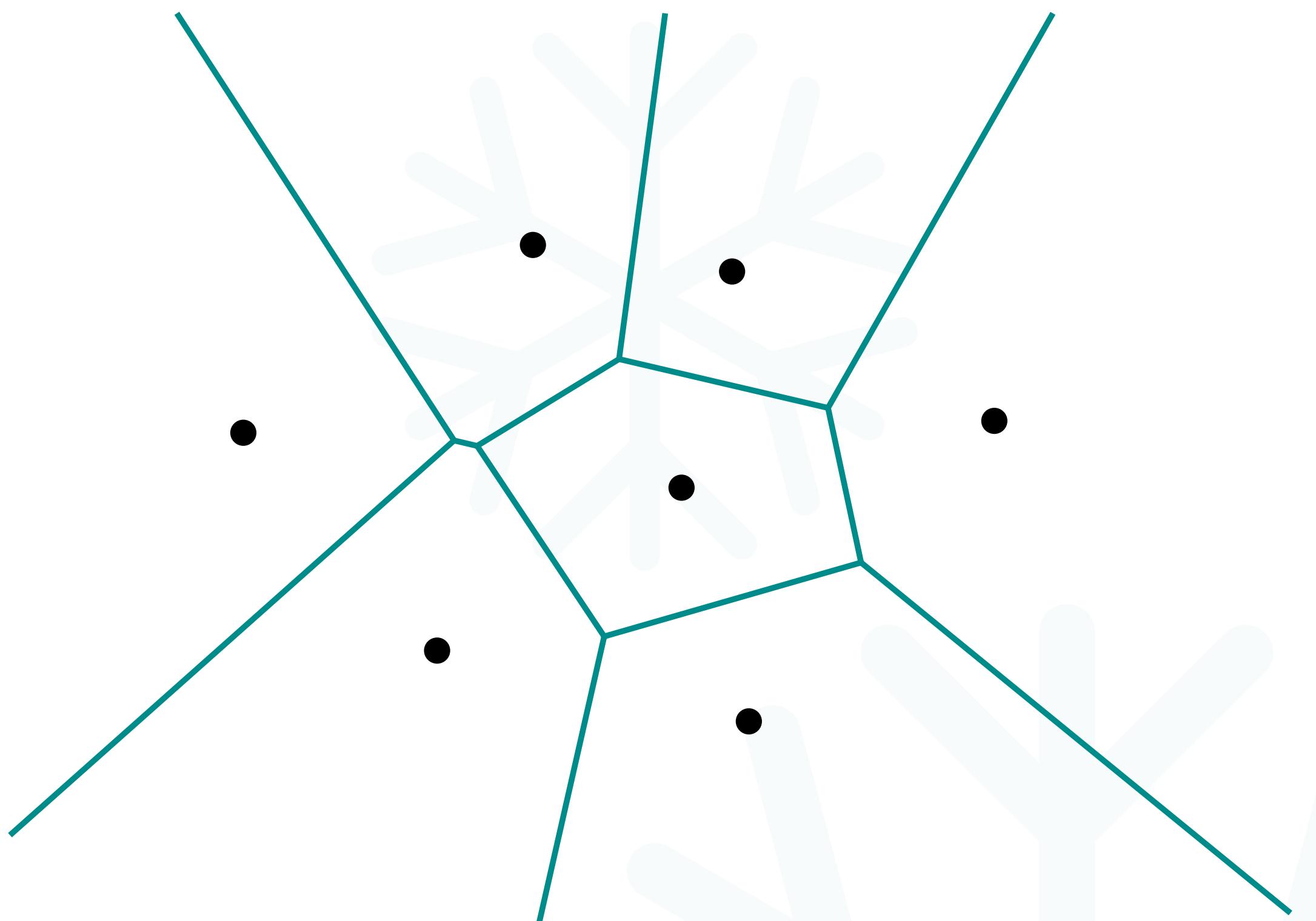
Refresh



Voronoi diagrams

Refresh

A Voronoi diagram $\text{Vor}(P)$ partitions a metric space based on which element of the discrete point set P is closest.



Voronoi diagrams

Refresh

A Voronoi diagram $\text{Vor}(P)$ partitions a metric space based on which element of the discrete point set P is closest.

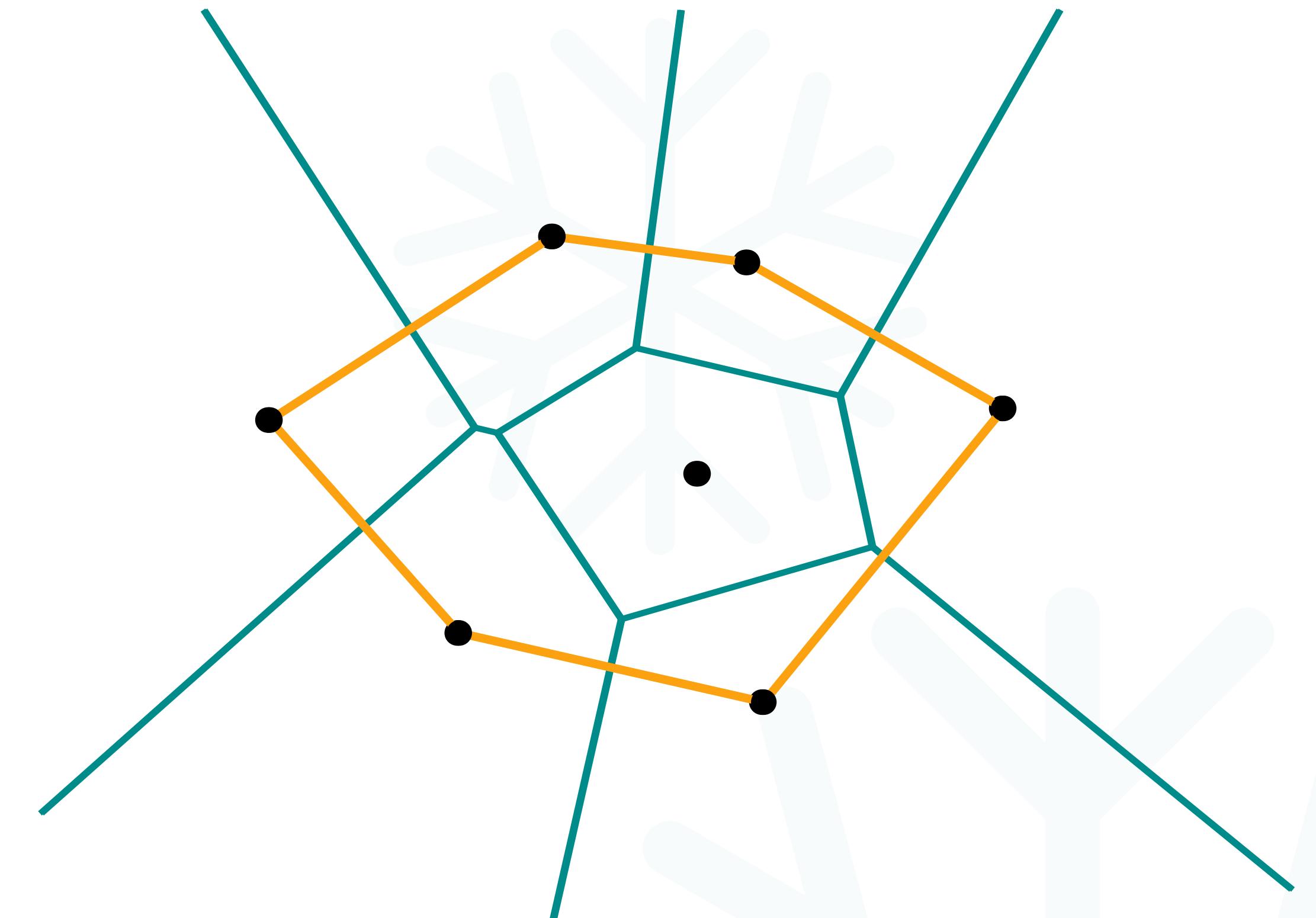
How do the unbounded faces relate to the convex hull $\text{conv}(P)$?

Voronoi diagrams

Refresh

A Voronoi diagram $\text{Vor}(P)$ partitions a metric space based on which element of the discrete point set P is closest.

How do the unbounded faces relate to the convex hull $\text{conv}(P)$?



Voronoi diagrams

Higher order

A Voronoi diagram $\text{Vor}(P)$ partitions a metric space based on which element of the discrete point set P is closest.

*What if we wanted to divide based on which **two** points are closest?*

Voronoi diagrams

Higher order

A Voronoi diagram $\text{Vor}(P)$ partitions a metric space based on which element of the discrete point set P is closest.

*What if we wanted to divide based on which **two** points are closest?*



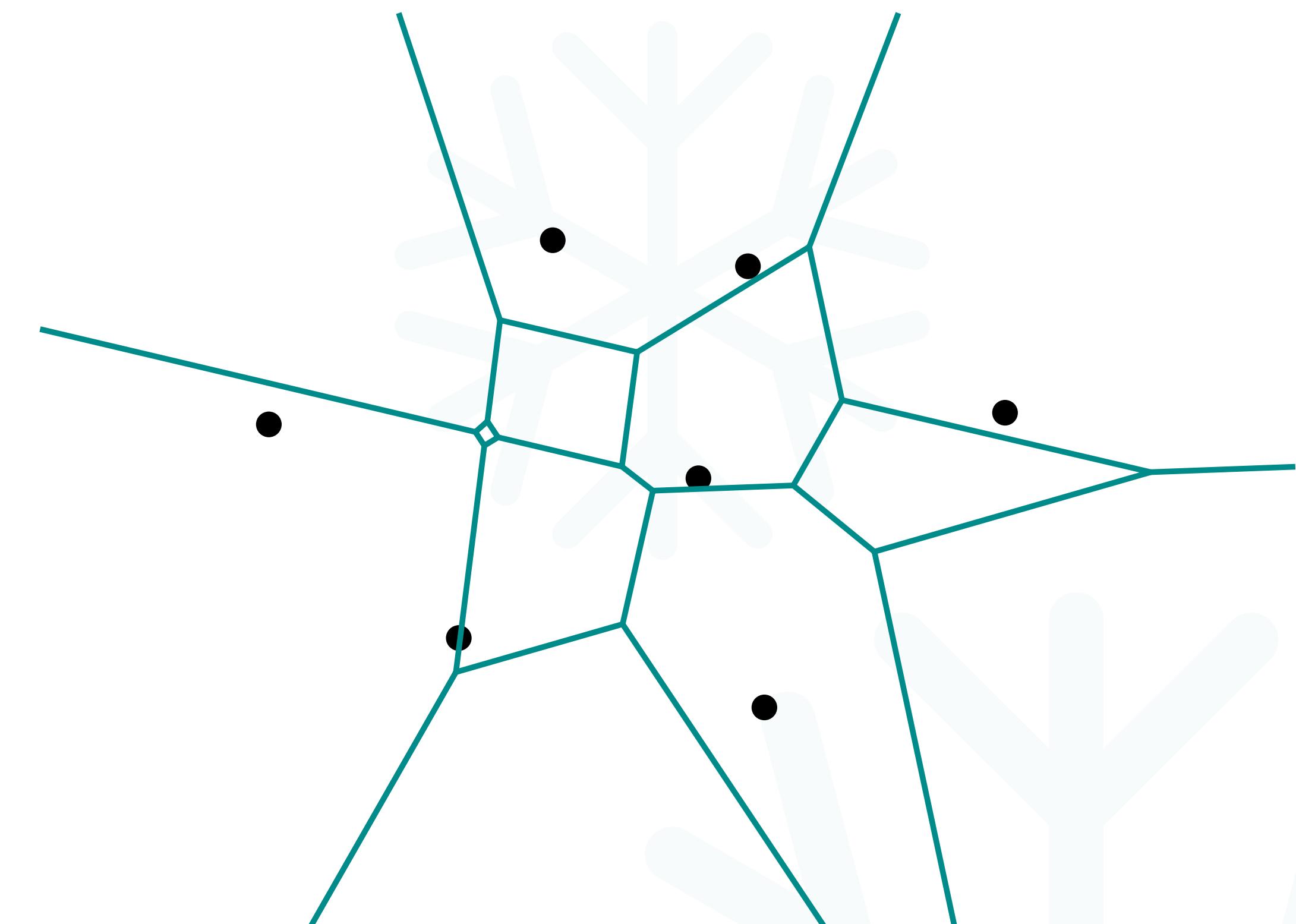
Voronoi diagrams

Higher order

An i th order Voronoi diagram of P divides a metric space based on **which i points** of a discrete set P are closest.

Here: Second order Voronoi diagram.

How can we derive this?



Voronoi diagrams

Higher order

An i th order Voronoi diagram of P divides a metric space based on **which i points** of a discrete set P are closest.

Here: Second order Voronoi diagram.

How can we derive this?

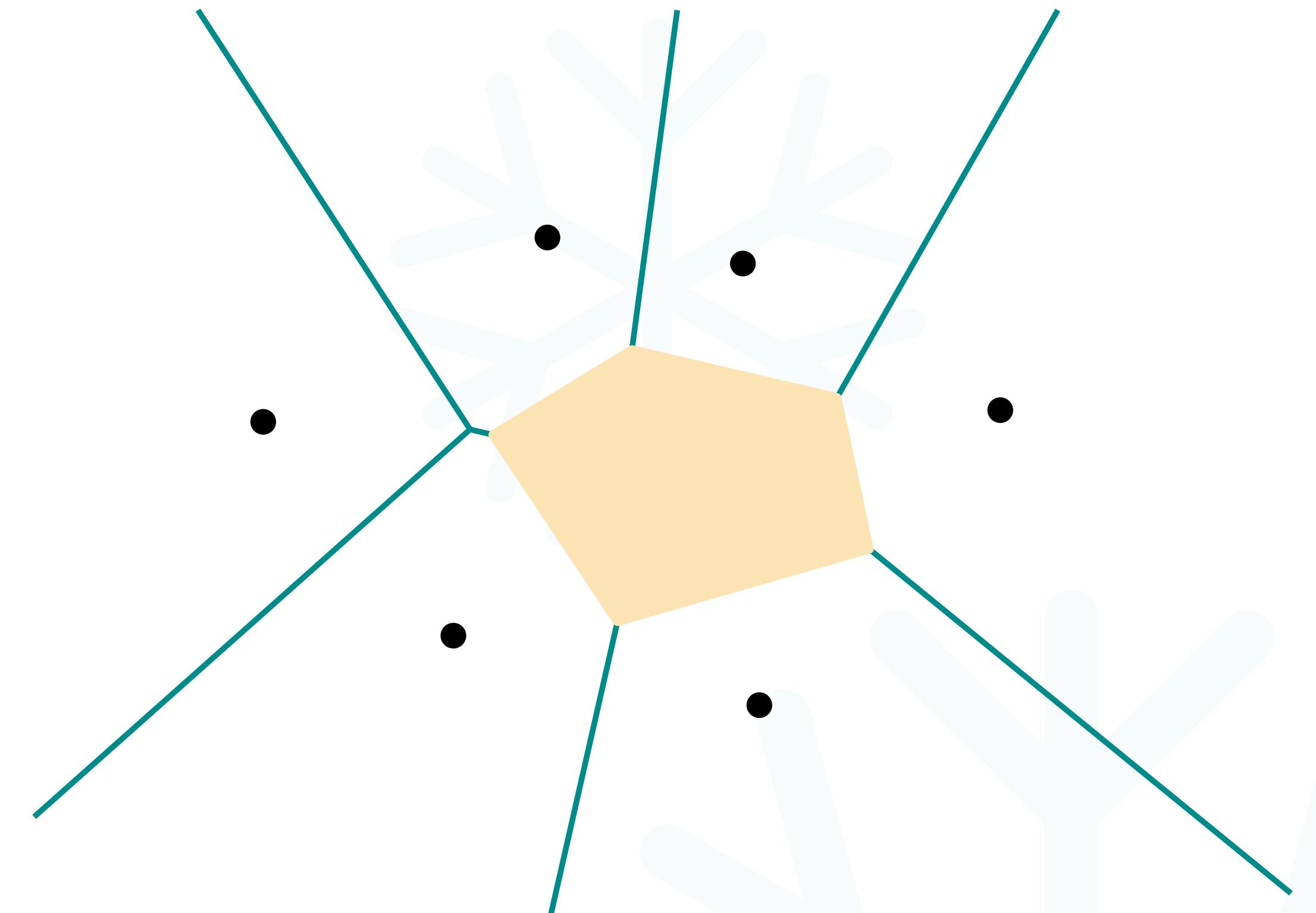
Voronoi diagrams

Higher order

An i th order Voronoi diagram of P divides a metric space based on **which i points** of a discrete set P are closest.

Here: Second order Voronoi diagram.

How can we derive this?



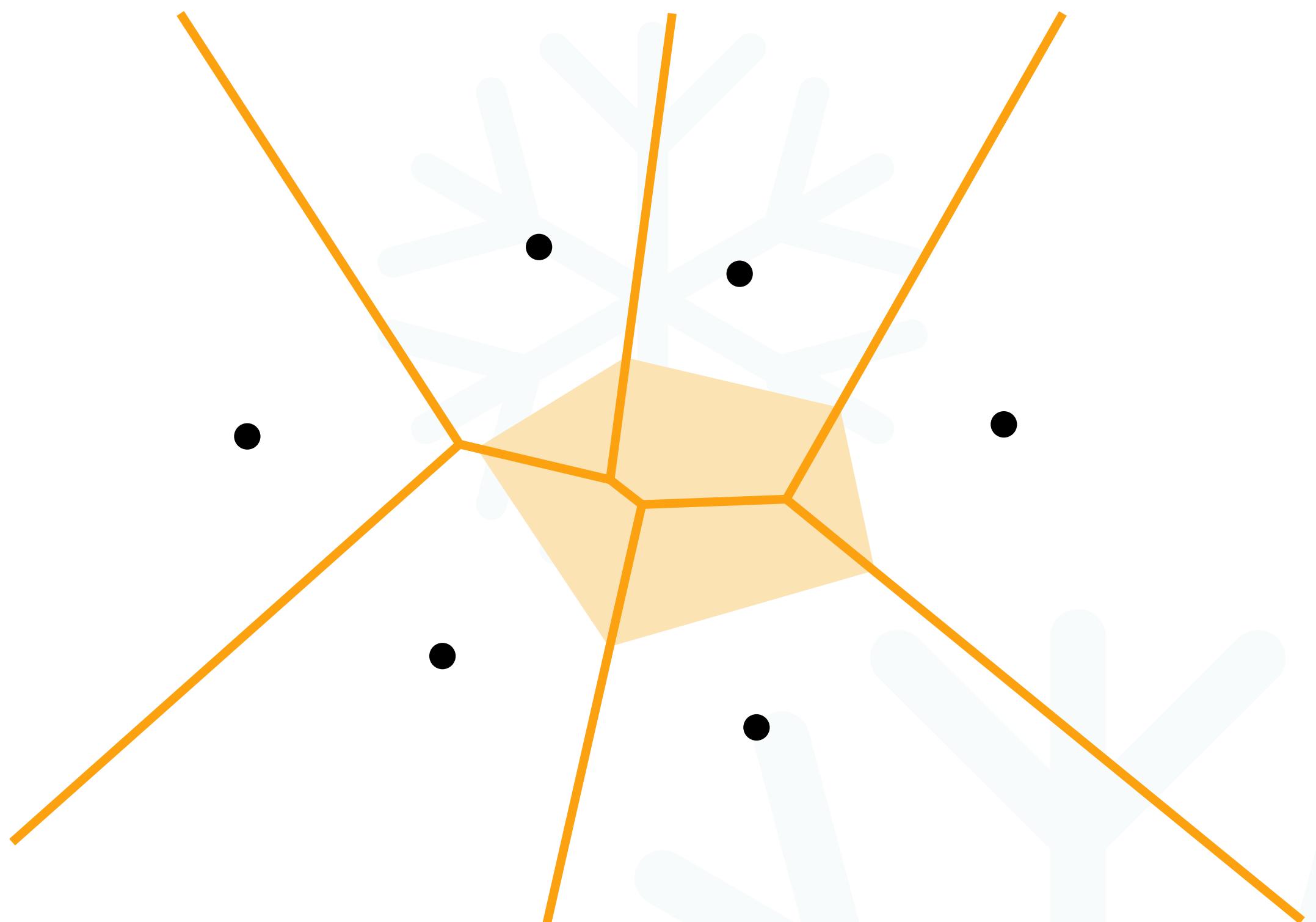
Voronoi diagrams

Higher order

An i th order Voronoi diagram of P divides a metric space based on **which i points** of a discrete set P are closest.

Here: Second order Voronoi diagram.

How can we derive this?



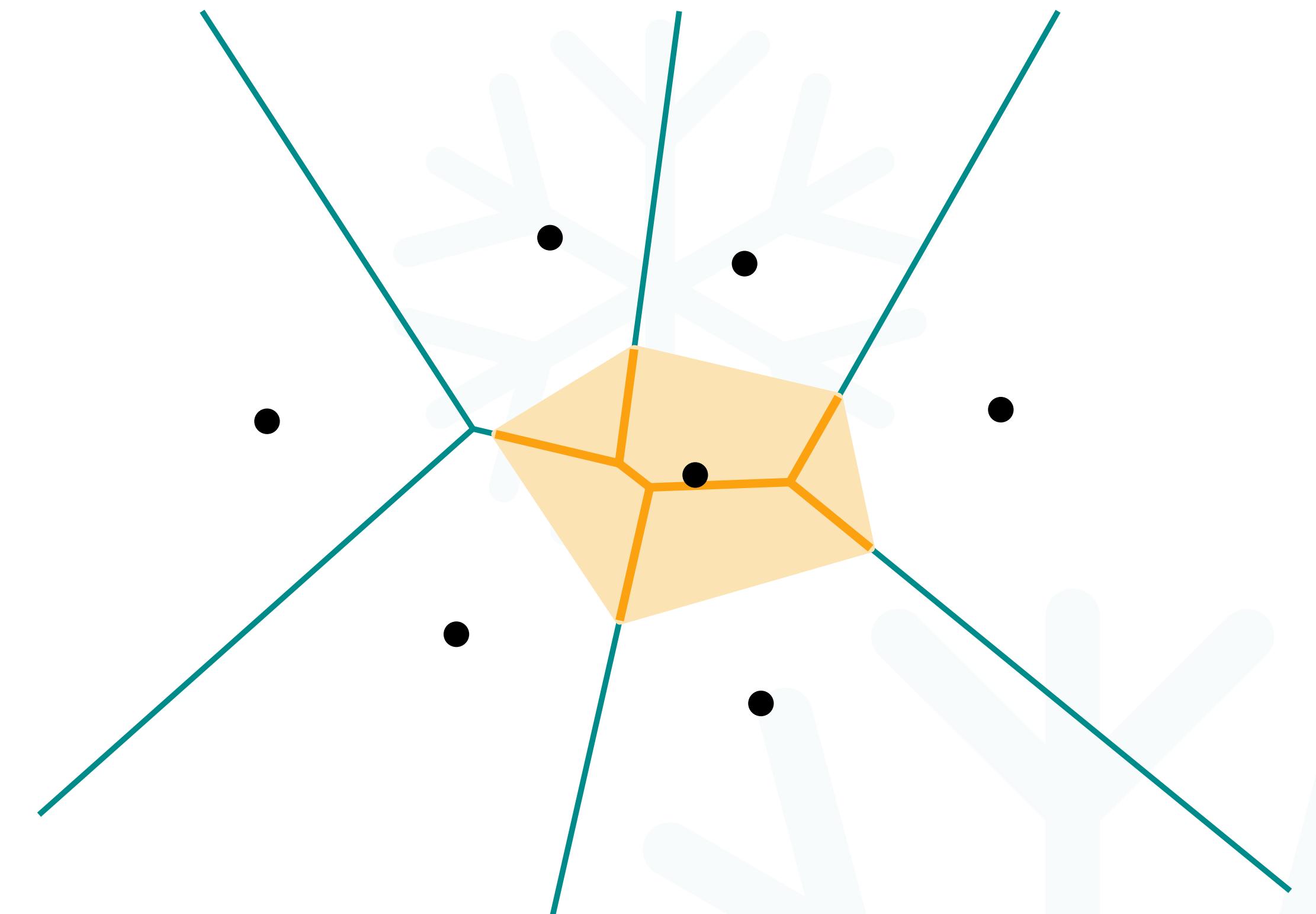
Voronoi diagrams

Higher order

An i th order Voronoi diagram of P divides a metric space based on **which i points** of a discrete set P are closest.

Here: Second order Voronoi diagram.

How can we derive this?



Voronoi diagrams

Higher order

An i th order Voronoi diagram $\text{Vor}(P, i)$ divides a metric space based on **which i points** of the discrete set P are closest.

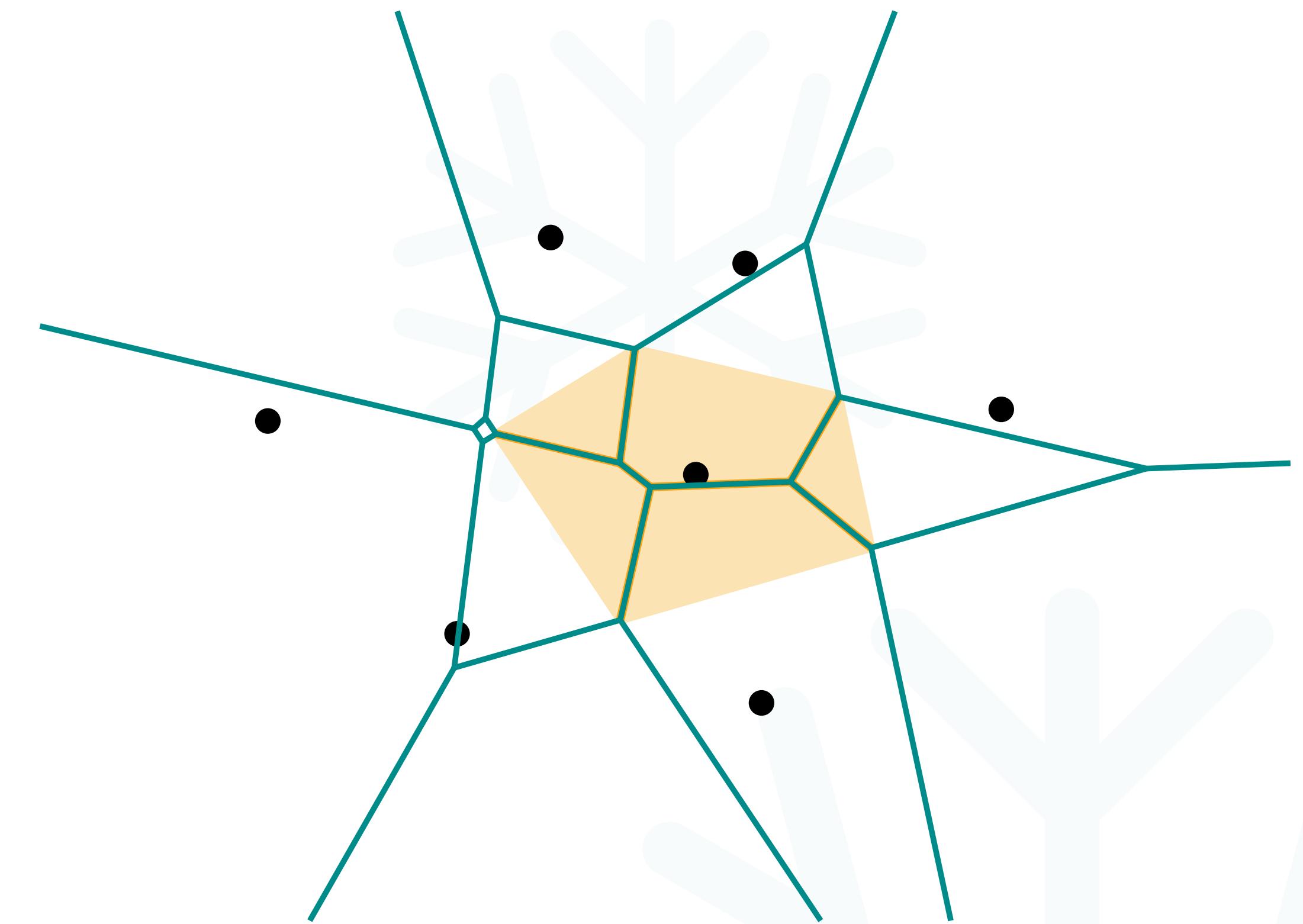
Basic idea for $\text{Vor}(P, i+1)$:

For region R in $\text{Vor}(P, i)$ do:

Let $P_R = \text{sites in } P \text{ that define } R$

$R_{i+1} = \text{Vor}(P \setminus P_R, i) \cap R$

Replace R by R_{i+1}



Voronoi diagrams

Higher order

An i th order Voronoi diagram $\text{Vor}(P, i)$ divides a metric space based on **which i points** of the discrete set P are closest.

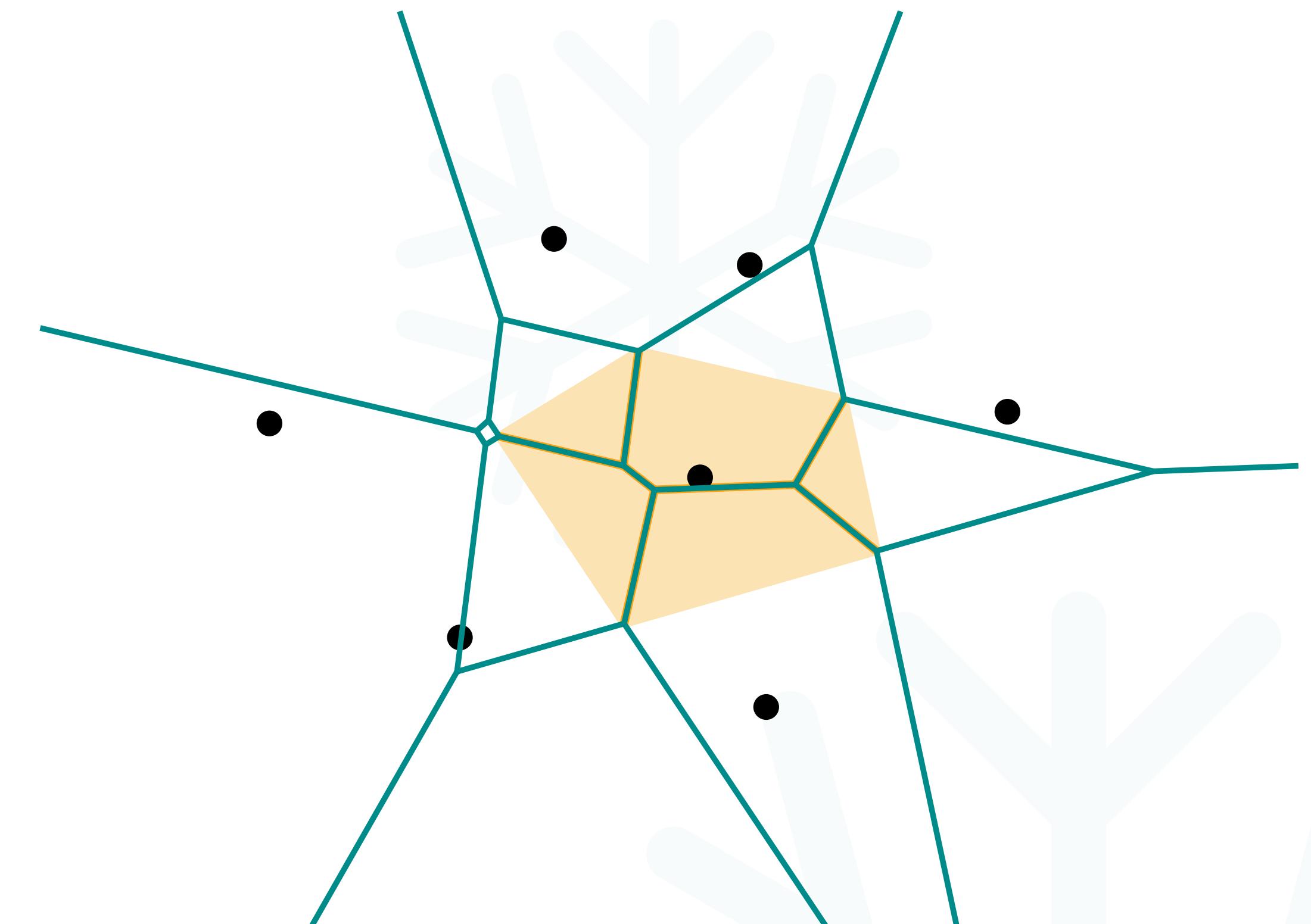
Basic idea for $\text{Vor}(P, i+1)$:

For region R in $\text{Vor}(P, i)$ do:

Let $P_R = \text{sites in } P \text{ that define } R$

$R_{i+1} = \text{Vor}(P \setminus P_R, i) \cap R$

Replace R by R_{i+1}



Voronoi diagrams

Higher order

An i th order Voronoi diagram $\text{Vor}(P, i)$ divides a metric space based on **which i points** of the discrete set P are closest.

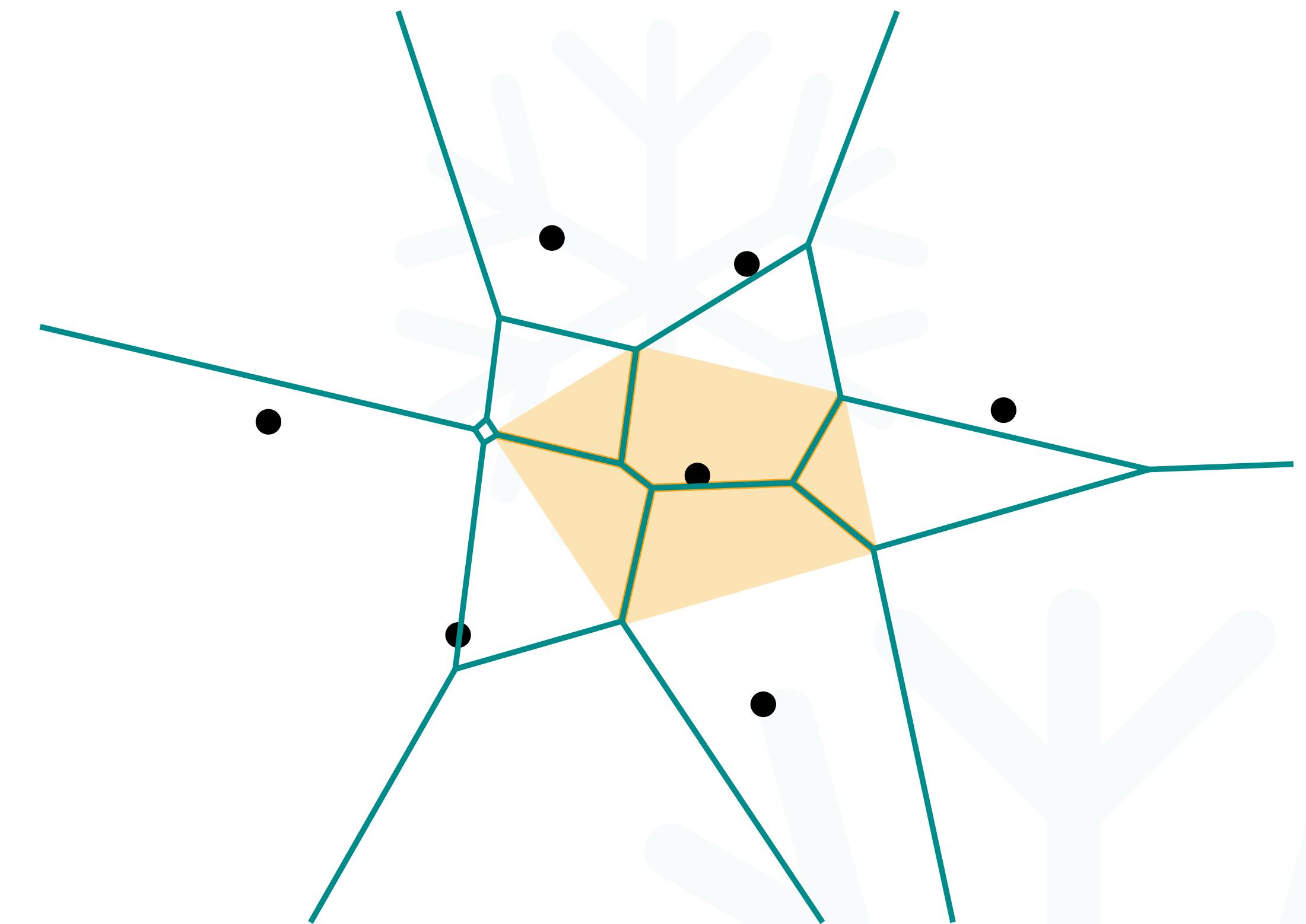
Using better methods:

Theorem E4.1 (Chan and Tsakalidis, 2015):

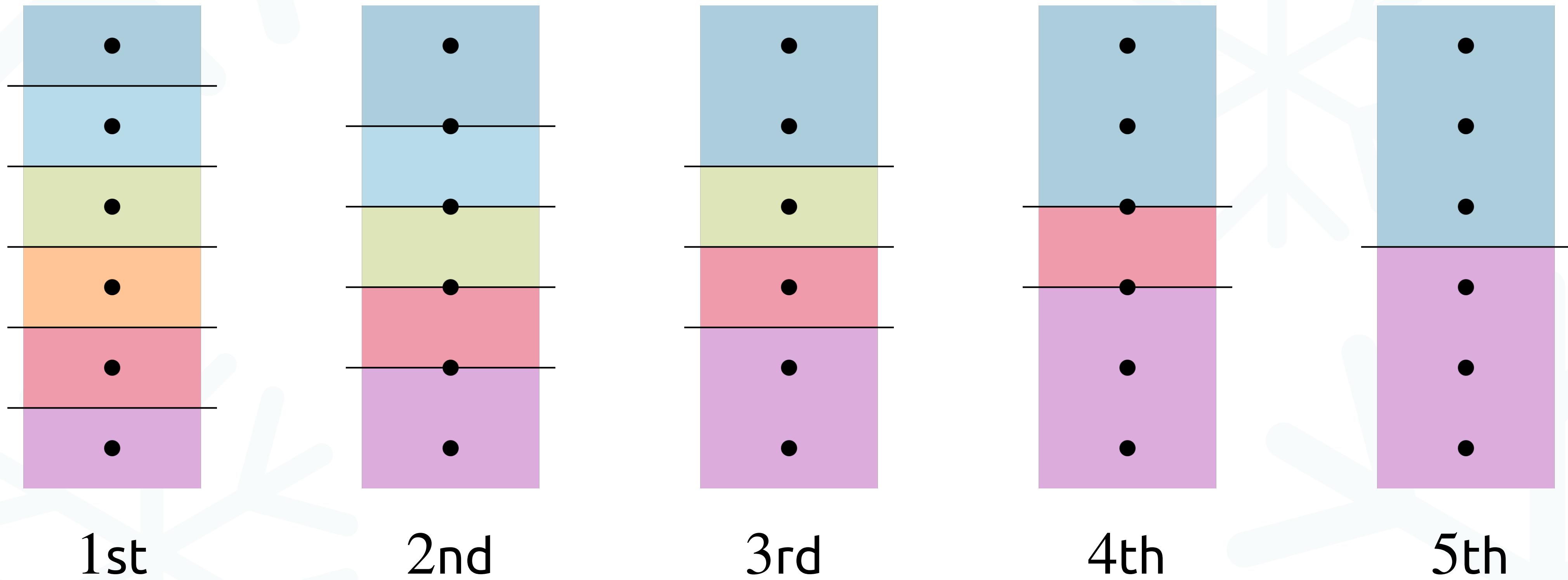
The i th order Voronoi diagram of n points in the plane can be computed in $\mathcal{O}(n \log n + ni \log i)$.

Theorem E4.2 (Chan et al, 2023):

[... or] in $\mathcal{O}(n \log n + ni)$ expected time.



Degenerate case: Collinearity



Voronoi diagrams

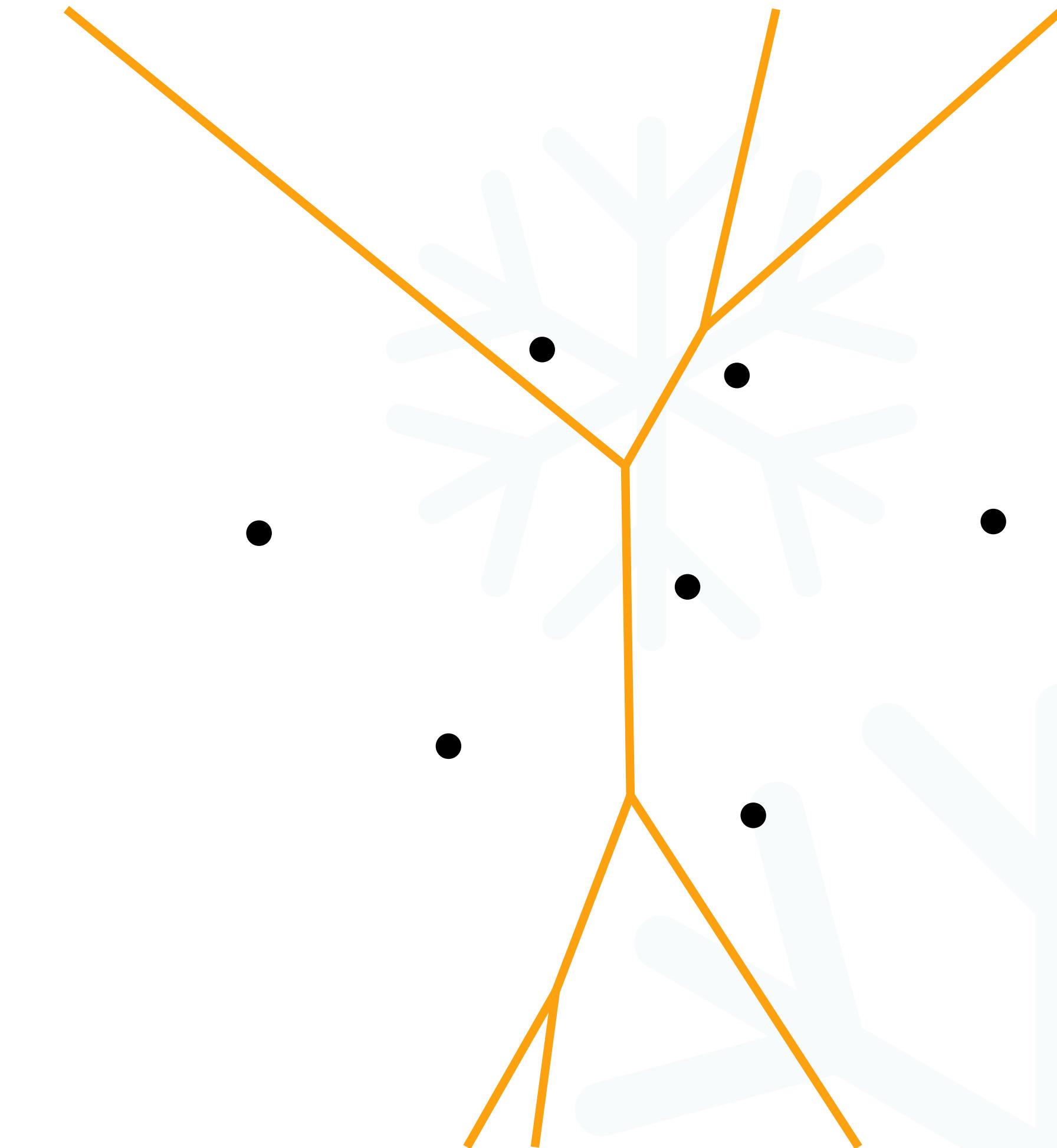
Farthest point

Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

What can you say about this diagram?
How many regions?
What's the graph topology?

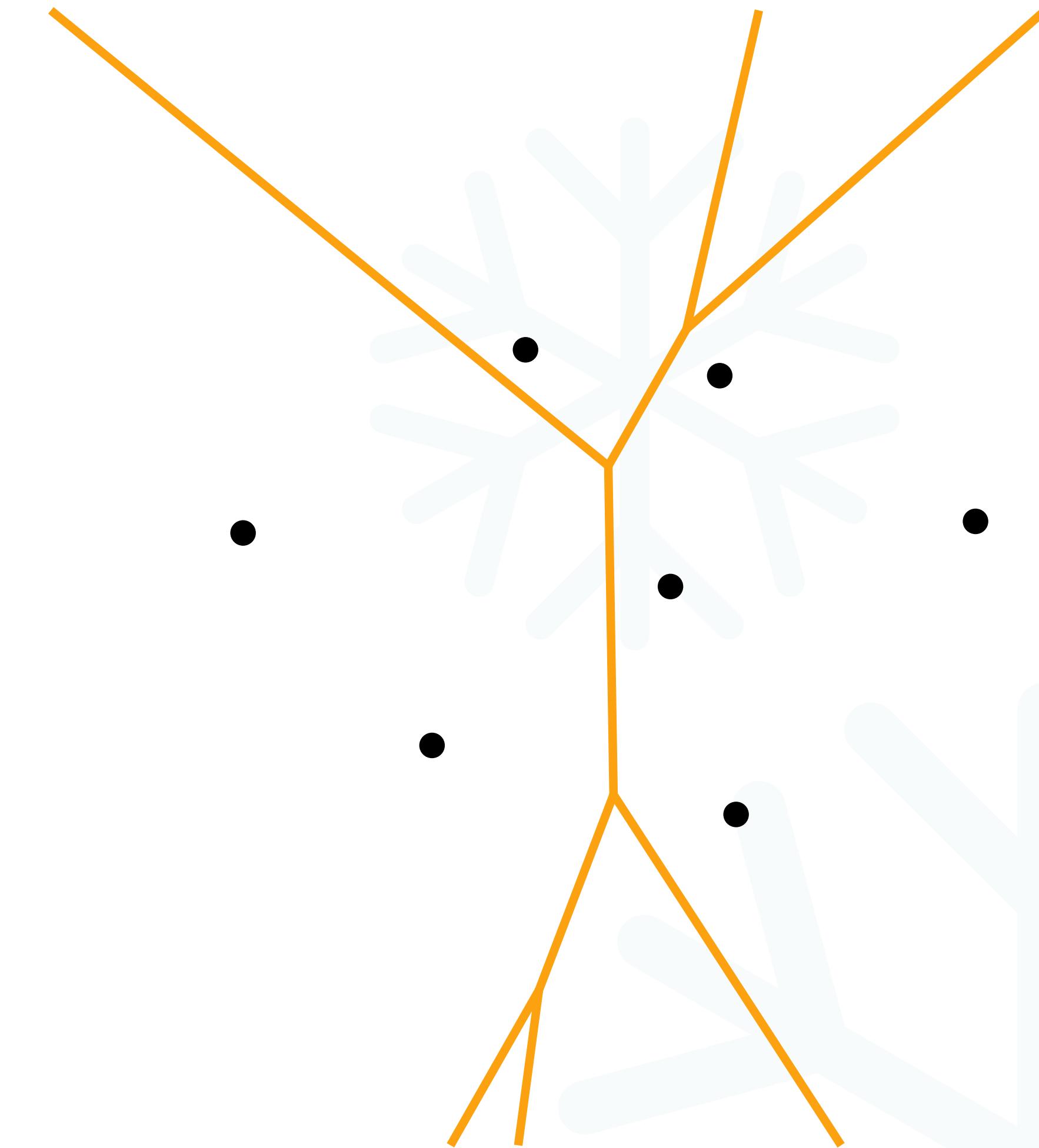


Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

Can you think of some relation to the convex hull $\text{conv}(P)$?

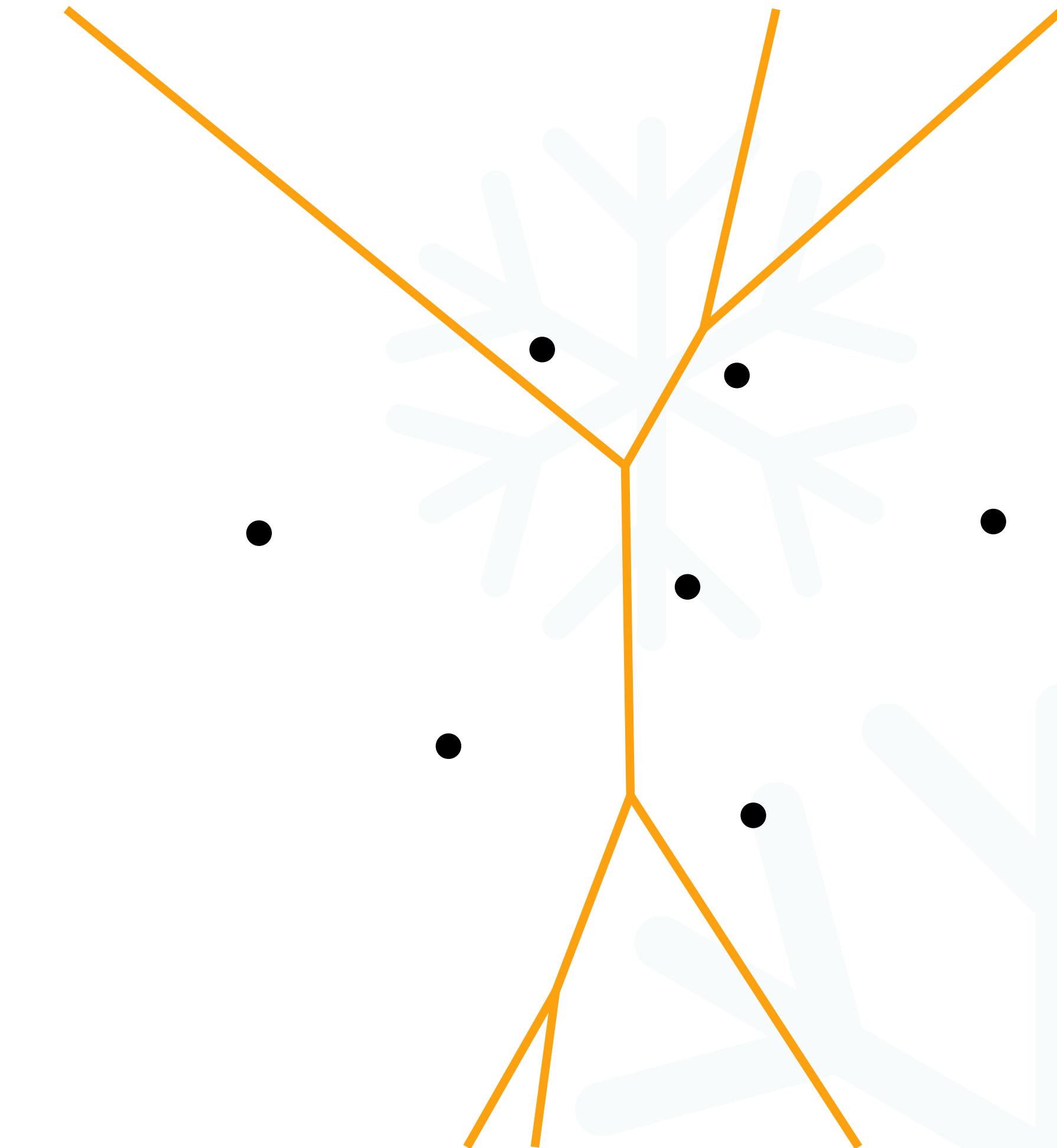


Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

All cells are unbounded, i.e., the dual graph is a tree. A point $p \in P$ has a non-empty Voronoi region exactly if it lies on the boundary of the convex hull $\text{conv}(P)$.

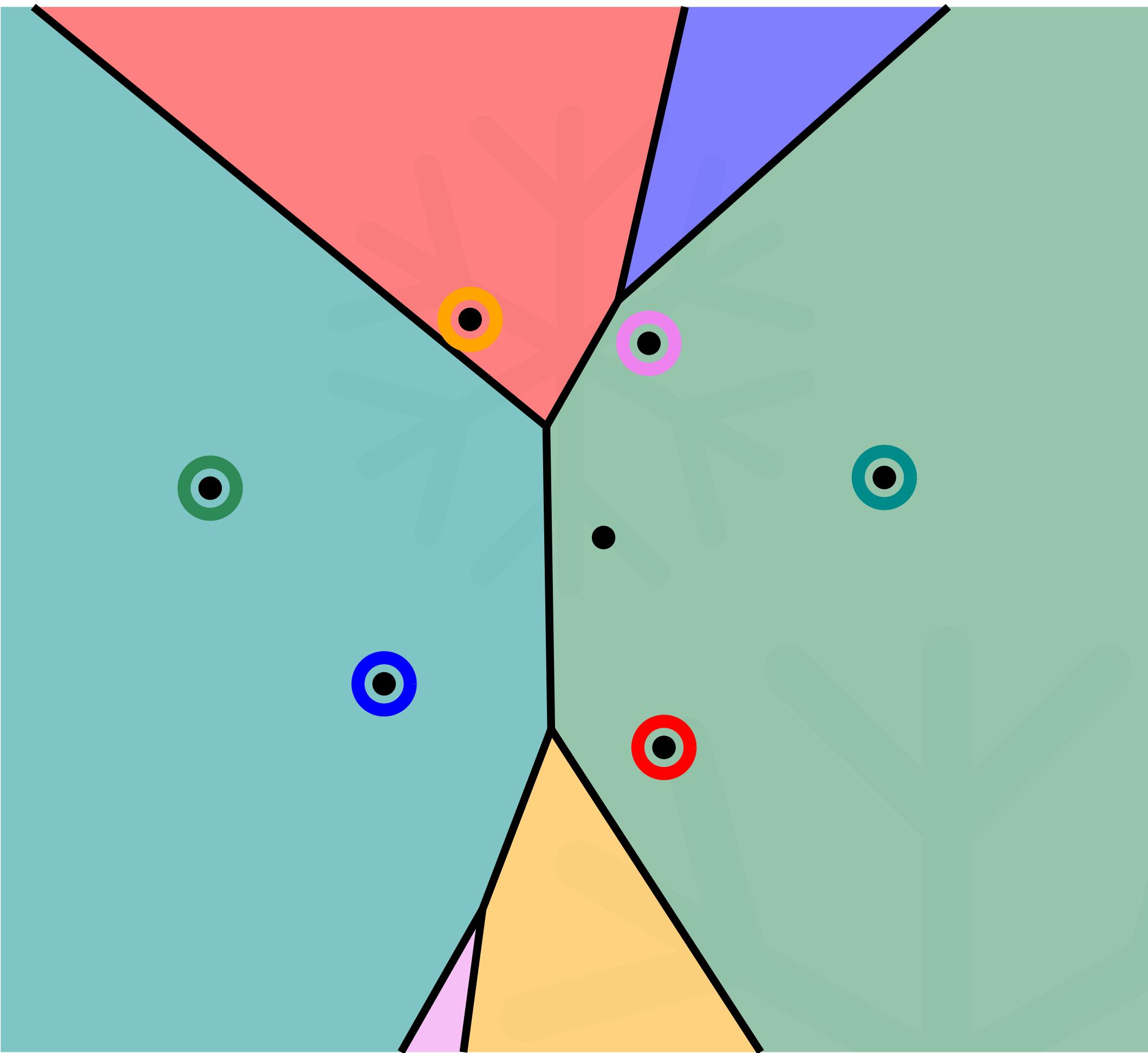


Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

All cells are unbounded, i.e., the dual graph is a tree. A point $p \in P$ has a non-empty Voronoi region exactly if it lies on the boundary of the convex hull $\text{conv}(P)$.



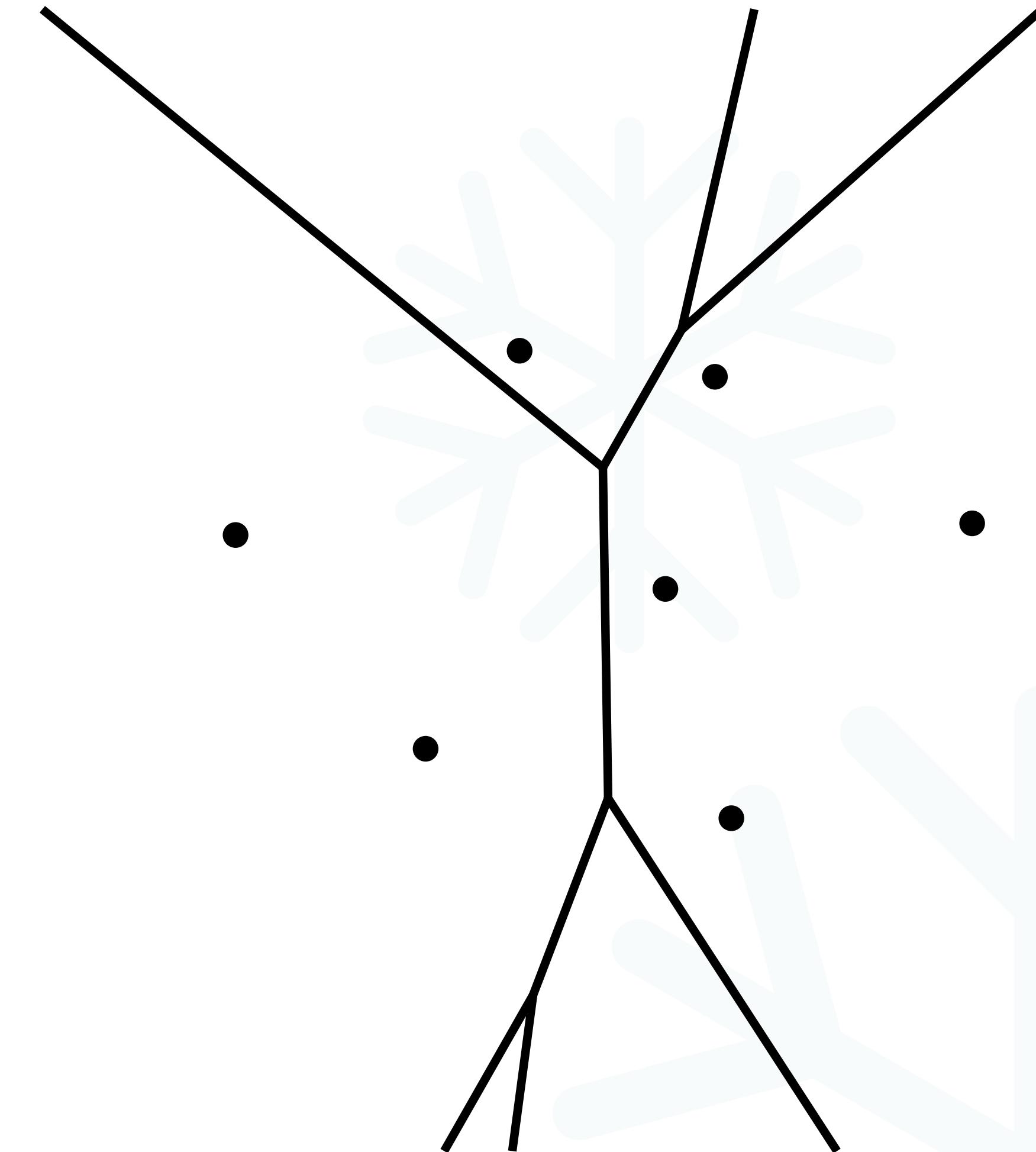
Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram (**farthest-point Voronoi diagram**) divides a metric space based on which element of a discrete point set P is **farthest**.

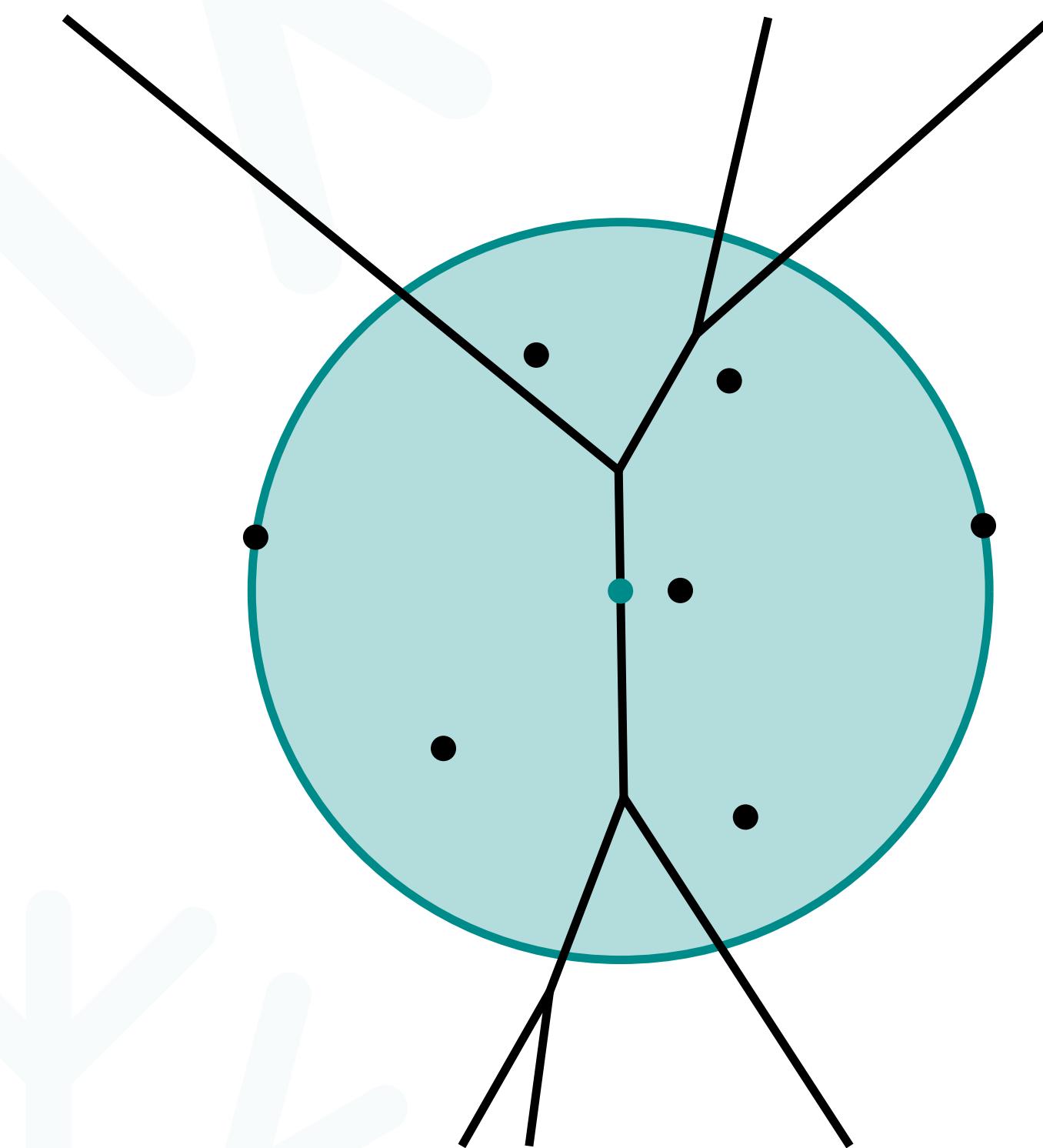
For first order, we had the empty circumcircle property (*what's this?*).

Does a similar property hold for every vertex and edge of the farthest point Voronoi diagram?

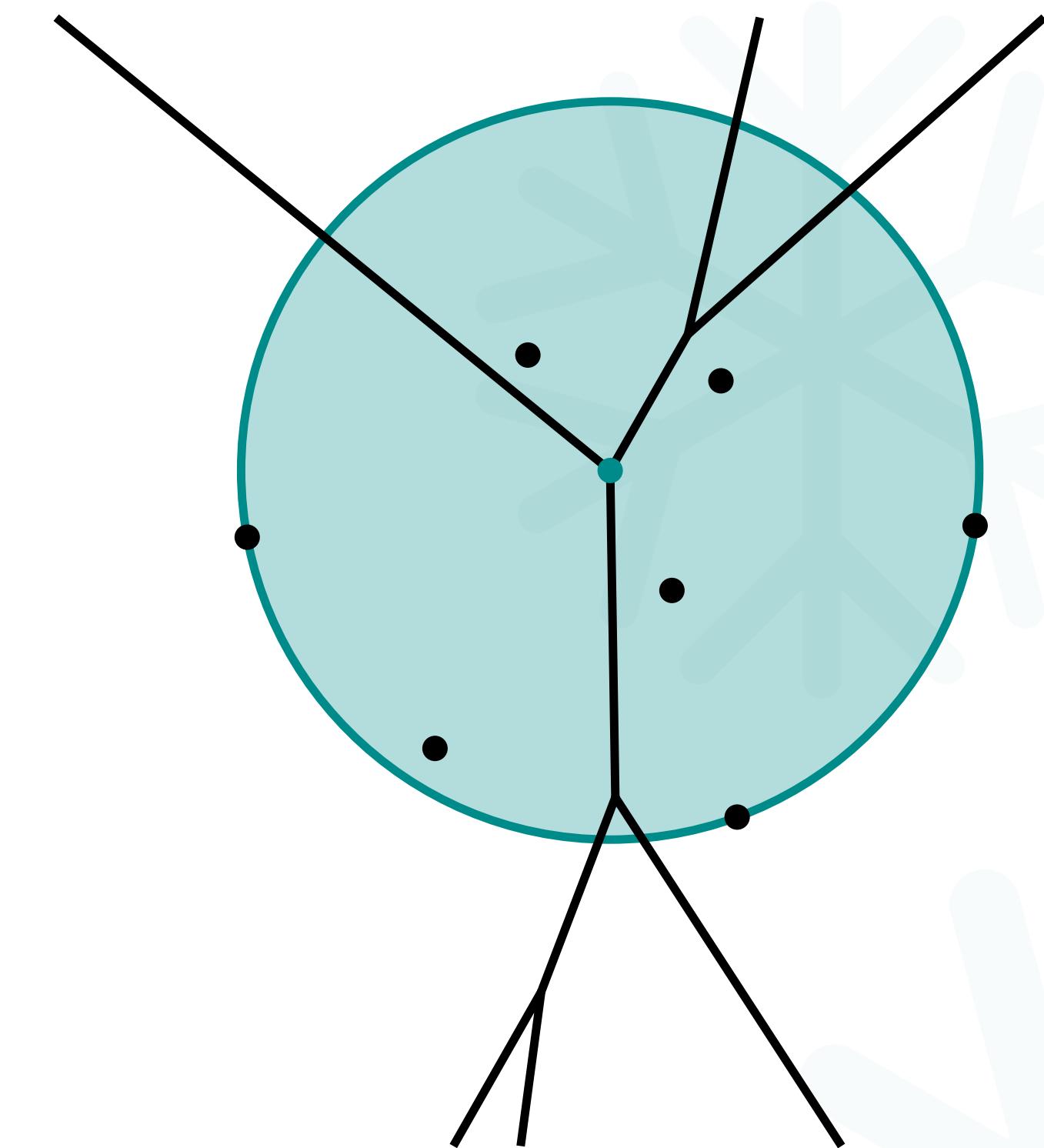


Voronoi diagrams

Farthest point



Edges are equidistant to **two** sites, closer to all other.



Vertices are equidistant to **three** sites, closer to all others.

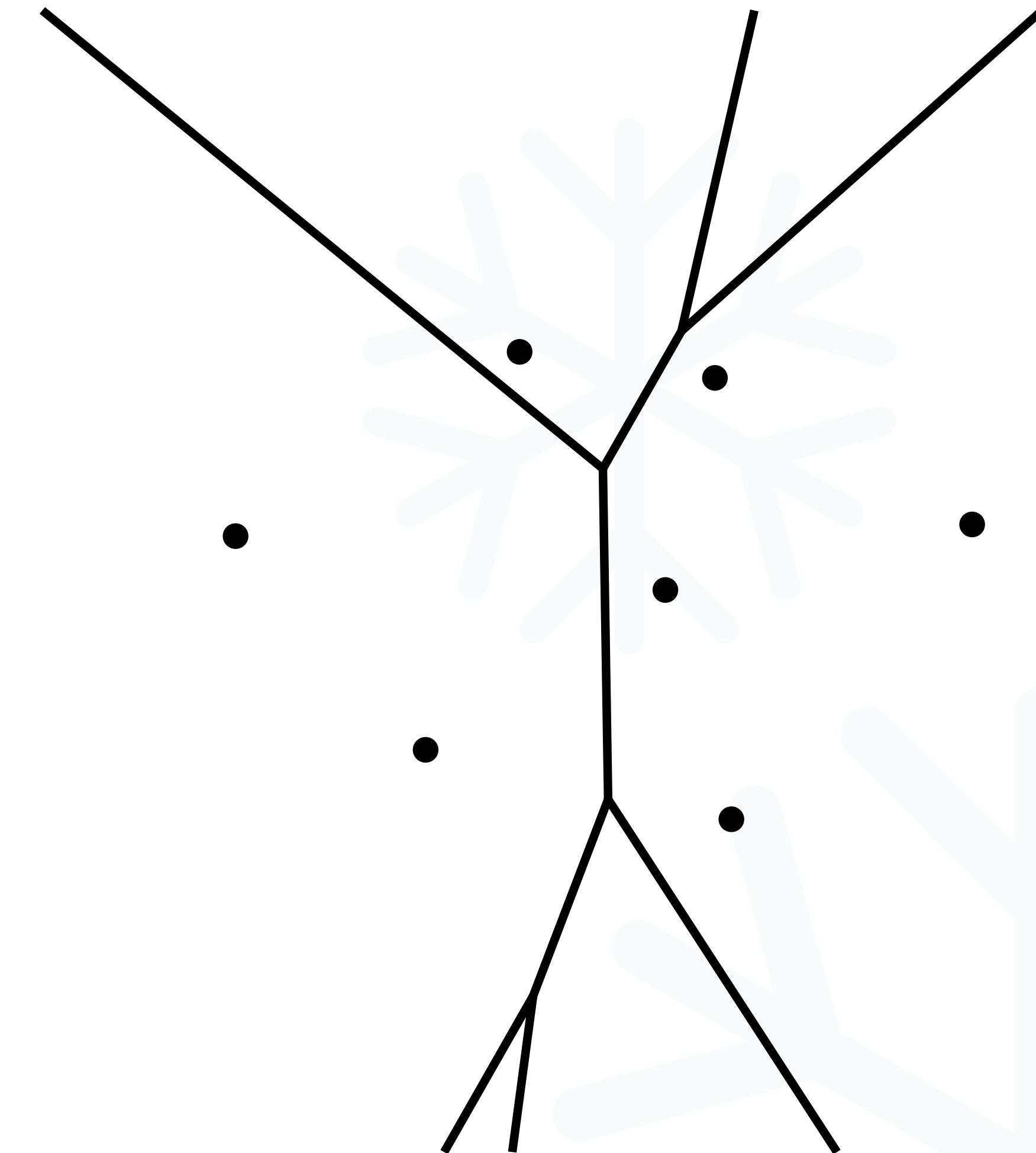
Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

Theorem E4.2 (Cheong et al., 2011):

The farthest point Voronoi diagram of n points in the plane can be computed in $\mathcal{O}(n \log^3 n)$ time.

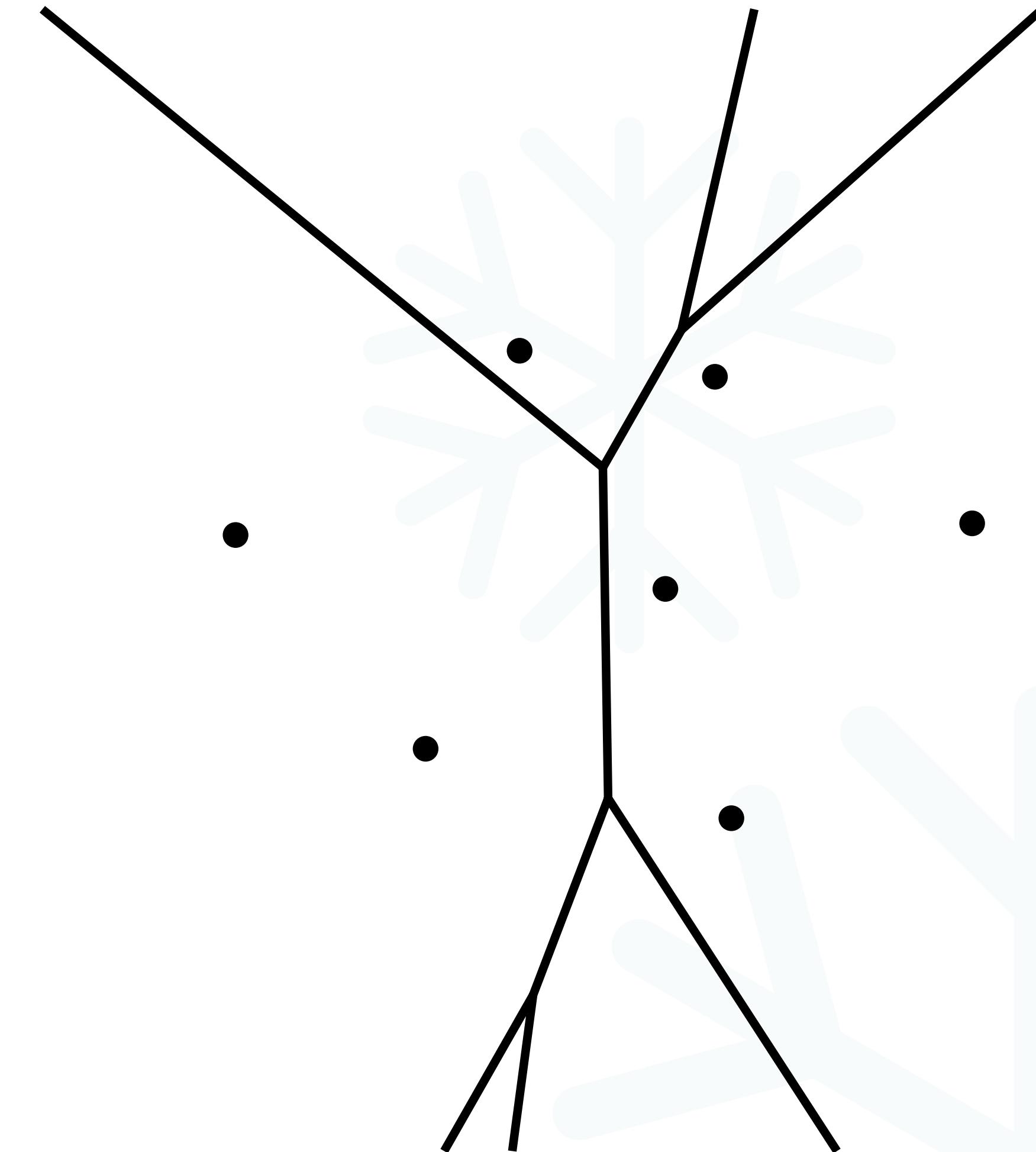


Voronoi diagrams

Farthest point

An $(n - 1)$ th order Voronoi diagram divides a metric space based on which element of a discrete point set P is **farthest**.

Using a DCEL, this graph structure can be stored such that the corresponding sites to each face, vertex, and edge can be accessed in $\mathcal{O}(1)$ time!



Voronoi diagrams

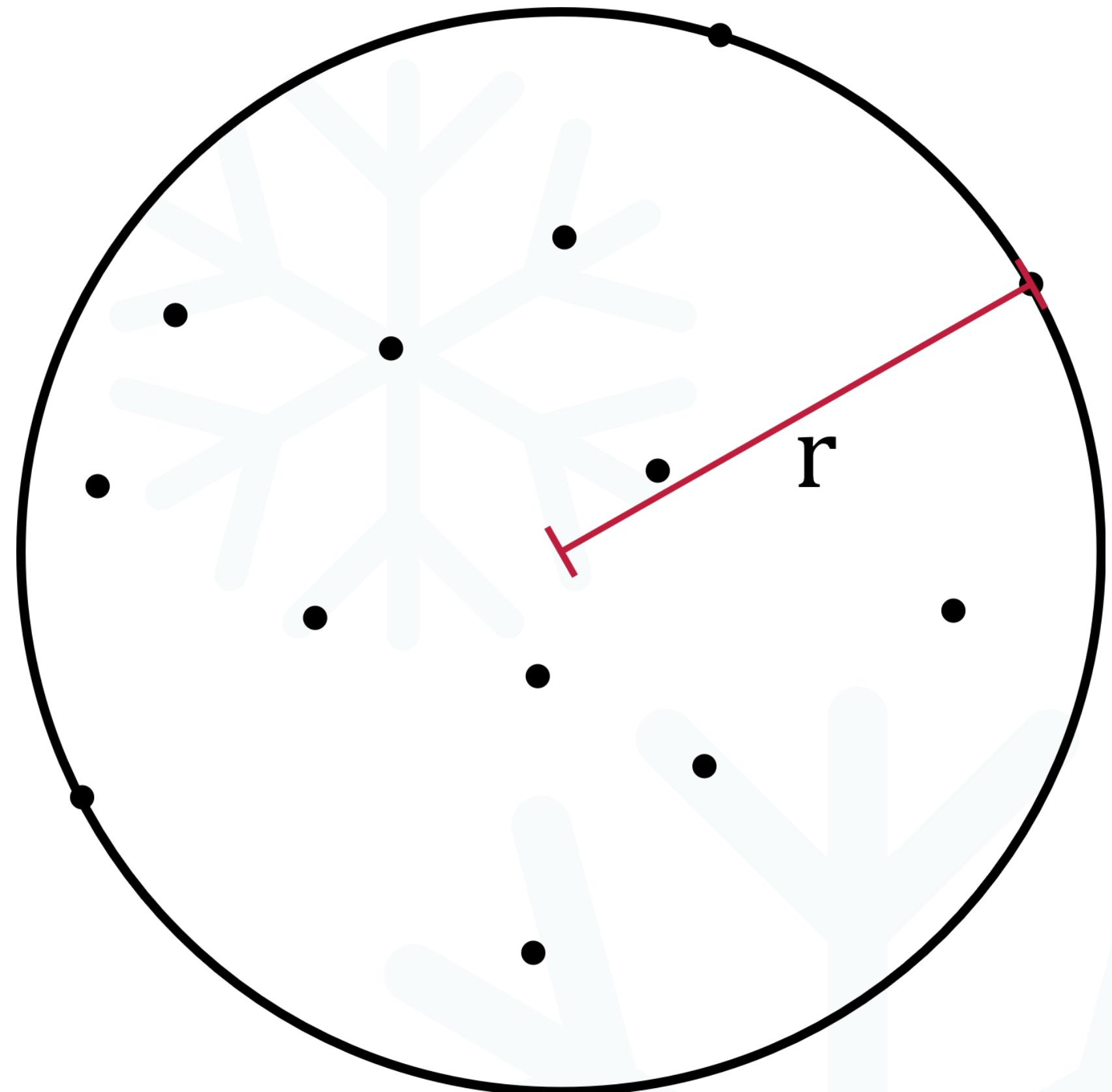
Circle properties

An i th order Voronoi diagram $\text{Vor}(P, i)$ divides a metric space based on **which i points** of the discrete set P are closest.

For i points $M \subset P$, there is a **non-empty Voronoi region** in this diagram if there exists a **disk that encloses M but none of $P \setminus M$** .

The **Voronoi region of M** is the set of all **centres** of such circles: M need not be contained in their region.

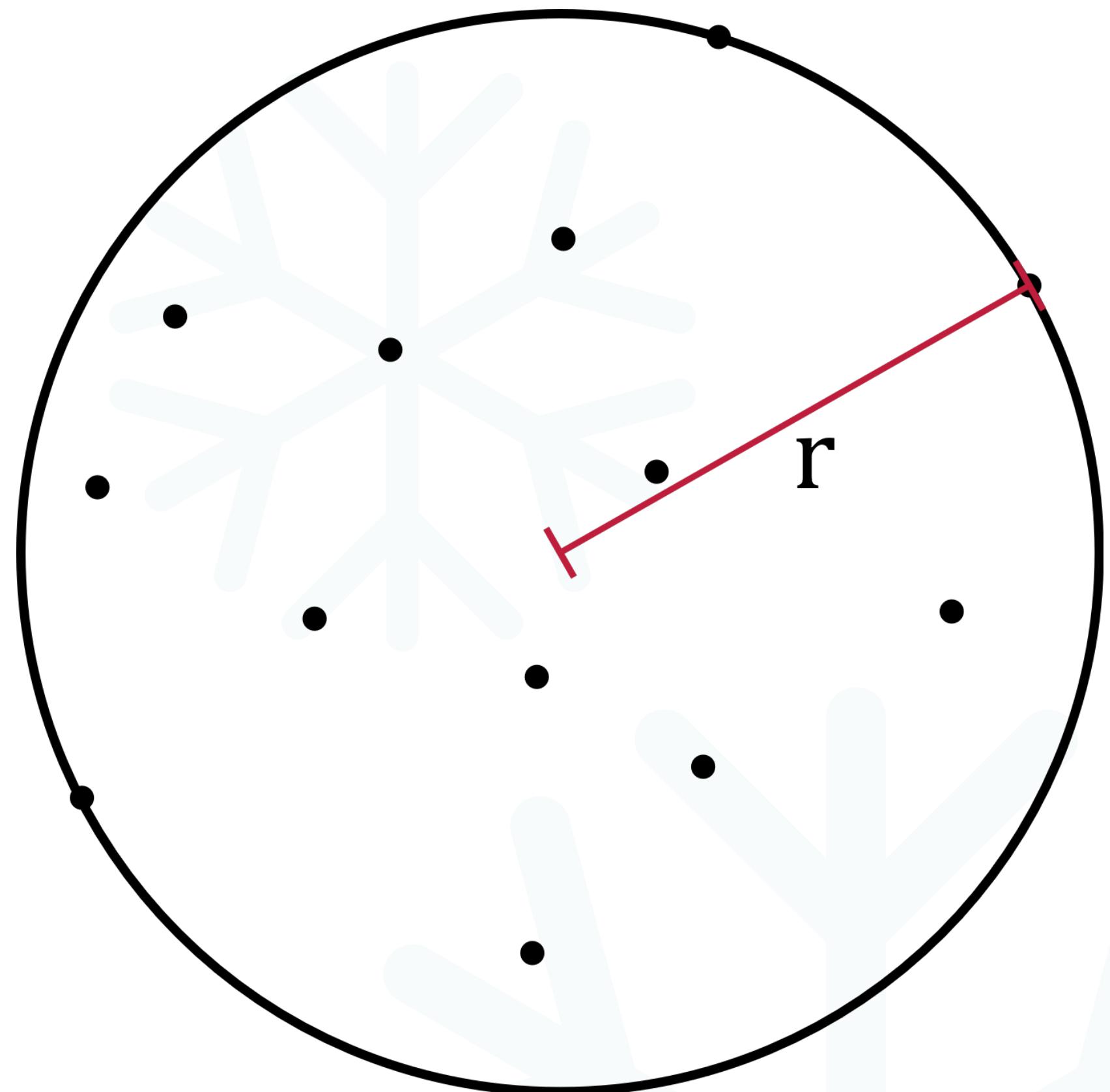
Min enclosing disk



Given: Points $P := p_1, \dots, p_n$ in the Euclidean plane, in general position (no four concyclic points).

Wanted: An enclosing disk $md(P)$ of **minimal radius r** .

*Can you think of a fast approximation method?
Which factor can you achieve?*



Min enclosing disk

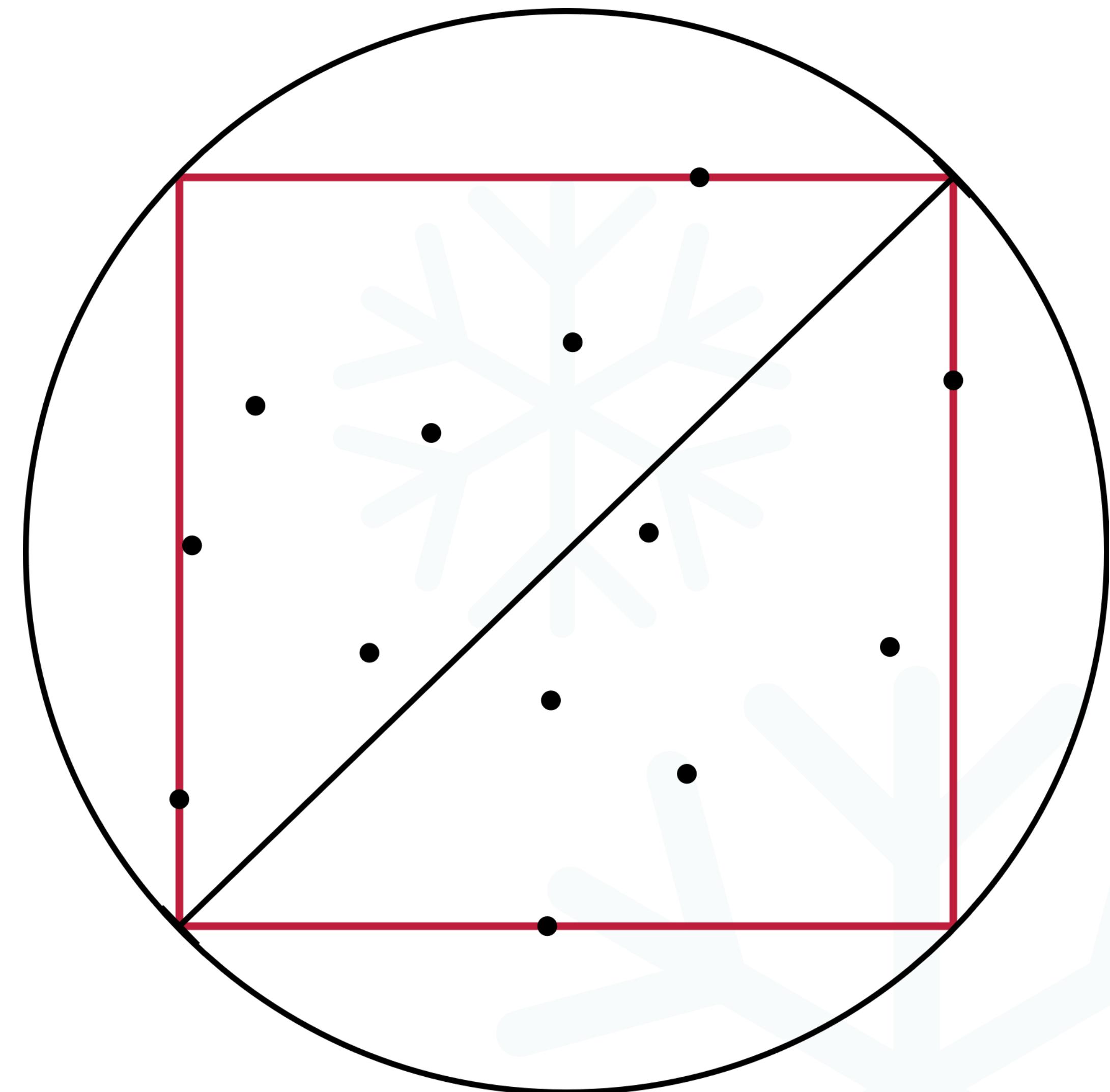
A $\sqrt{2}$ -approximation

Given: Points $\mathcal{P} := p_1, \dots, p_n$ in the plane, in general position.

Idea: Compute in $\mathcal{O}(n)$ an axis-aligned bounding box via min and max coordinates, use the smallest enclosing disk of those.

The diameter of this disk is at most $\sqrt{2}$ times larger than $\text{diam}(\mathcal{P})$, which bounds the diameter of any enclosing disk from below.

Note: r is not necessarily equal to $\frac{1}{2} \text{diam}(\mathcal{P})$.

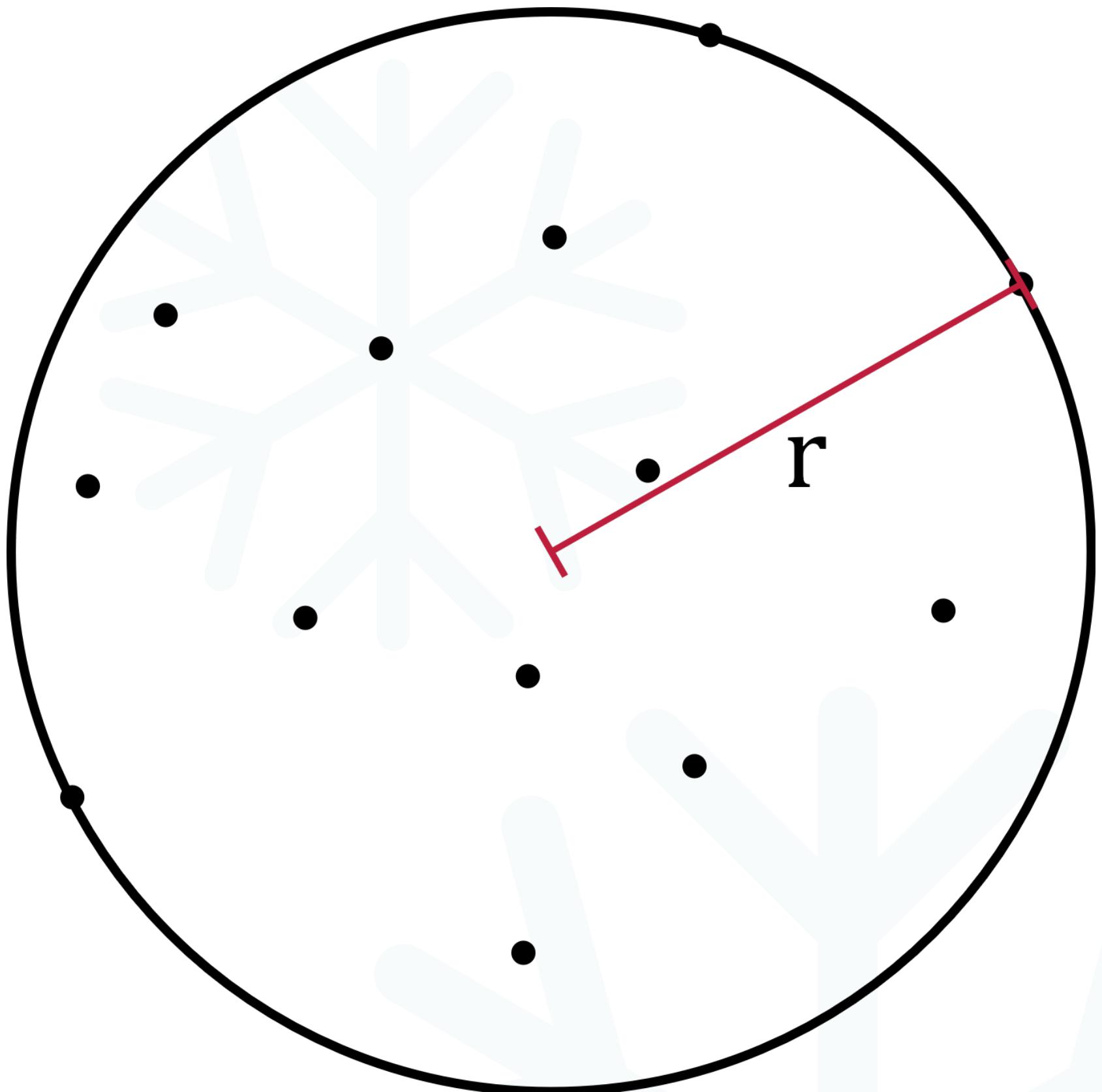


Given:

Points $P := p_1, \dots, p_n$ in the Euclidean plane,
in general position (no four concyclic points).

Wanted: An enclosing disk $md(P)$ of **minimal radius** r .

Let's try to solve it! :)





Thank you
... and see you next year :)