Computational Geometry

Tutorial #2

Written Examterminplaner

Written Exam CG 25/26

Who invites: Peter Kramer

Please mark ALL dates that are feasible!

We have a large number of participants, be fair :)

Location: TBD

Appointment selection:

Submit

Institut für Betriebssysteme und Rechnerverbund Algorithmik

ADD ▼

LOGIN ▼

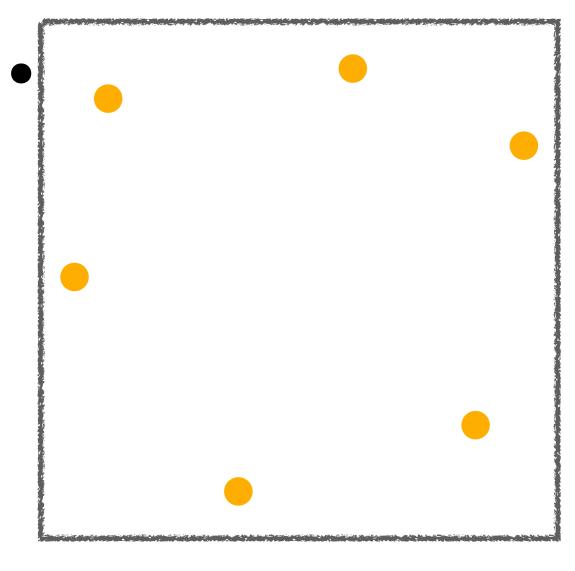
LANGUAGES V

DEUTSCH

ENGLISH

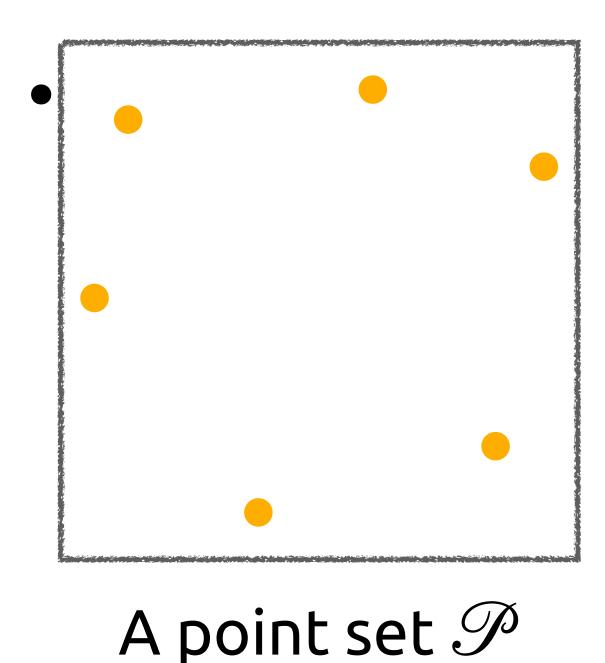
Refresh: What's the difference?

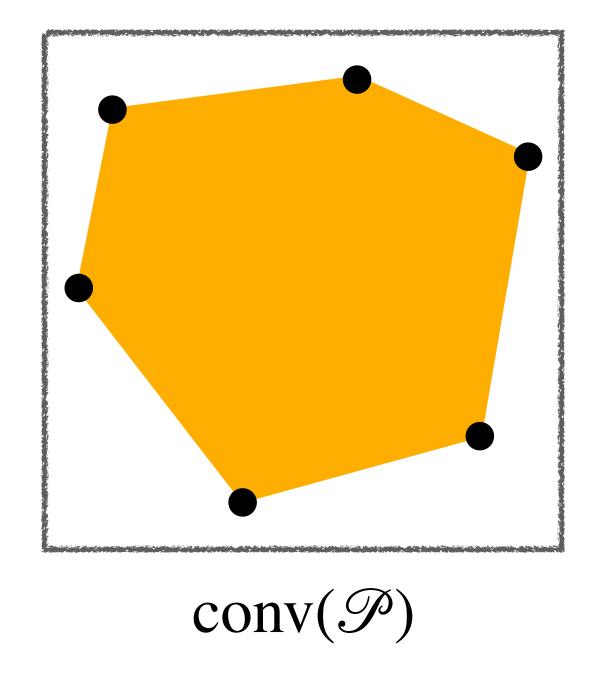
Refresh: What's the difference?



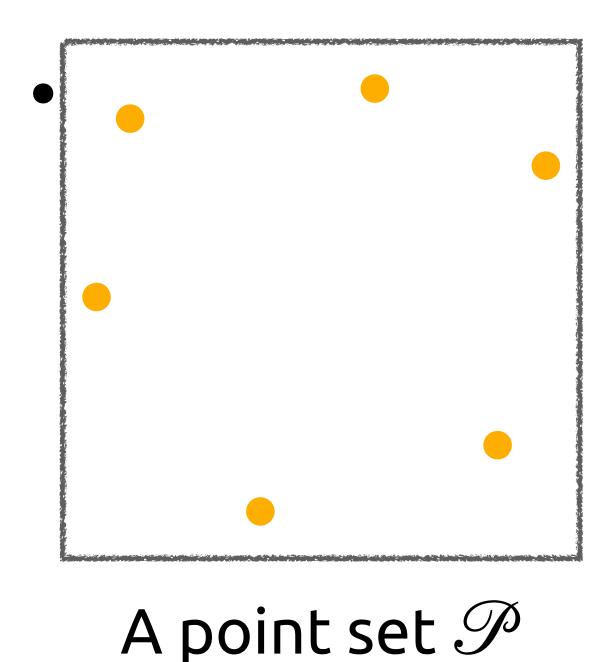
A point set \mathscr{P}

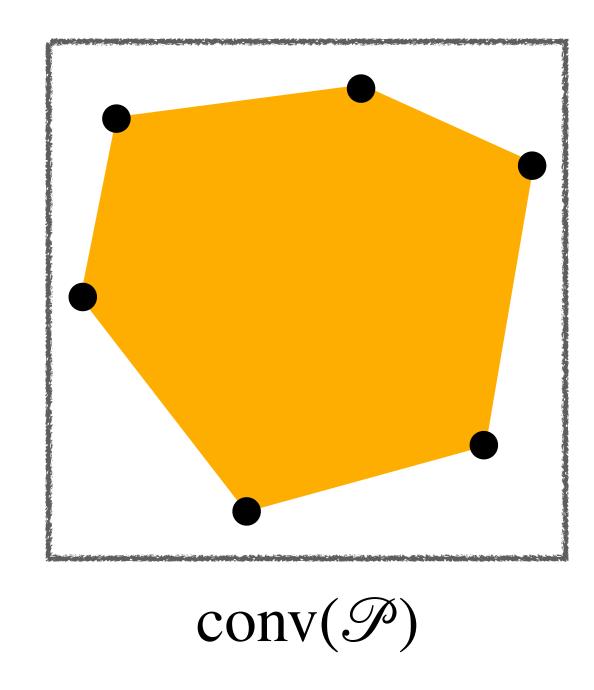
Refresh: What's the difference?

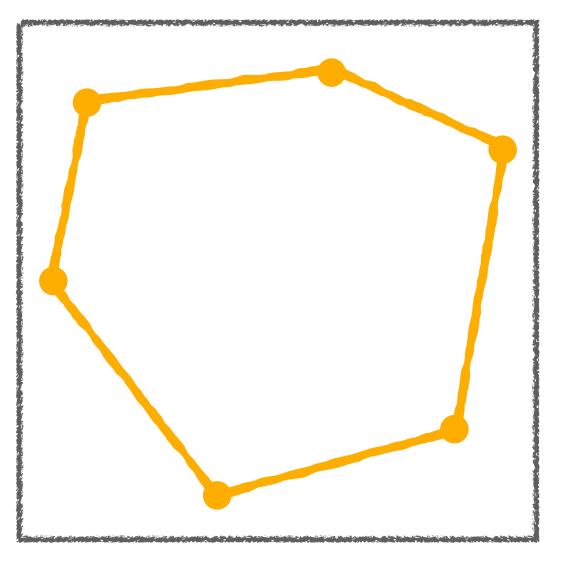




Refresh: What's the difference?







A polygon P on \mathscr{P}

Farthest point pairs

What we know

Exercise 3 (Farthest Point Pairs).

(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p, q \in \mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P}: |p-q| \ge |u-v|.$$

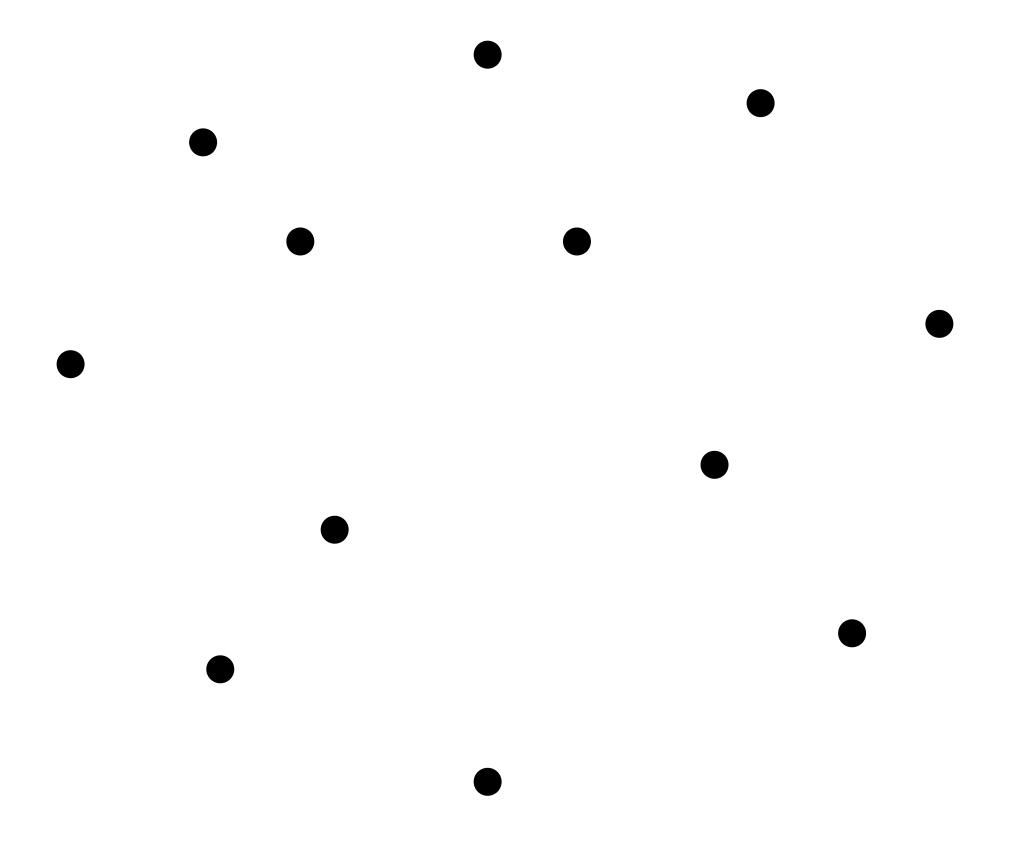
The Euclidean distance between p and q is then also called the diameter of \mathcal{P} .

- **a)** Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull conv(\mathcal{P}).
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Argue its correctness, approximation factor, and runtime!
- We will assume that a) is true Discussion next week:)
- An greedy $\mathcal{O}(n^2)$ time algorithm is trivial. Today, we'll try to do better.

Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of ${\mathscr P}$ consist of two vertices of the convex hull $conv(\mathcal{P})$.

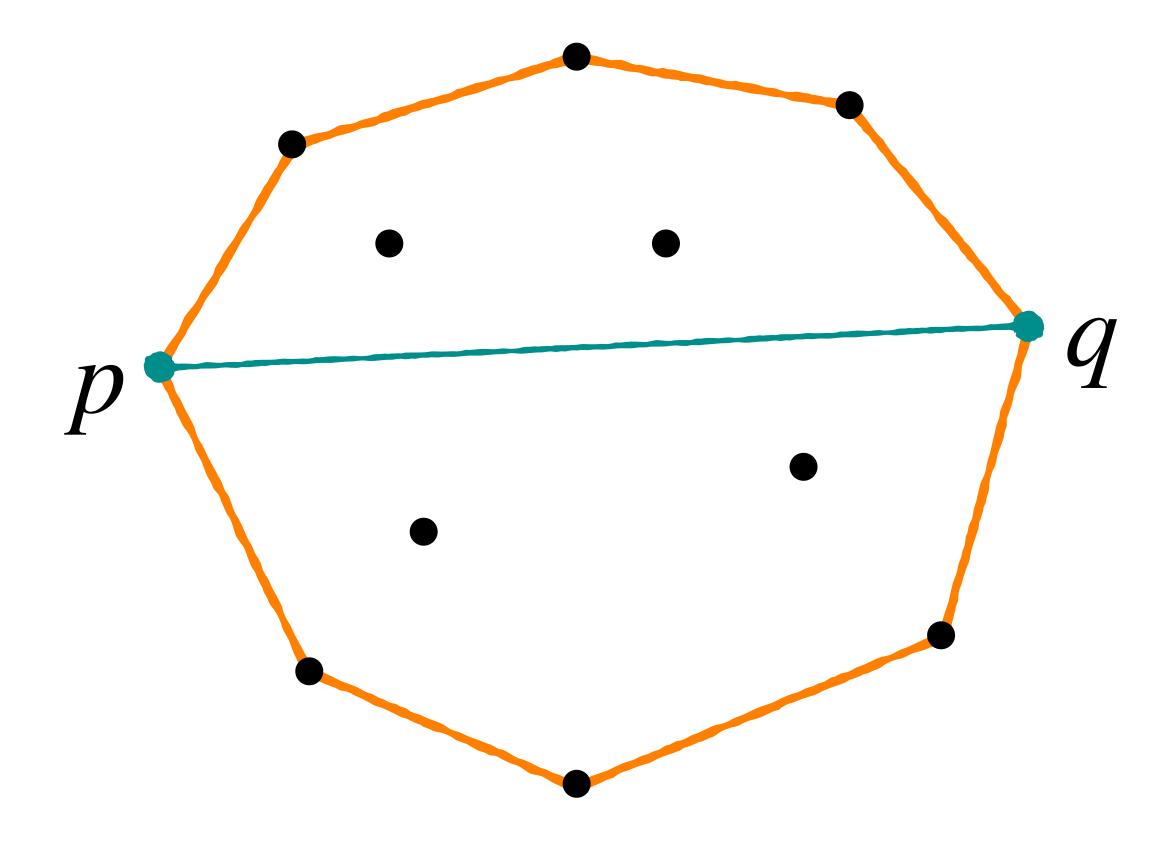


* no three points in $\mathscr P$ are collinear.

Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

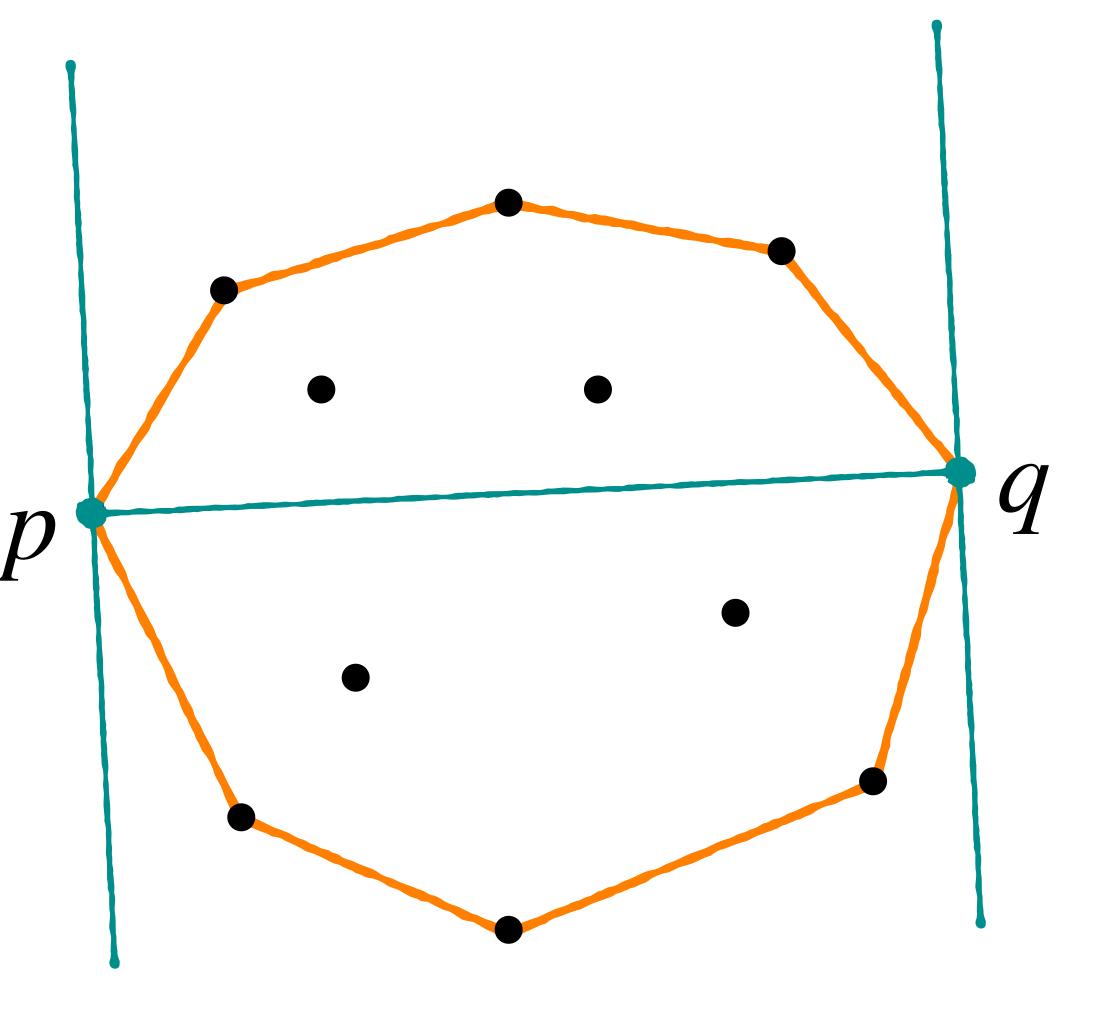
Lemma E3.1 All farthest pairs of ${\mathscr P}$ consist of two vertices of the convex hull $conv(\mathcal{P})$.



* no three points in $\mathscr P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.



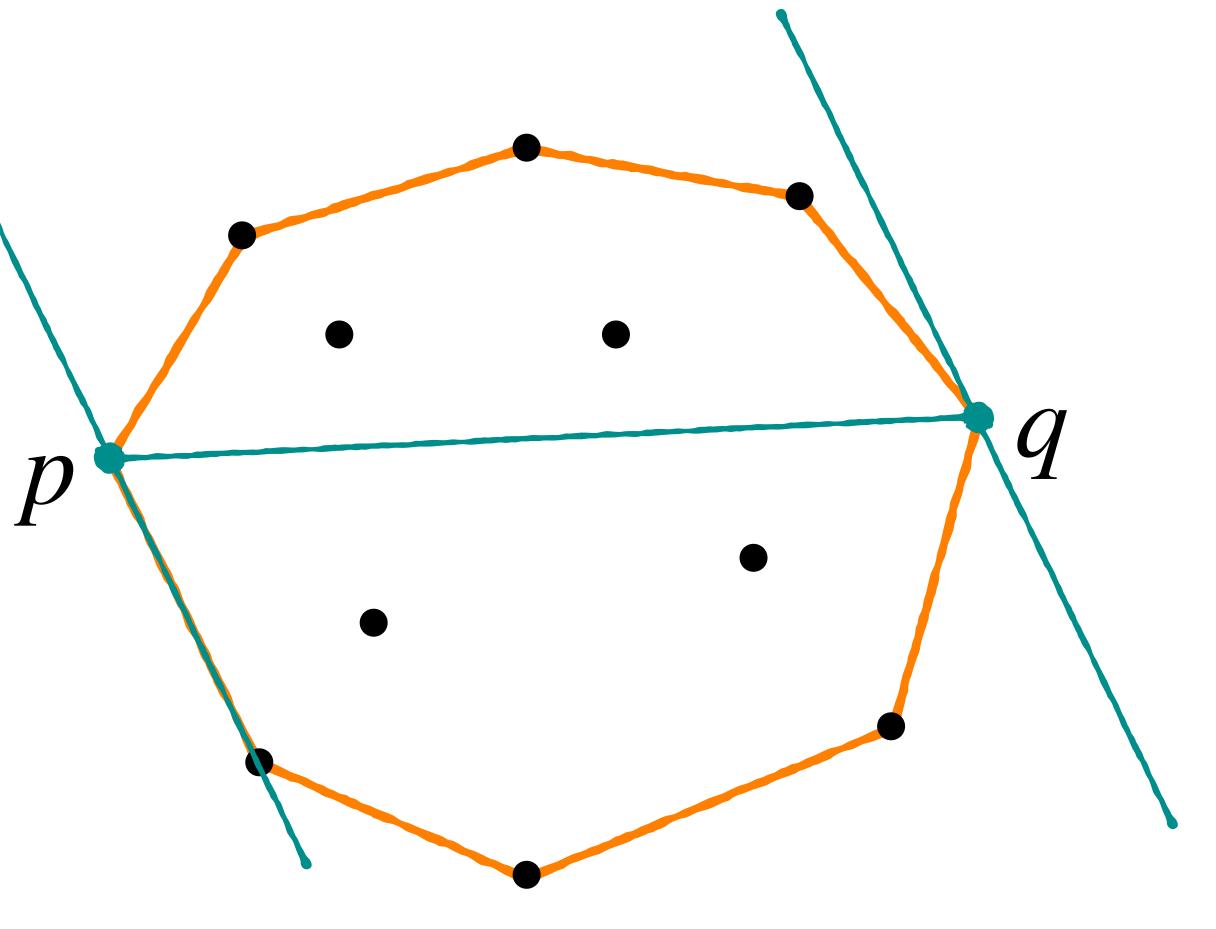
* no three points in \mathscr{P} are collinear.

Farthest point pairs

Antipodal pairs

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

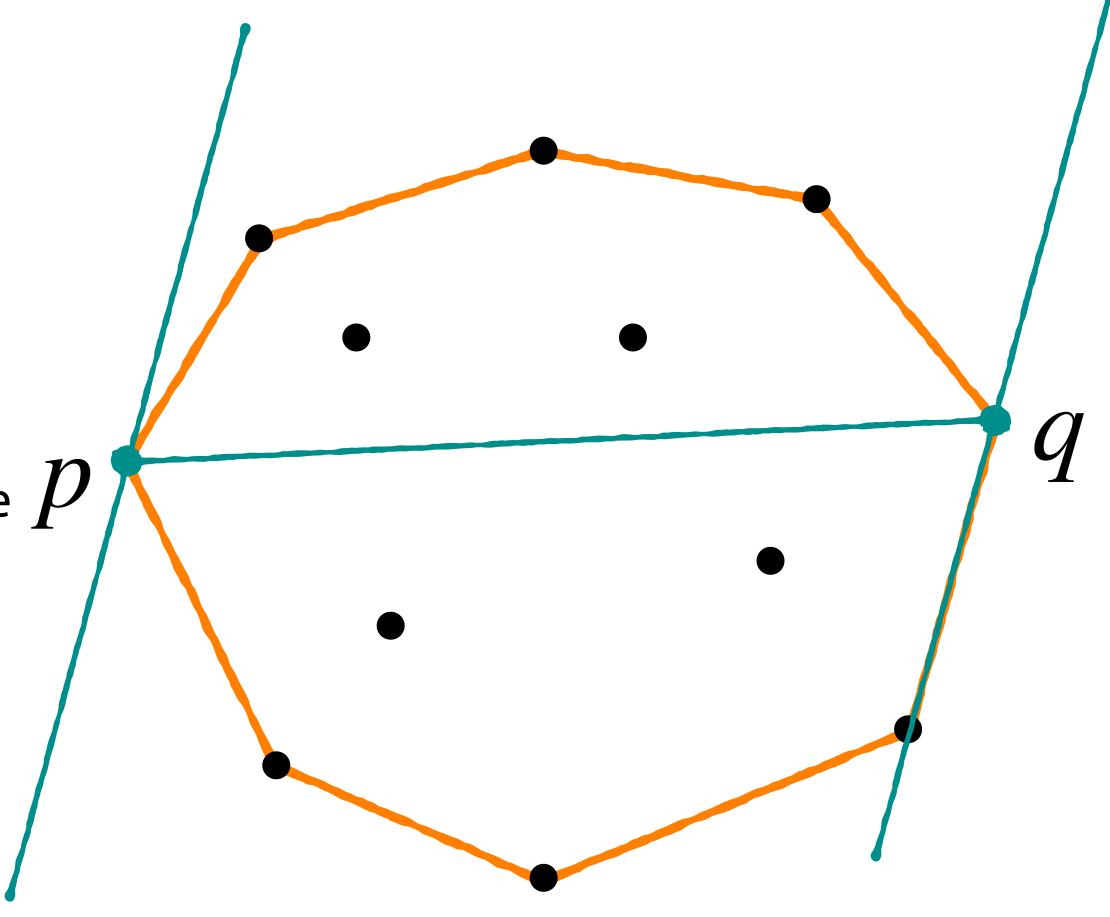
Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.



* no three points in \mathscr{P} are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

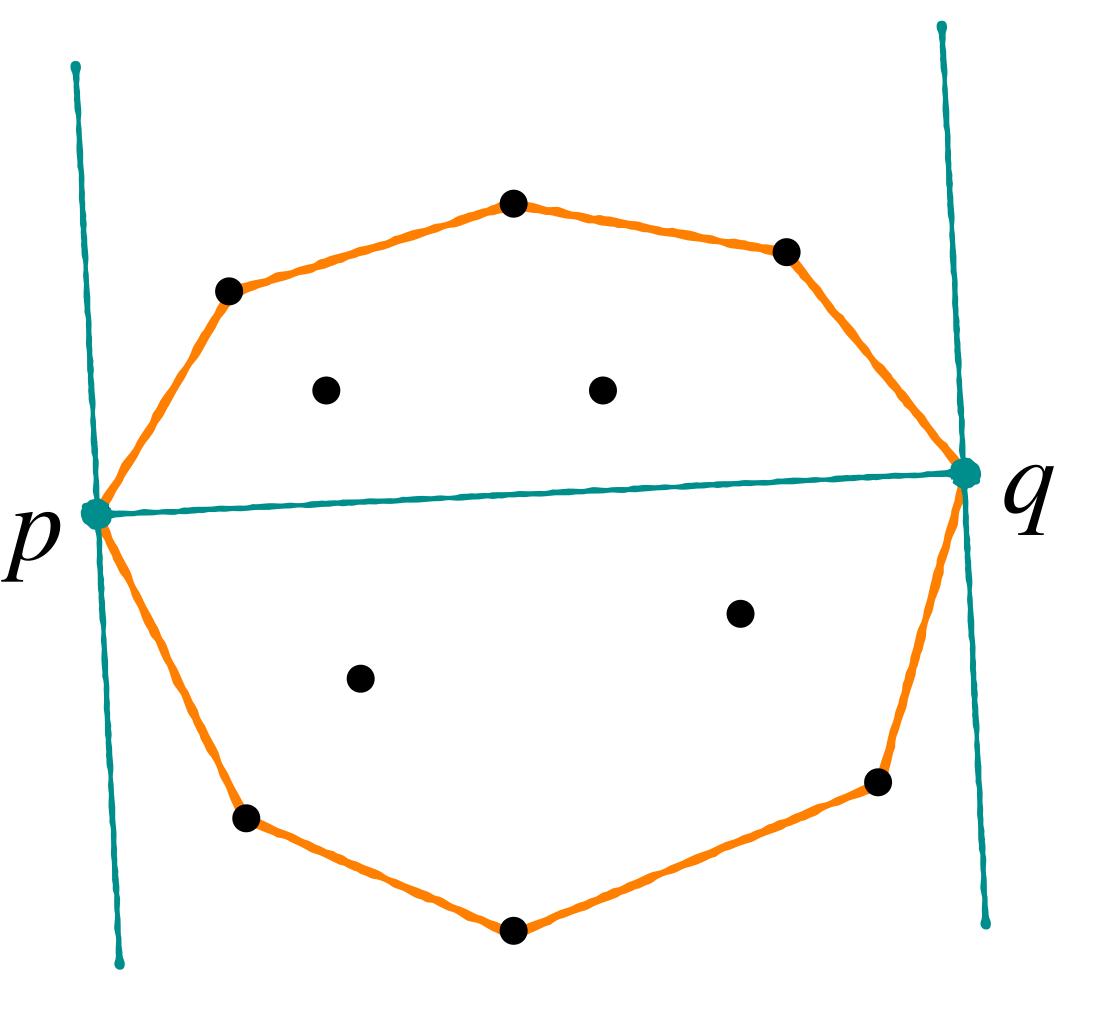
Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.



* no three points in \mathscr{P} are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.



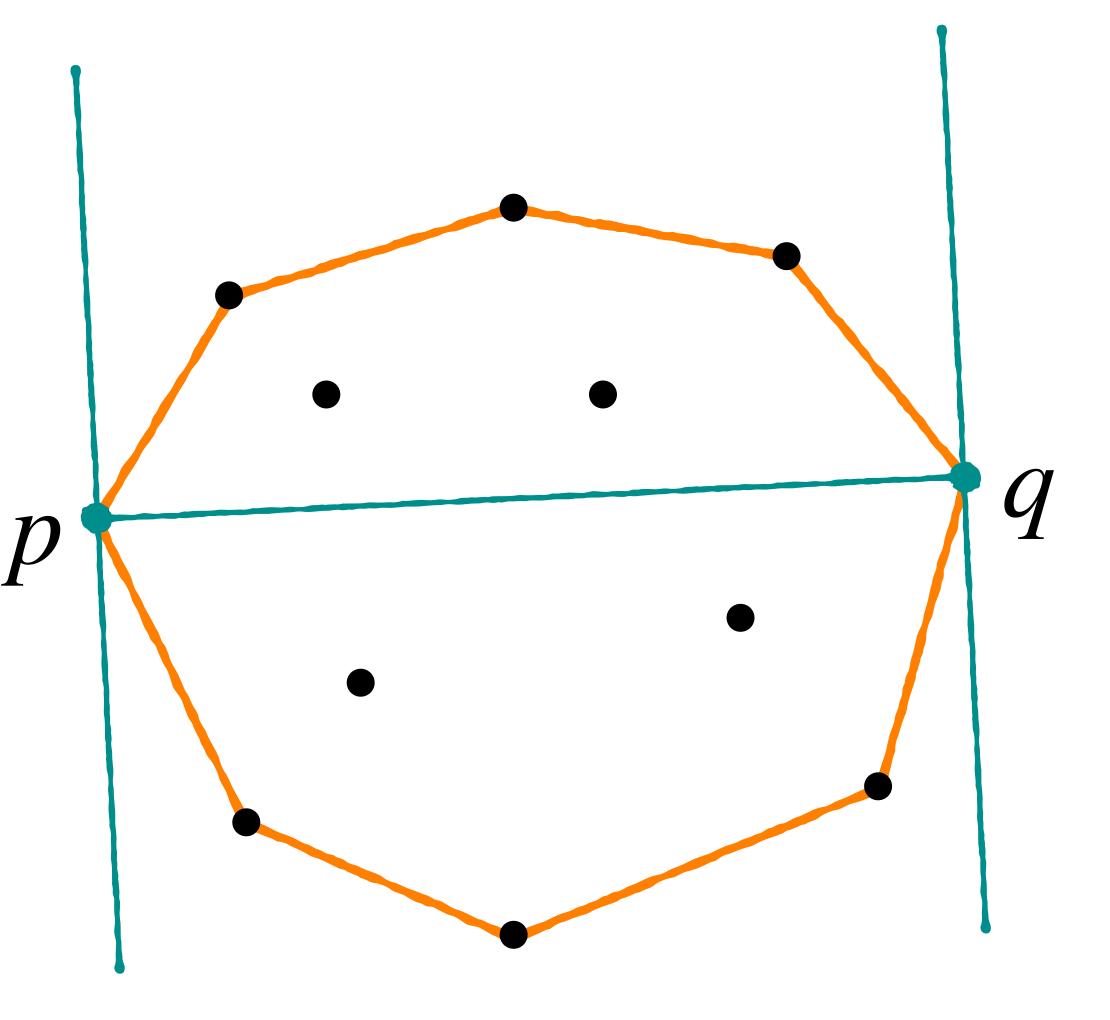
* no three points in \mathscr{P} are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.

Definition. Two points $p,q\in \mathscr{P}$ are **antipodal** if there Pexist parallel supporting lines through them which touch, but do not cut the convex hull.

Lemma E3.2 All farthest pairs of $\mathcal P$ are also antipodal.



* no three points in $\mathscr P$ are collinear.

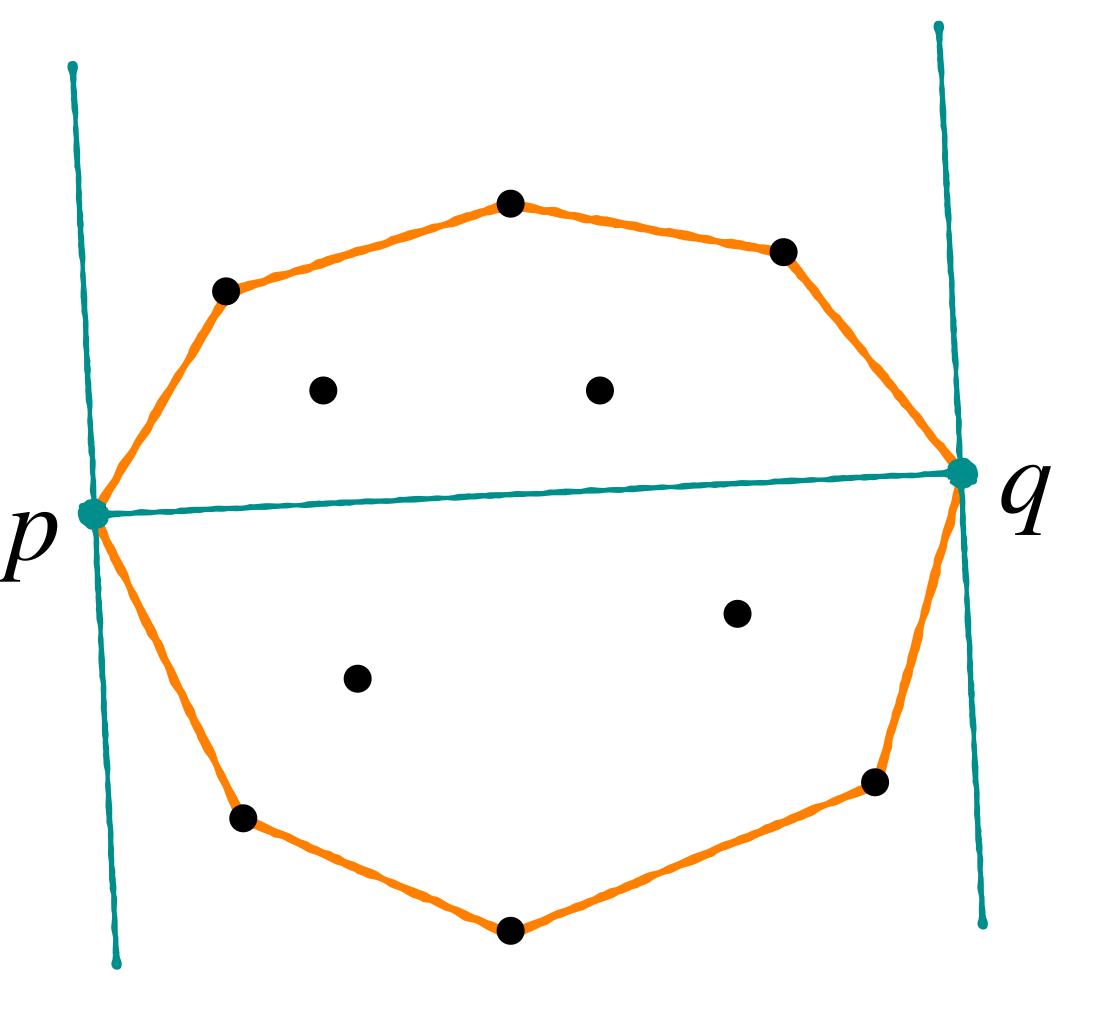
Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.

Definition. Two points $p,q\in \mathcal{P}$ are **antipodal** if there Pexist parallel supporting lines through them which touch, but do not cut the convex hull.

Lemma E3.2 All farthest pairs of \mathcal{P} are also antipodal.

Take 10 minutes to think about this and discuss:)



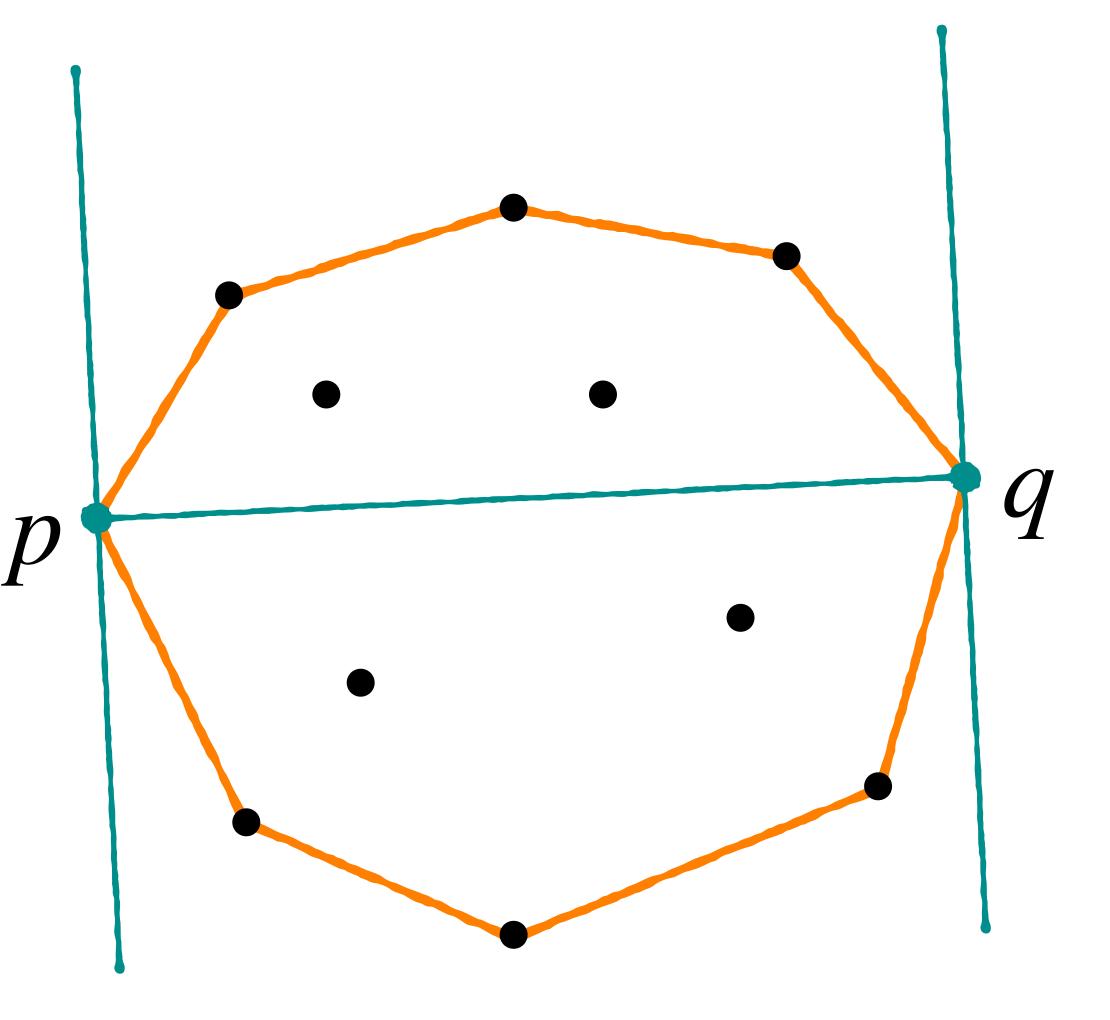
* no three points in \mathscr{P} are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.

Definition. Two points $p,q\in \mathscr{P}$ are **antipodal** if there Pexist parallel supporting lines through them which touch, but do not cut the convex hull.

Lemma E3.2 All farthest pairs of $\mathcal P$ are also antipodal.



* no three points in \mathscr{P} are collinear.

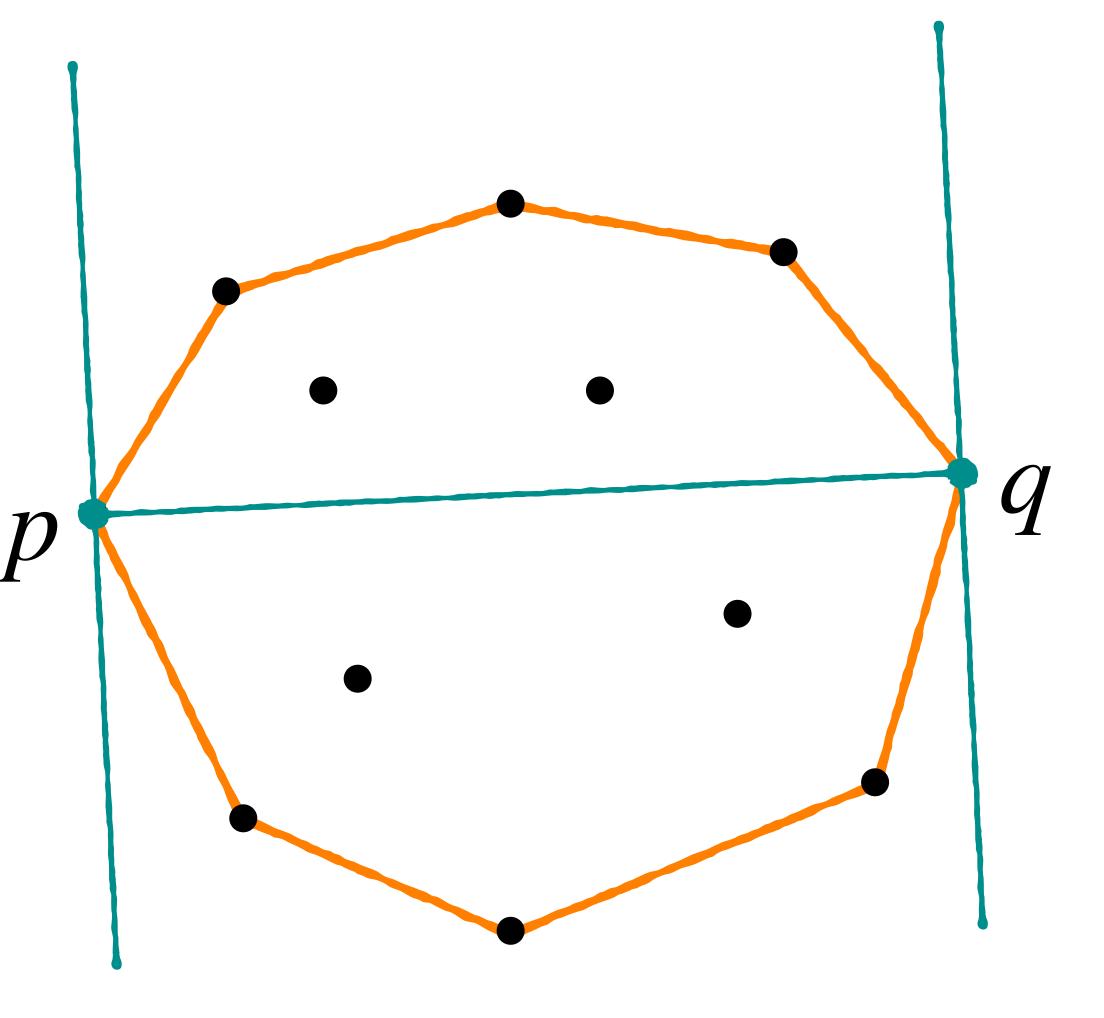
Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Lemma E3.1 All farthest pairs of \mathscr{P} consist of two vertices of the convex hull $conv(\mathcal{P})$.

Definition. Two points $p,q\in \mathscr{P}$ are **antipodal** if there Pexist parallel supporting lines through them which touch, but do not cut the convex hull.

Lemma E3.2 All farthest pairs of $\mathcal P$ are also antipodal.

Lemma E3.3 There are $\mathcal{O}(n)$ antipodal pairs in \mathcal{P} .



* no three points in \mathscr{P} are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

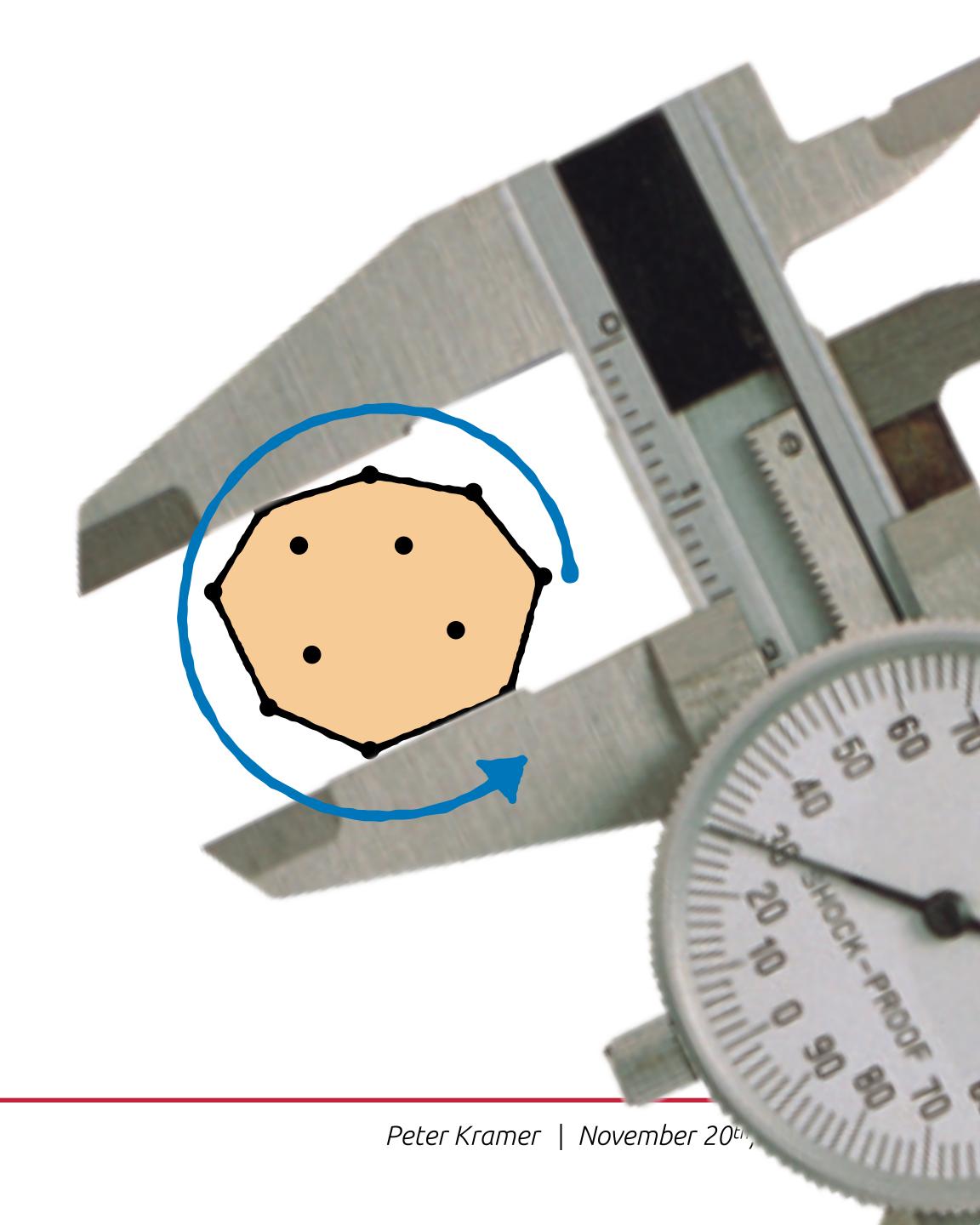
Theorem E3.4 All farthest pairs and the diameter of ${\mathscr P}$ can be computed in $\mathcal{O}(n \log n)$.

Idea: Compute the convex hull of \mathcal{P} , then enumerate all antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

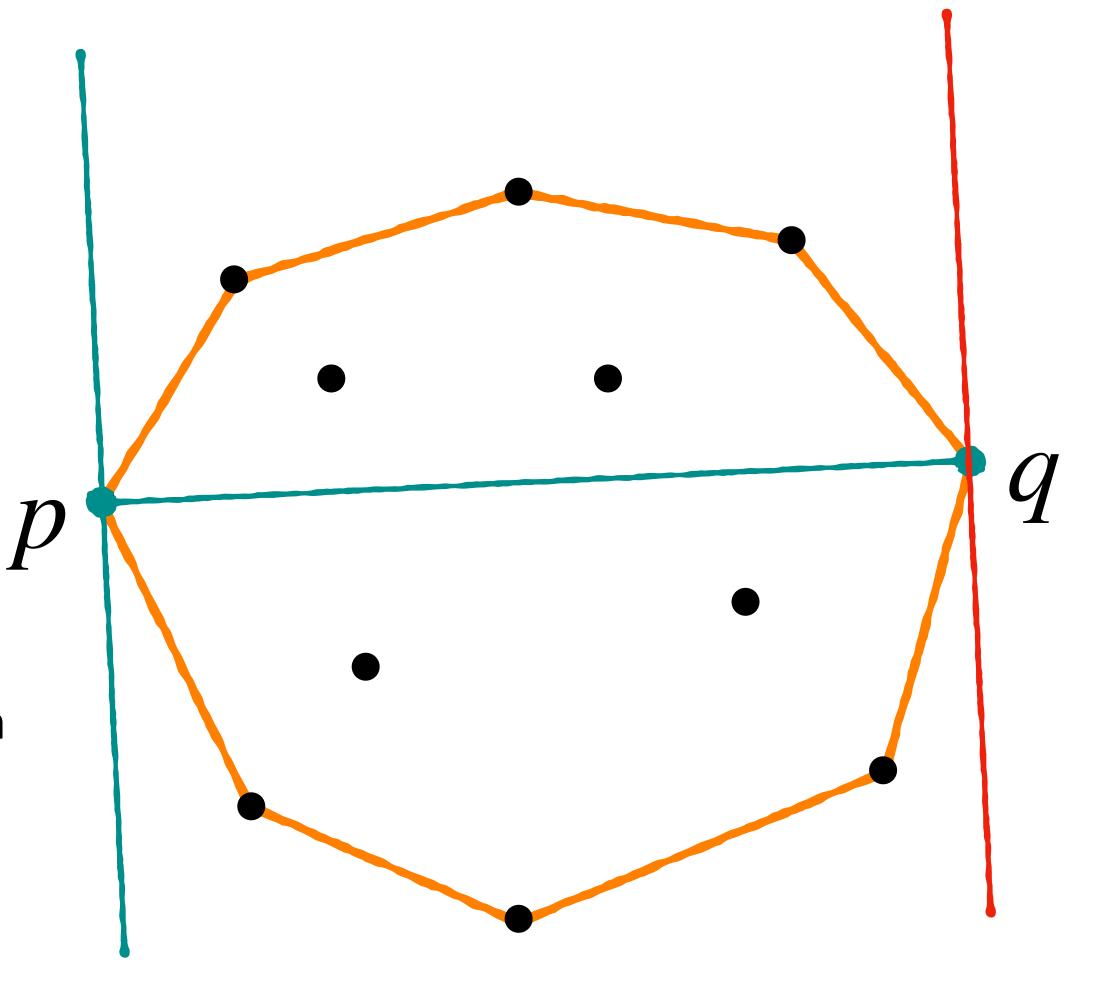
Idea: Compute the convex hull of \mathcal{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.



Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathcal{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

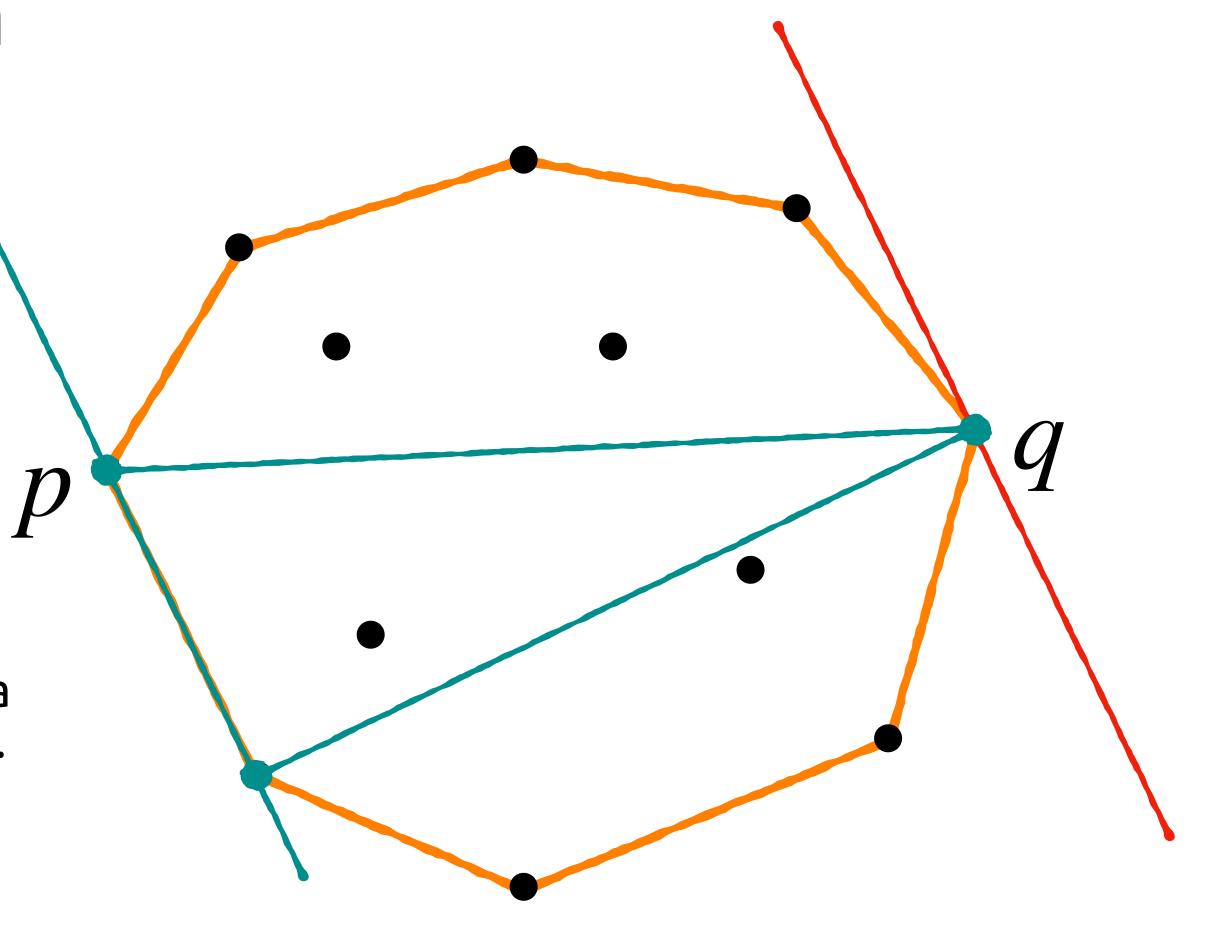


* no three points in $\mathcal P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathcal{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.



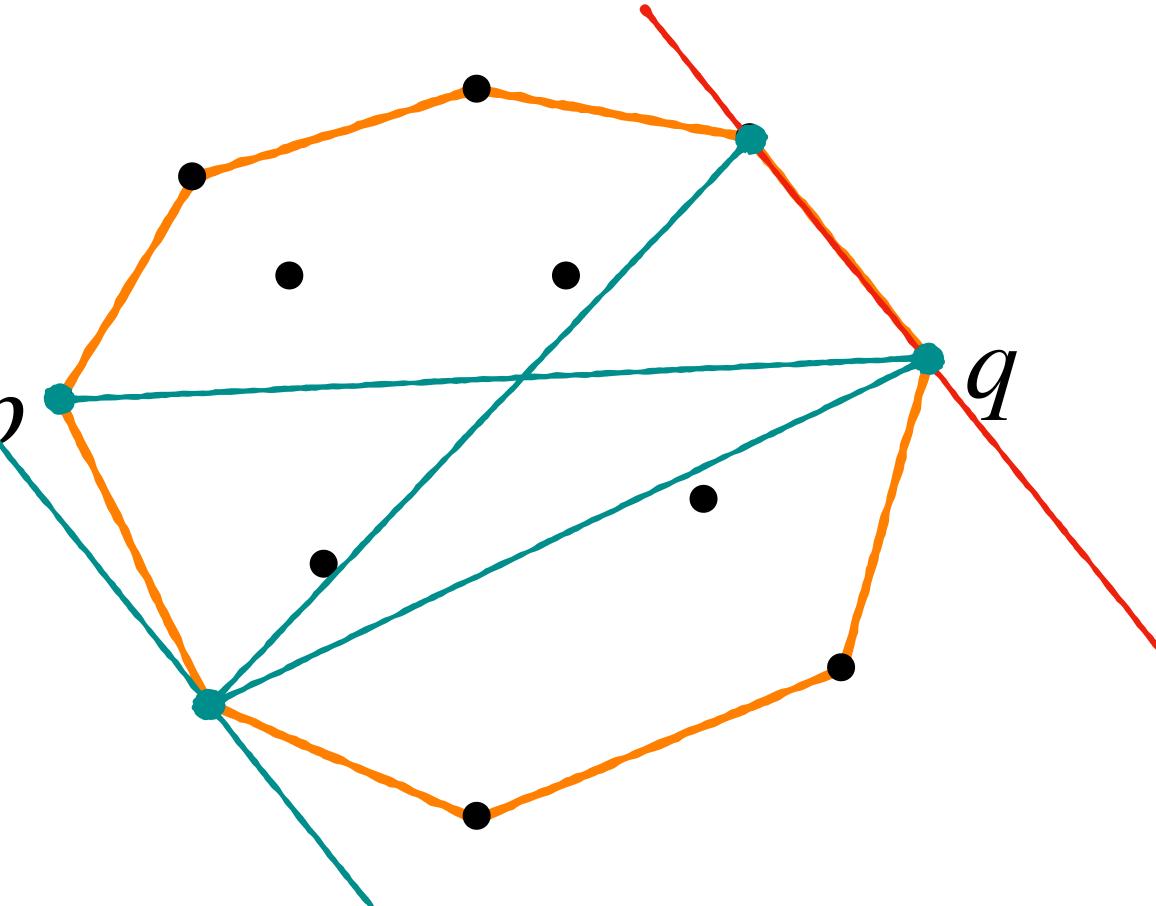
* no three points in $\mathscr P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathscr{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

Whenever one of the lines "hits" a vertex, we've found a pair. We just go all the way around and output the pairs.

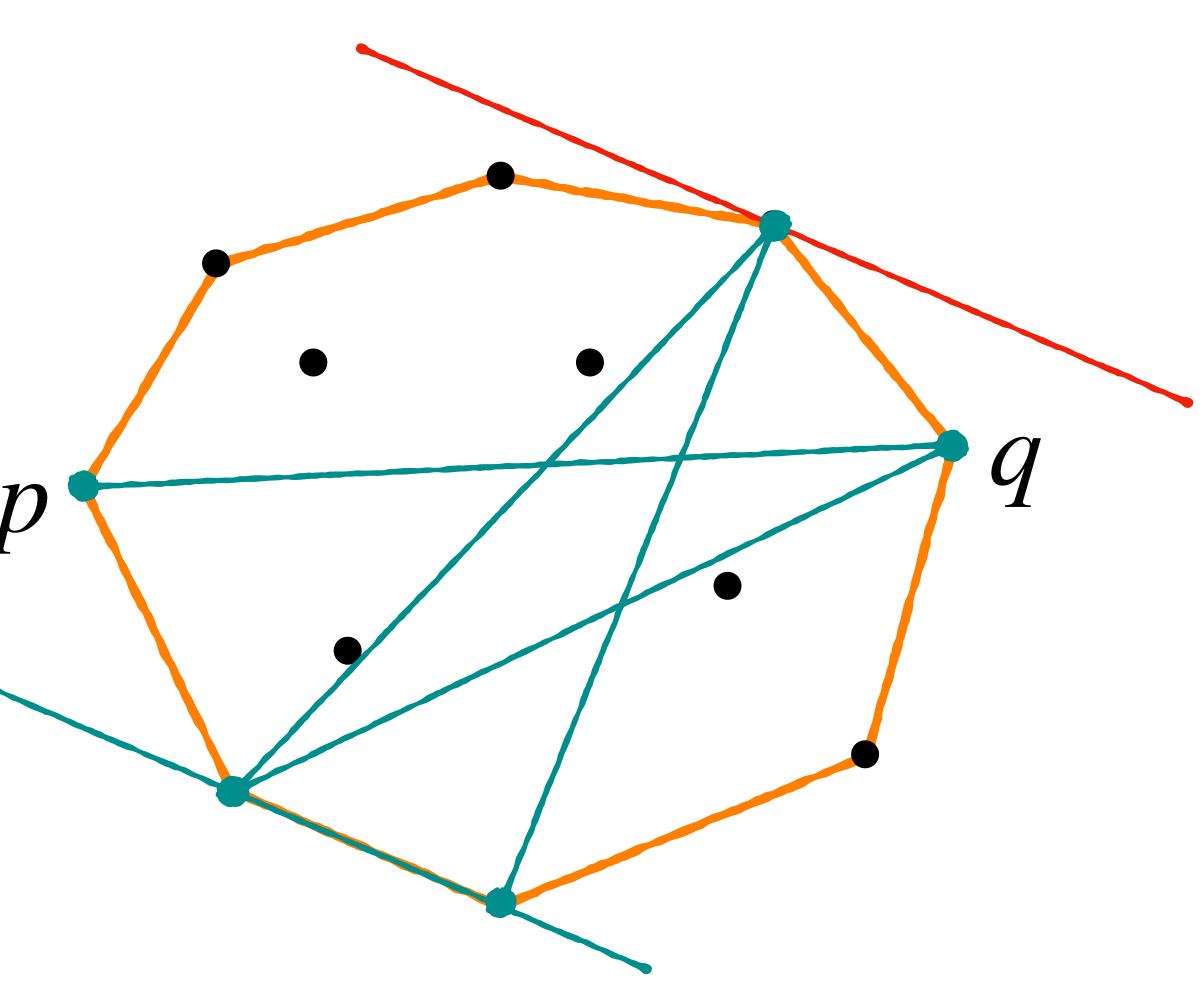


* no three points in $\mathcal P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathcal{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

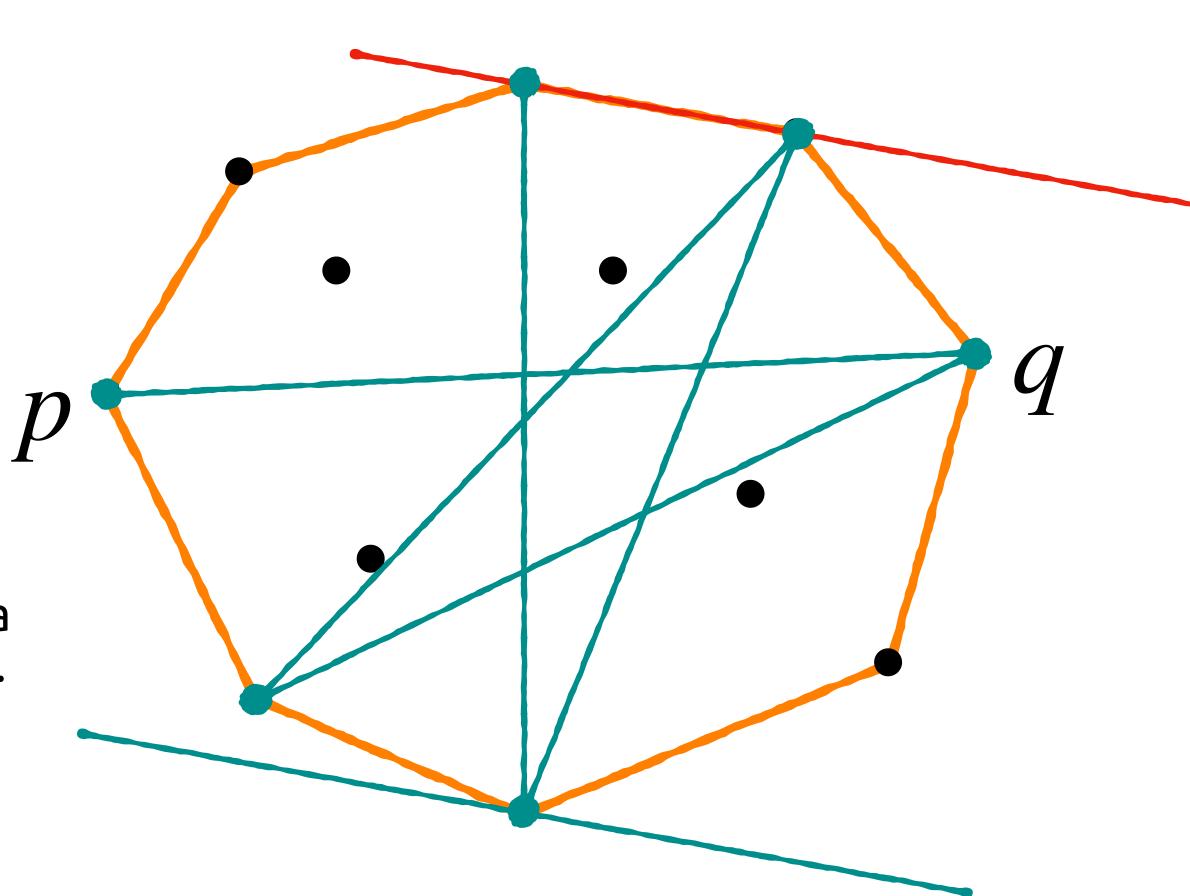


* no three points in $\mathcal P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathcal{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.



* no three points in $\mathcal P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathscr{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

* no three points in $\mathcal P$ are collinear.

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathscr{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

* no three points in $\mathcal P$ are collinear.

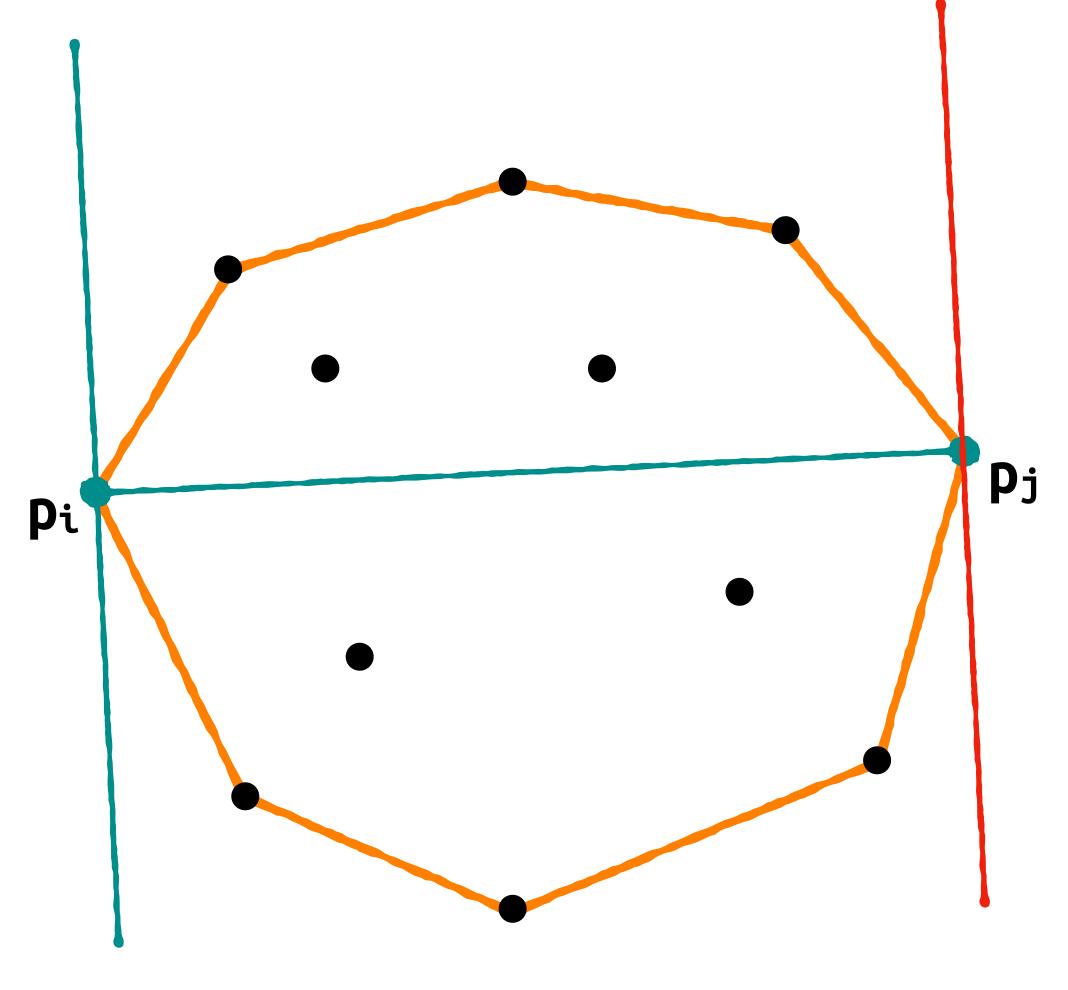
Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Idea: Compute the convex hull of \mathscr{P} , then enumerate **all** antipodal pairs and track the farthest by "rotating" parallel supporting lines around the hull, like calipers.

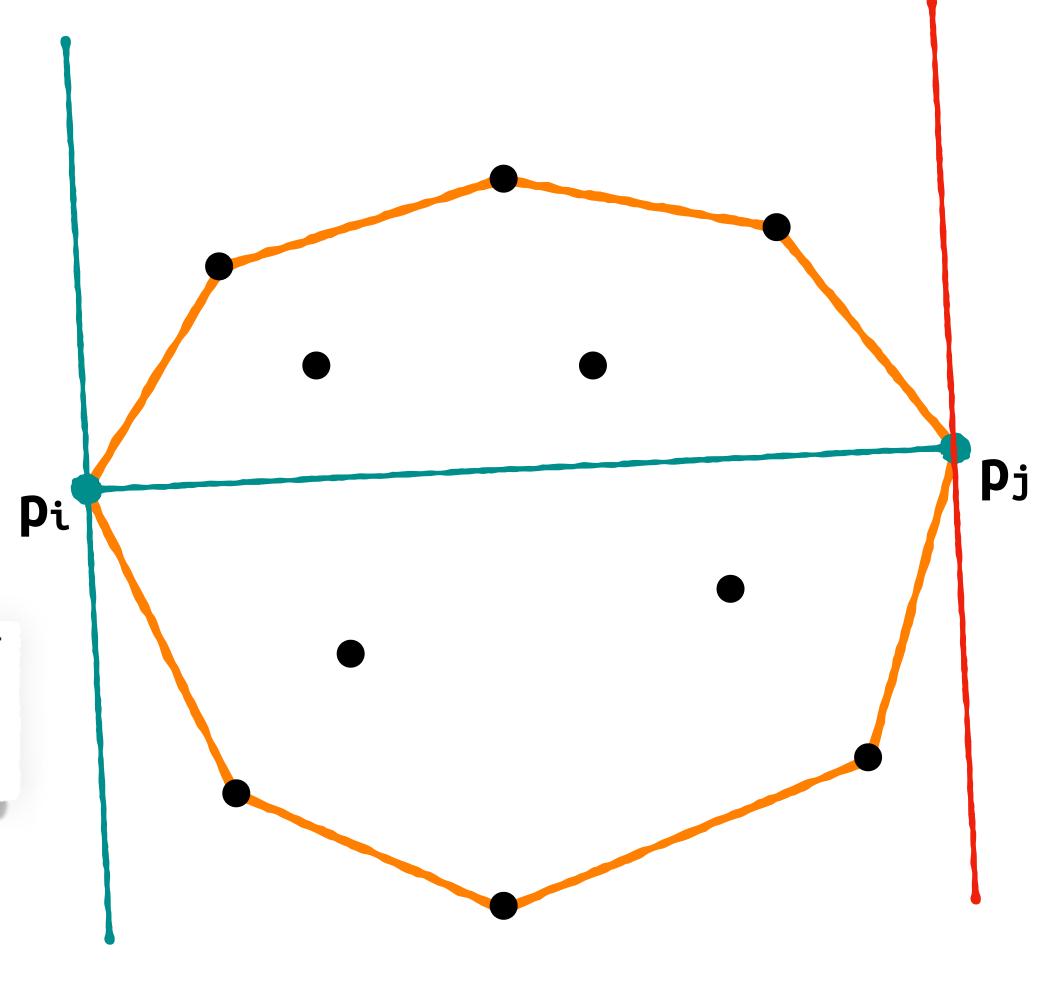
* no three points in $\mathcal P$ are collinear.

```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p<sub>i</sub>,p<sub>j</sub>) is antipodal
   let diameter = 0
   while (j != n) {
       // Which edge do we hit?
       if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
           ++j
       } else {
           ++i
       // pi,pj is a farthest pair!
       diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```



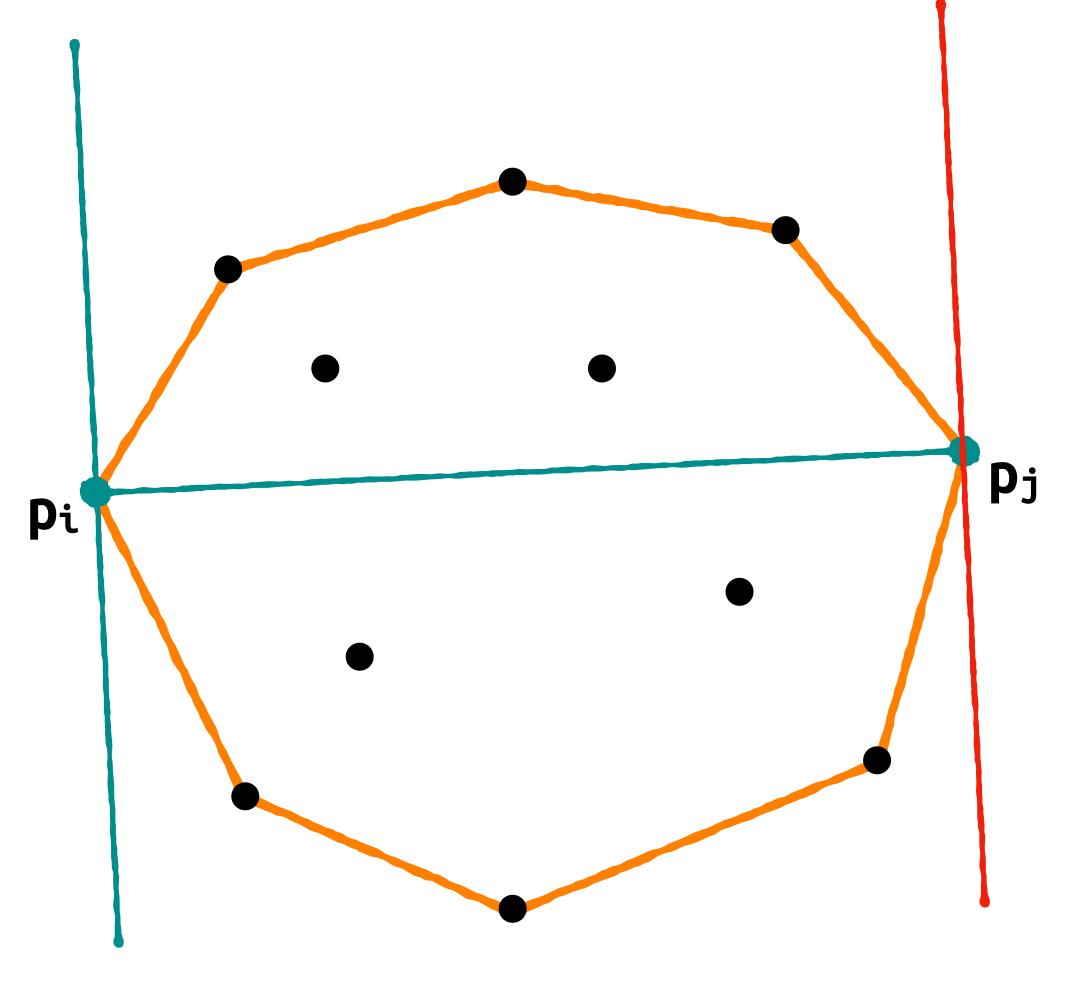
* no three points in $\mathscr P$ are collinear.

```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p_i,p_j) is antipodal
    let diameter = 0
   while (j != n) {
       // Which edge do we hit?
       if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j))  {
            ++j A(\triangle(p,q,r)) > 0 \Leftrightarrow p,q,r oriented in counterclockwise (CCW) order
      } else { ++i \qquad \bullet \qquad A(\triangle(p,q,r)) \begin{cases} >0 \\ =0 \\ <0 \end{cases} \Leftrightarrow p,q,r \begin{cases}
                                                                        Left turn
                                                                       collinear
                                                                       Right turn
        // pi,pj is a farthest pair!
       diameter = max(diameter, d(p_i,p_j))
        // [... edge case handling for parallel lines: Up to 3 more pairs]
    return diameter
```



* no three points in $\mathcal P$ are collinear.

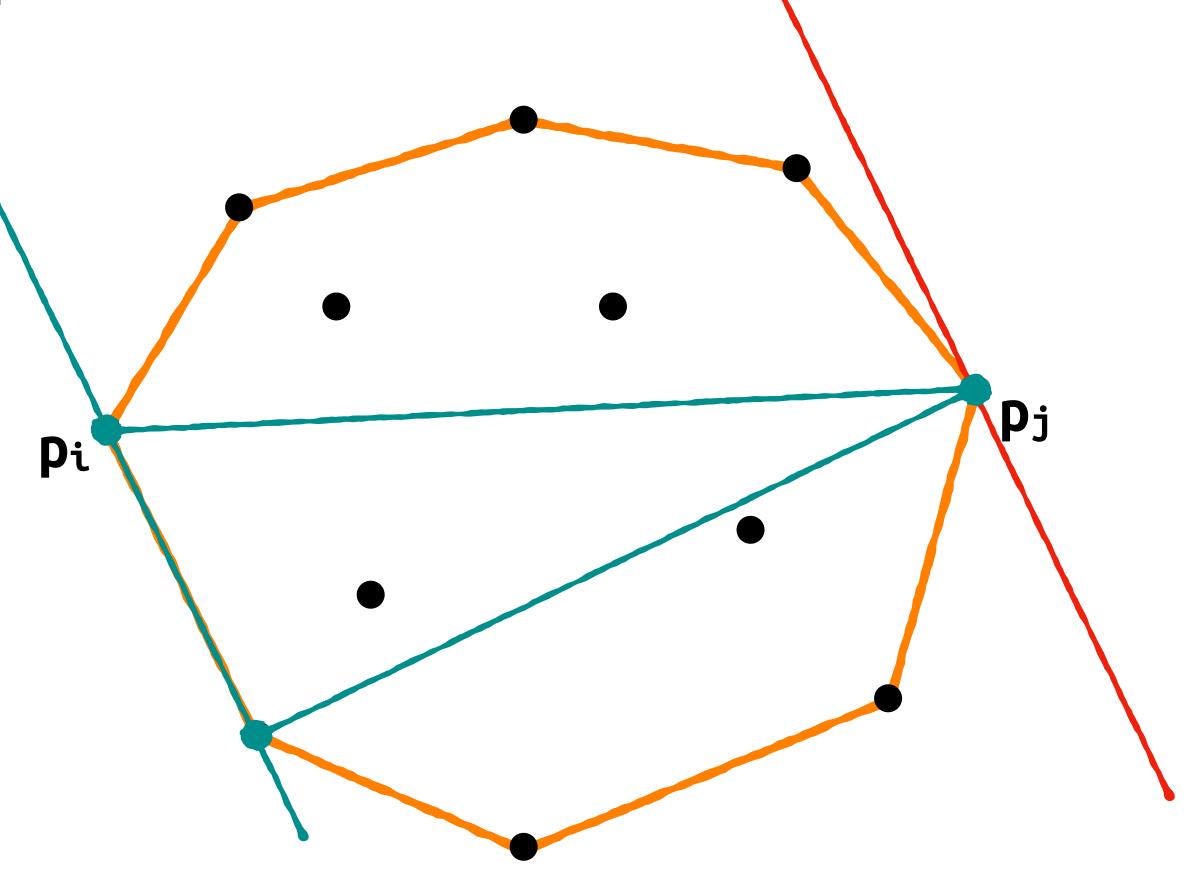
```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p<sub>i</sub>,p<sub>j</sub>) is antipodal
   let diameter = 0
   while (j != n) {
       // Which edge do we hit?
       if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
           ++j
       } else {
           ++i
       // pi,pj is a farthest pair!
       diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```



* no three points in $\mathscr P$ are collinear.

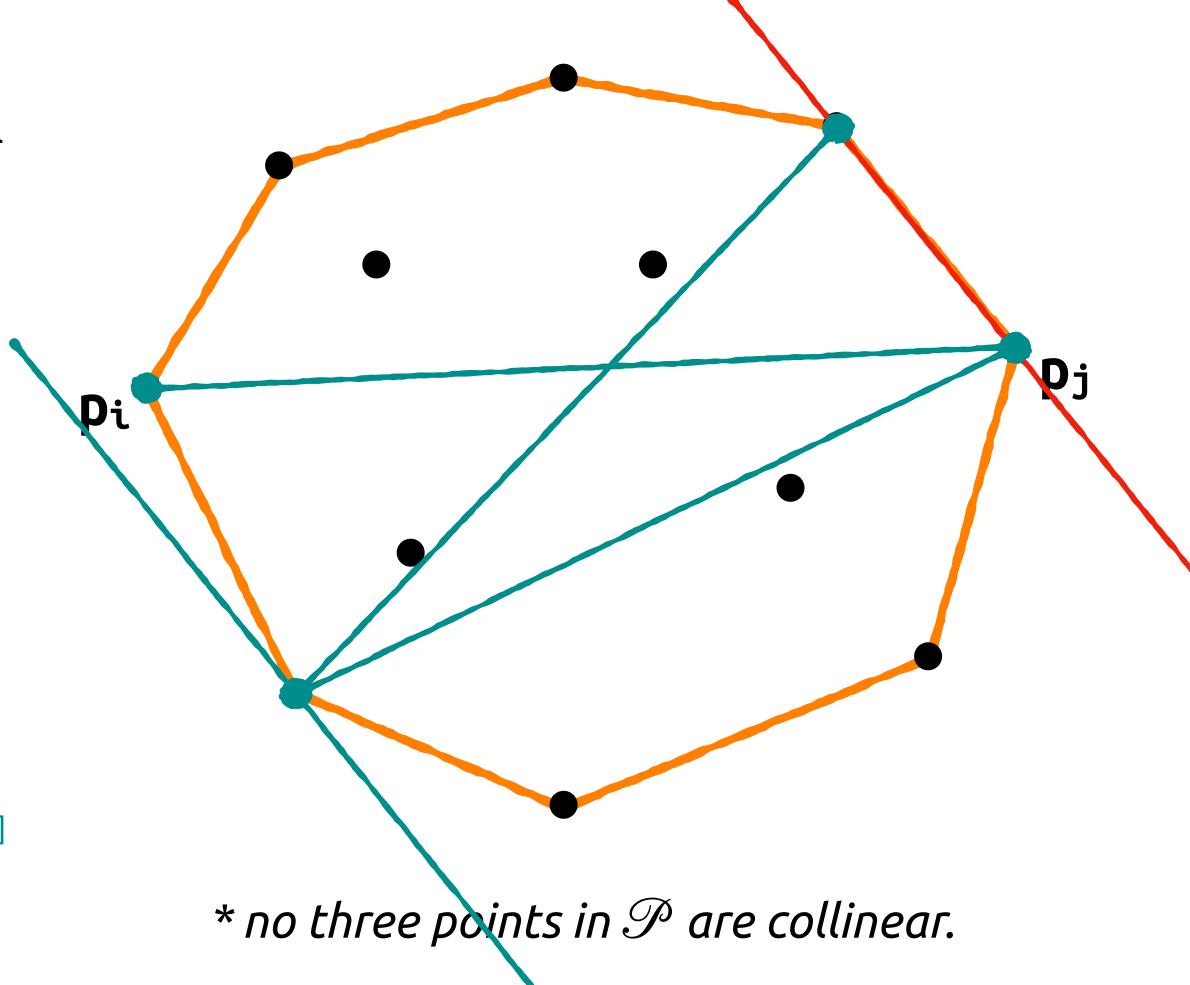
Theorem E3.4 All farthest pairs and the diameter of of n points \mathscr{P} in general position in the Euclidean plane \mathbb{R}^2 can be computed in $\mathcal{O}(n \log n)$.

```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p_i,p_j) is antipodal
   let diameter = 0
   while (j != n) {
      // Which edge do we hit?
      if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
          ++j
      } else {
          ++i
       // pi,pj is a farthest pair!
      diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```

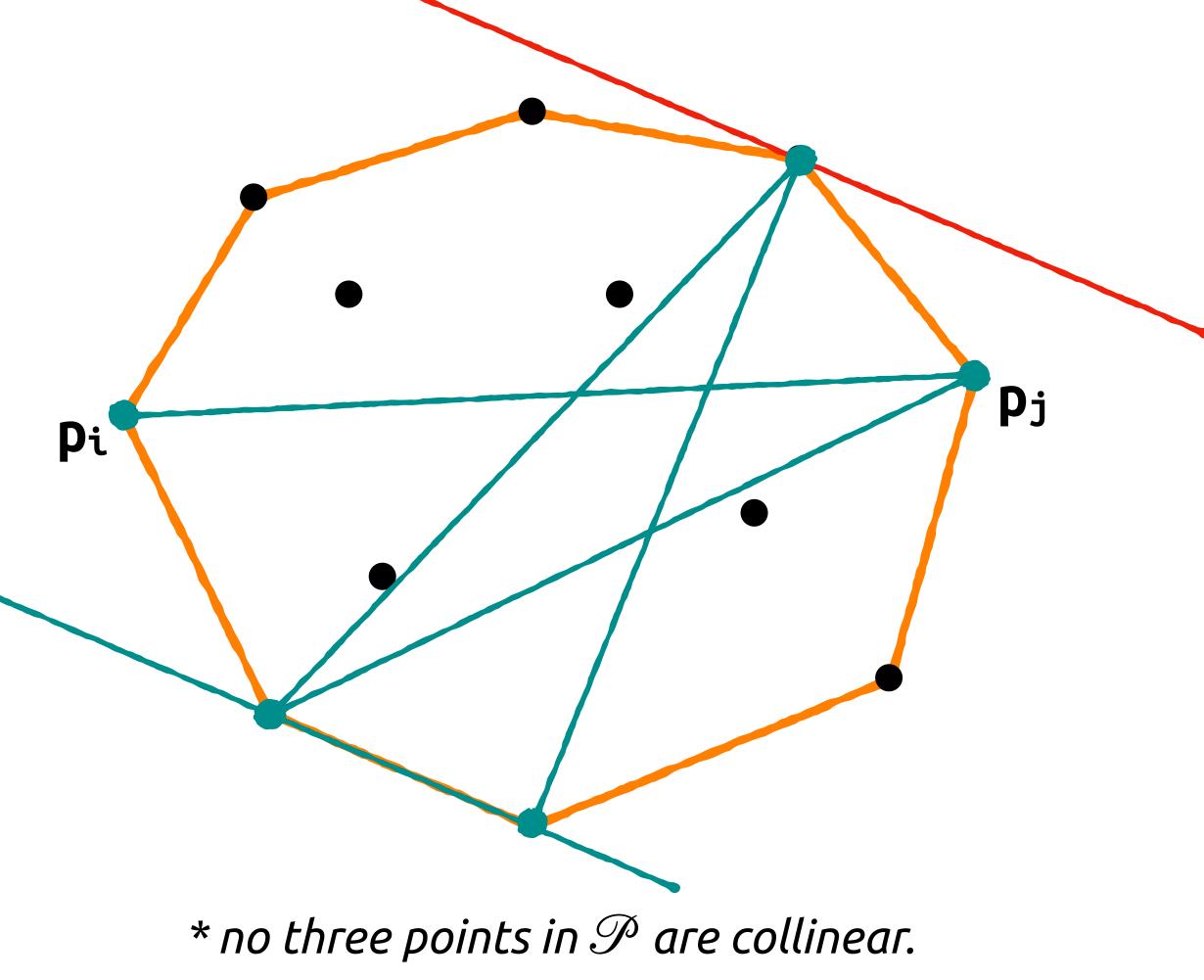


* no three points in $\mathscr P$ are collinear.

```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p_i,p_j) is antipodal
   let diameter = 0
   while (j != n) {
      // Which edge do we hit?
      if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
          ++j
       } else {
          ++i
       // pi,pj is a farthest pair!
      diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```

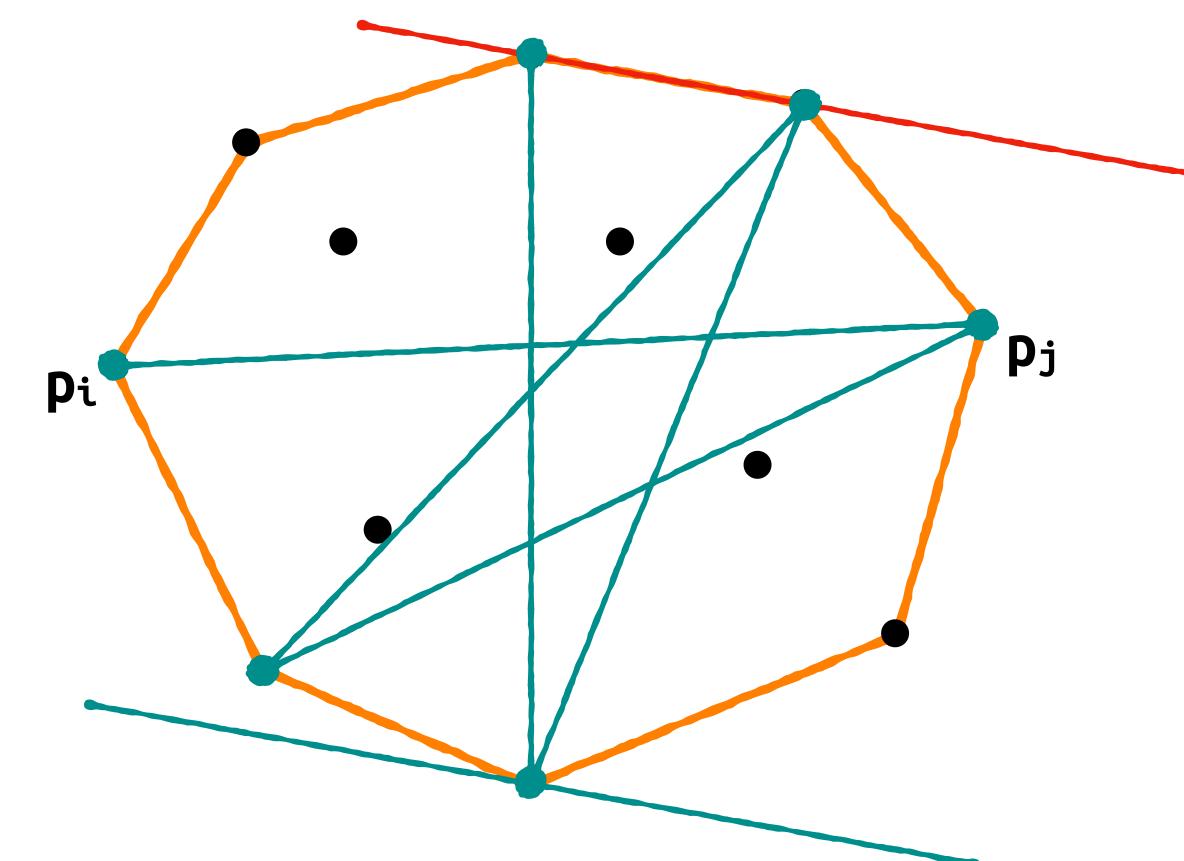


```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p_i,p_j) is antipodal
   let diameter = 0
   while (j != n) {
      // Which edge do we hit?
      if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
          ++j
      } else {
          ++i
       // pi,pj is a farthest pair!
      diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```



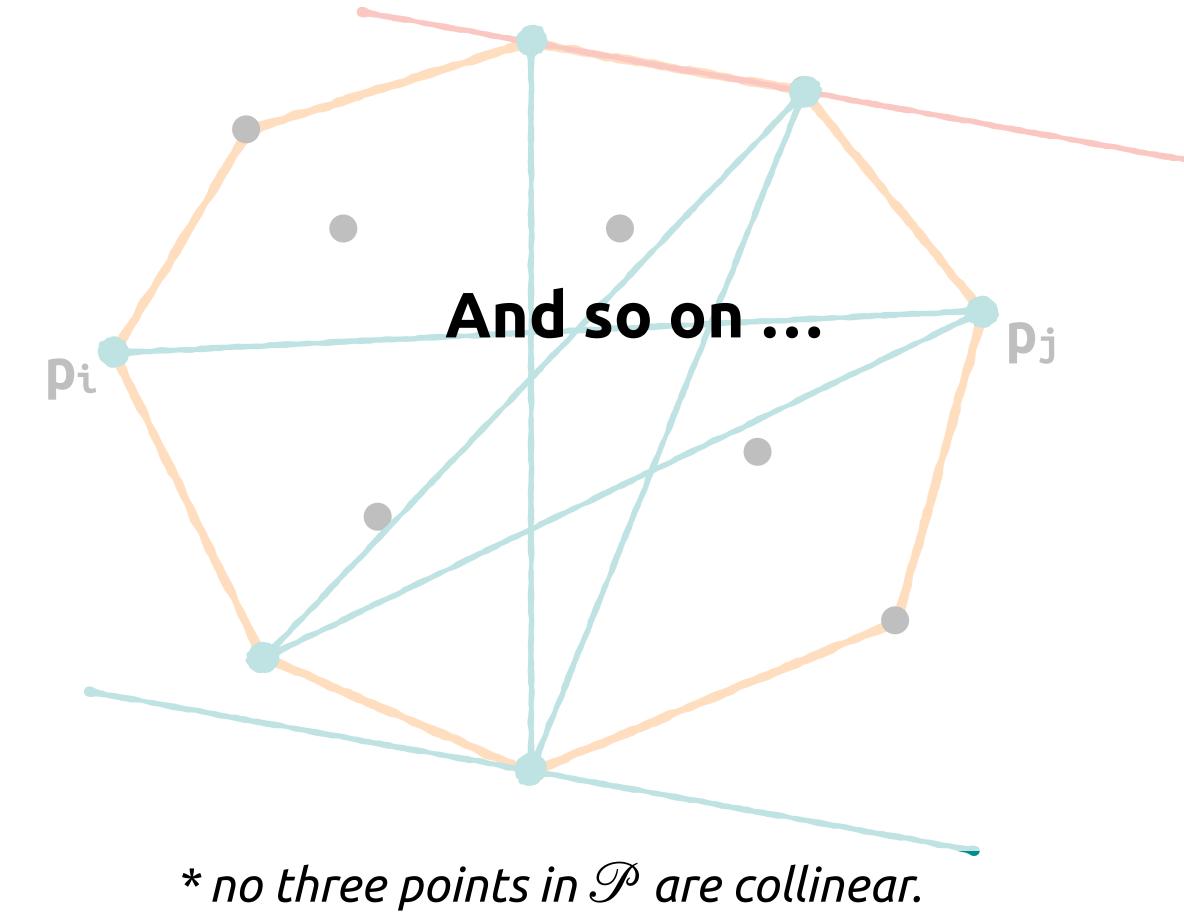
Theorem E3.4 All farthest pairs and the diameter of of n points \mathscr{P} in general position in the Euclidean plane \mathbb{R}^2 can be computed in $\mathcal{O}(n \log n)$.

```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p_i,p_j) is antipodal
   let diameter = 0
   while (j != n) {
      // Which edge do we hit?
      if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
          ++j
      } else {
          ++i
       // pi,pj is a farthest pair!
      diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```



* no three points in $\mathscr P$ are collinear.

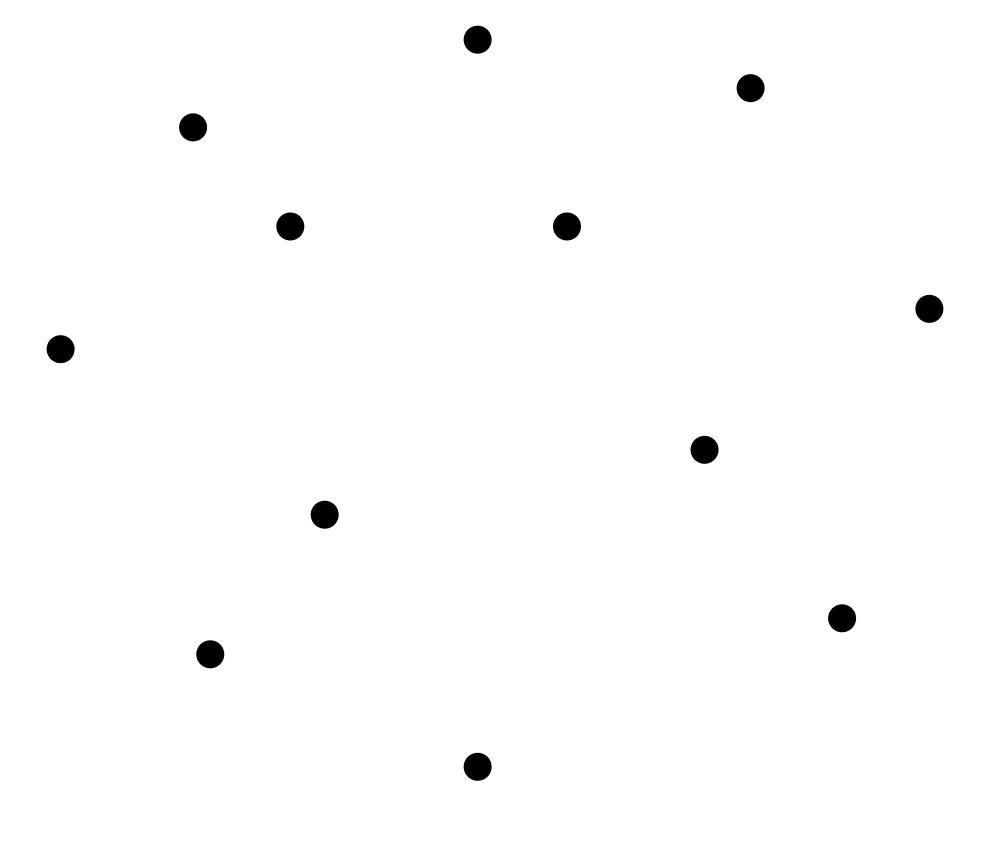
```
Diameter(n: number, (p_1, ..., p_n): convex_hull) : number {
   // Linear probing / brute force — implicitly, i=1 find first (i,j) such that (p<sub>i</sub>,p<sub>j</sub>) is antipodal
   let diameter = 0
   while (j != n) {
       // Which edge do we hit?
       if A(\Delta(p_i, p_{i+1}, p_{j+1})) > A(\Delta(p_i, p_{i+1}, p_j)) {
           ++j
       } else {
           ++i
       // pi,pj is a farthest pair!
       diameter = max(diameter, d(p_i,p_j))
       // [... edge case handling for parallel lines: Up to 3 more pairs]
   return diameter
```



Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

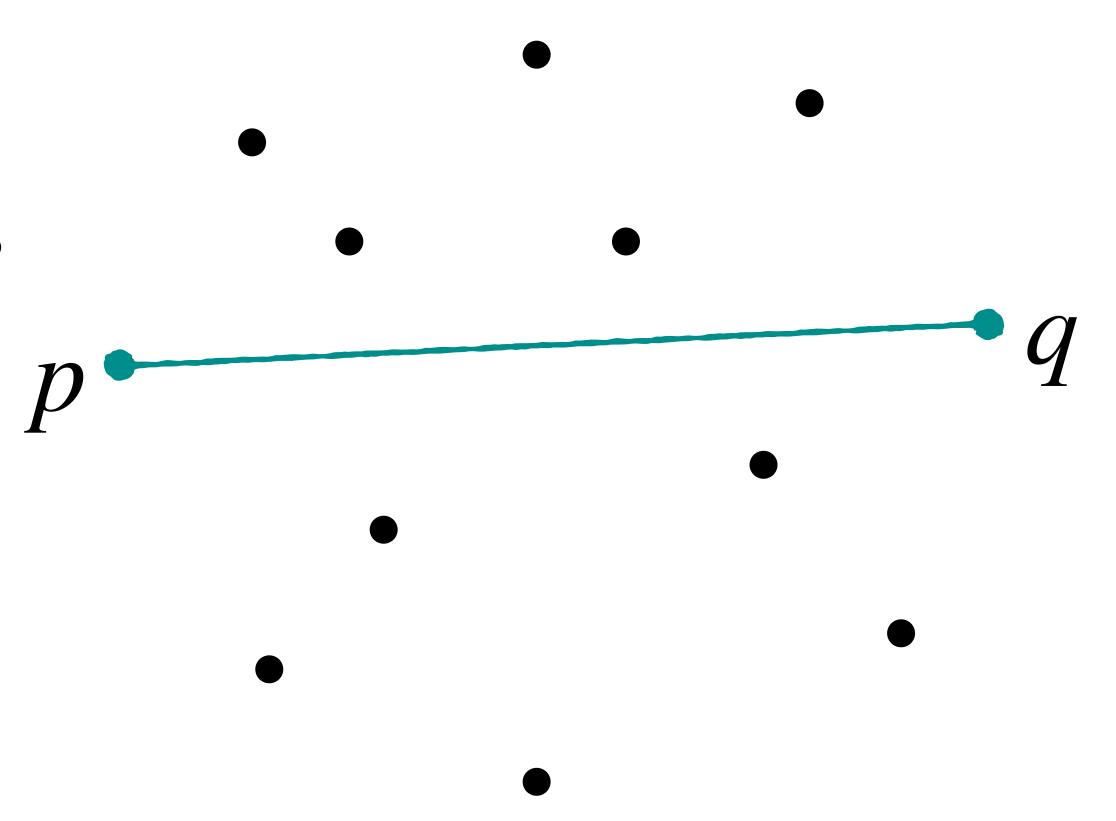


* no three points in ${\mathscr P}$ are collinear.

Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathcal{O}(n \log n)$.



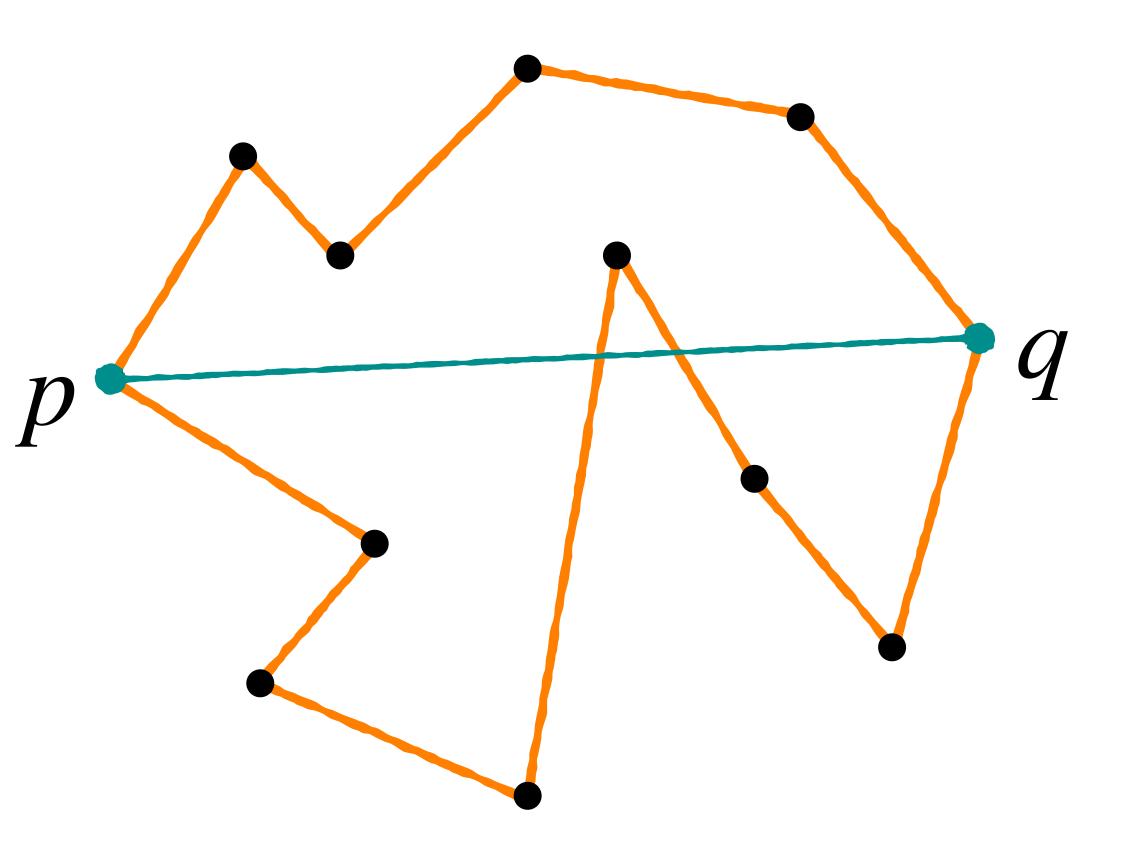
* no three points in $\mathcal P$ are collinear.

Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Theorem E3.5 All farthest pairs and the diameter of an P n-vertex simple polygon P can be computed in ...?



* no three points in $\mathcal P$ are collinear.

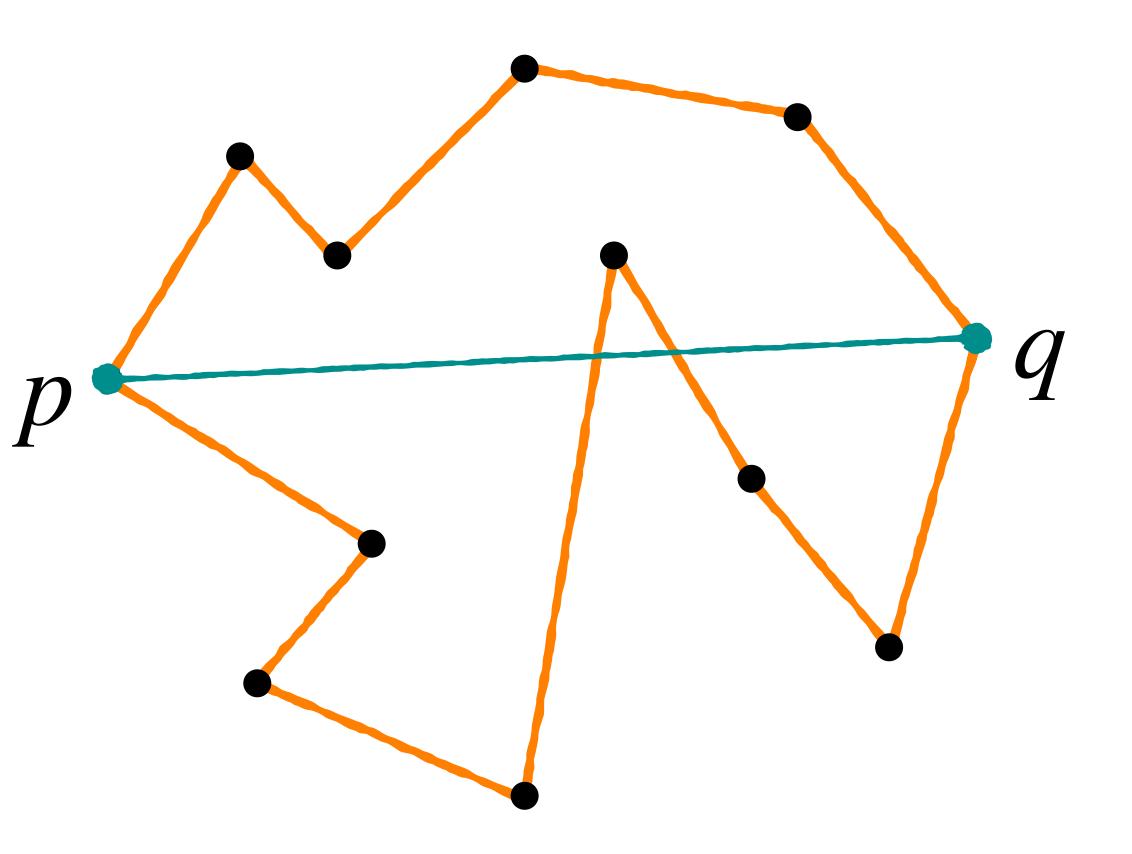
Farthest point pairs Convex hull

Let \mathscr{P} be set of n points in the Euclidean plane \mathbb{R}^2 , in general position*.

Theorem E3.4 All farthest pairs and the diameter of \mathscr{P} can be computed in $\mathscr{O}(n \log n)$.

Theorem E3.5 All farthest pairs and the diameter of an P n-vertex simple polygon P can be computed in ...?

Crucial: Convex hull of P faster than $\Omega(n \log n)$?



* no three points in $\mathcal P$ are collinear.

Rotating Calipers Algorithm Michael Shamos, 1978

Distances [edit

- Diameter (maximum width) of a convex polygon^{[6][7]}
- Width (minimum width) of a convex polygon^[8]
- Maximum distance between two convex polygons^{[9][10]}
- Minimum distance between two convex polygons^{[11][12]}
- Widest empty (or separating) strip between two convex polygons (a simplified low-dimensional variant of a problem arising in support vector machine based machine learning)
- Grenander distance between two convex polygons^[13]
- Optimal strip separation (used in medical imaging and solid modeling)^[14]

Bounding boxes [edit]

- Minimum area oriented bounding box
- Minimum perimeter oriented bounding box

Triangulations [edit]

- Onion triangulations
- Spiral triangulations
- Quadrangulation
- Nice triangulationArt gallery problem
- Wedge placement optimization problem^[15]

Multi-polygon operations [edit]

- Union of two convex polygons
- Common tangents to two convex polygons
- Intersection of two convex polygons^[16]
- Critical support lines of two convex polygons
- Vector sums (or Minkowski sum) of two convex polygons^[17]
- Convex hull of two convex polygons

Traversals [edit]

- Shortest transversals^{[18][19]}
- Thinnest-strip transversals^[20]

Others [edit]

- Non parametric decision rules for machine learned classification^[21]
- Aperture angle optimizations for visibility problems in computer vision^[22]
- Finding longest cells in millions of biological cells^[23]
- Comparing precision of two people at firing range
- · Classify sections of brain from scan images

Rotating Calipers Algorithm Michael Shamos, 1978

- Diameter (maximum width) of a convex polygon^{[6][7]}
- Width (minimum width) of a convex polygon^[8]
- Diameter (maximum width) of a convex polygon^{[6][7]}
- Maximum distance between two convex polygons^{[9][10]}
- Minimum distance between two convex polygons^{[11][12]}

Triangulations [edit]

- Onion triangulations
- Spiral triangulations
- Quadrangulation
- Nice triangulation
- Art gallery problem
- Wedge placement optimization problem^[15]

Multi-polygon operations [edit]

- Union of two convex polygons
- Common tangents to two convex polygons
- Intersection of two convex polygons^[16]
- Critical support lines of two convex polygons
- Vector sums (or Minkowski sum) of two convex polygons^[17]
- Convex hull of two convex polygons

Traversals [edit]

- Shortest transversals^{[18][19]}
- Thinnest-strip transversals^[20]

Others [edit]

- Non parametric decision rules for machine learned classification^[21]
- Aperture angle optimizations for visibility problems in computer vision^[22]
- Finding longest cells in millions of biological cells^[23]
- Comparing precision of two people at firing range
- Classify sections of brain from scan images

Homework Sheet #2

Computational Geometry – Sheet 2
Prof. Dr. Sándor P. Fekete
Peter Kramer

Winter 2025/2026

Due 04.12.2024 Discussion 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338th before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

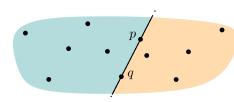
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{\,r\in\mathcal{P}\quad |\quad \operatorname{leftTurn}(p,q,r)=\mathtt{true}\,\}|=|\mathcal{P}|/2\pm1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

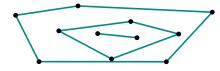
(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

(10 poi

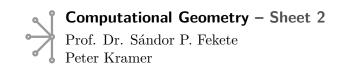
The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \Big(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \Big).$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

1/1



Due 04.12.2024
Discussion 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338© before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1 (Geometric Predicates)

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

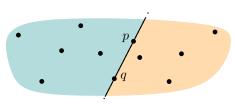
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{\,r\in\mathcal{P}\quad |\quad \operatorname{leftTurn}(p,q,r)=\mathtt{true}\,\}|=|\mathcal{P}|/2\pm1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

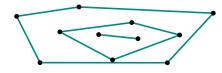
(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

(10 poin

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right)$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

_ ,_

Computational Geometry - Sheet 2

Prof. Dr. Sándor P. Fekete Peter Kramer

Two weeks!

Winter 2025/2026

Due 04.12.2024 **Discussion** 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338⁻⁻ before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

- You may change homework partners at any time. Grading is tracked individually, not by group.
- A total of 75 points across all sheets is sufficient for the coursework / Studienleistung.
- So far: 35 points, this sheet: 30 points

Computational Geometry – Sheet 2 Prof. Dr. Sándor P. Fekete Peter Kramer

Winter 2025/2026

Due 04.12.2024 **Discussion** 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338 before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

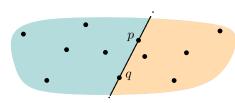
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{\,r\in\mathcal{P}\quad |\quad \mathrm{leftTurn}(p,q,r)=\mathtt{true}\,\}|=|\mathcal{P}|/2\pm1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

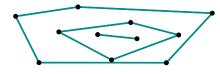
(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

(10 poin

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \ \delta \operatorname{conv} \Big(\mathcal{P} \setminus igcup_{j \in [0,i]} L_j \Big)$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

1/1

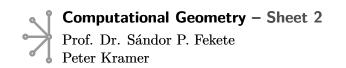
Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate that decides whether a given line segment \overline{pq} intersects a counterclockwise triangle $\triangle(u, v, w)$:

$$conv(p,q) \cap conv(u,v,w) = \varnothing ?$$

You may assume that each of the five points is unique and that no three points are collinear. Please explain your solution and briefly argue its correctness.



Due 04.12.2024 **Discussion** 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338 before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines □ of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is **not permitted**.

Exercise 1 (Geometric Predicates)

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u,v,w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

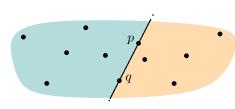
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{\,r\in\mathcal{P}\quad|\quad \mathrm{leftTurn}(p,q,r)=\mathtt{true}\,\}|=|\mathcal{P}|/2\pm1.$$



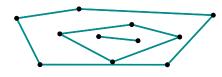
b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining $conv(P \setminus L_0)$, meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \Big(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \Big)$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

1/1

Exercise 1 (Geometric Predicates).

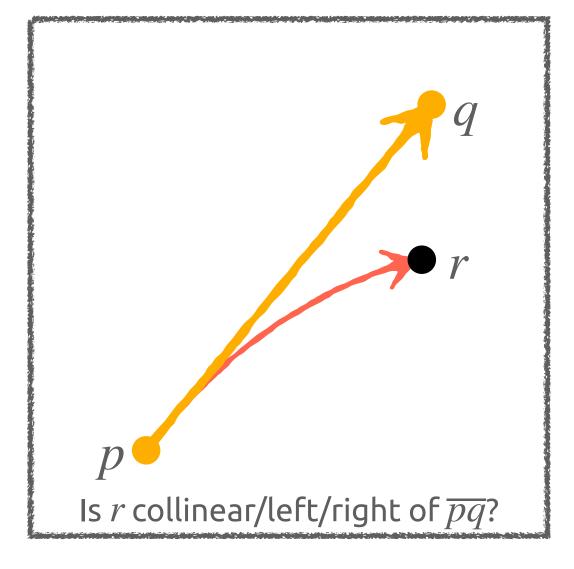
(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate that decides whether a given line segment \overline{pq} intersects a counterclockwise triangle $\triangle(u,v,w)$:

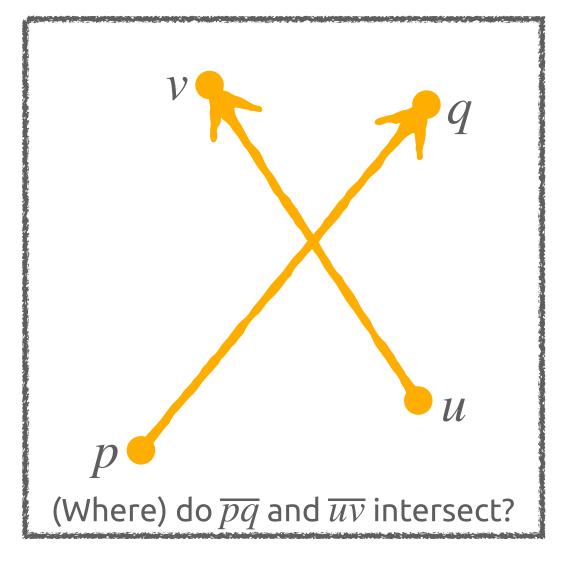
$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that each of the five points is unique and that no three points are collinear. Please explain your solution and briefly argue its correctness.

Point-Line Test



Intersection Test



Computational Geometry – Sheet 2 Prof. Dr. Sándor P. Fekete Peter Kramer

Winter 2025/2026

Due 04.12.2024
Discussion 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338© before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

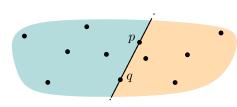
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{ r \in \mathcal{P} \mid \text{ leftTurn}(p,q,r) = \texttt{true} \}| = |\mathcal{P}|/2 \pm 1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

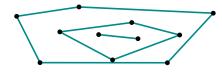
(Hint: Start with **b**), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

(10 poin

The *convex layers* of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (*layers*). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right)$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

1/1

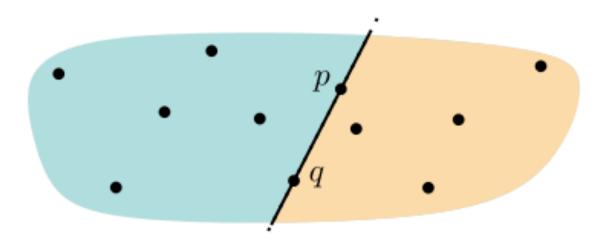
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

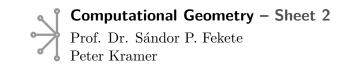
a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{r \in \mathcal{P} \mid \text{leftTurn}(p,q,r) = \texttt{true}\}| = |\mathcal{P}|/2 \pm 1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)



Due 04.12.2024 **Discussion** 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of 12338 before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is **not permitted**.

Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

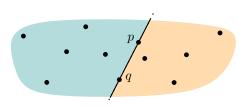
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{ r \in \mathcal{P} \mid \text{ leftTurn}(p,q,r) = \texttt{true} \}| = |\mathcal{P}|/2 \pm 1.$$



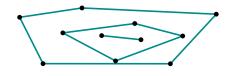
b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

(Hint: Start with b), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining $conv(P \setminus L_0)$, meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right)$$



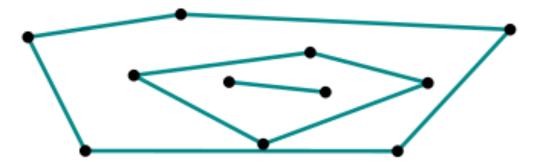
Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

Exercise 3 (Convex layers).

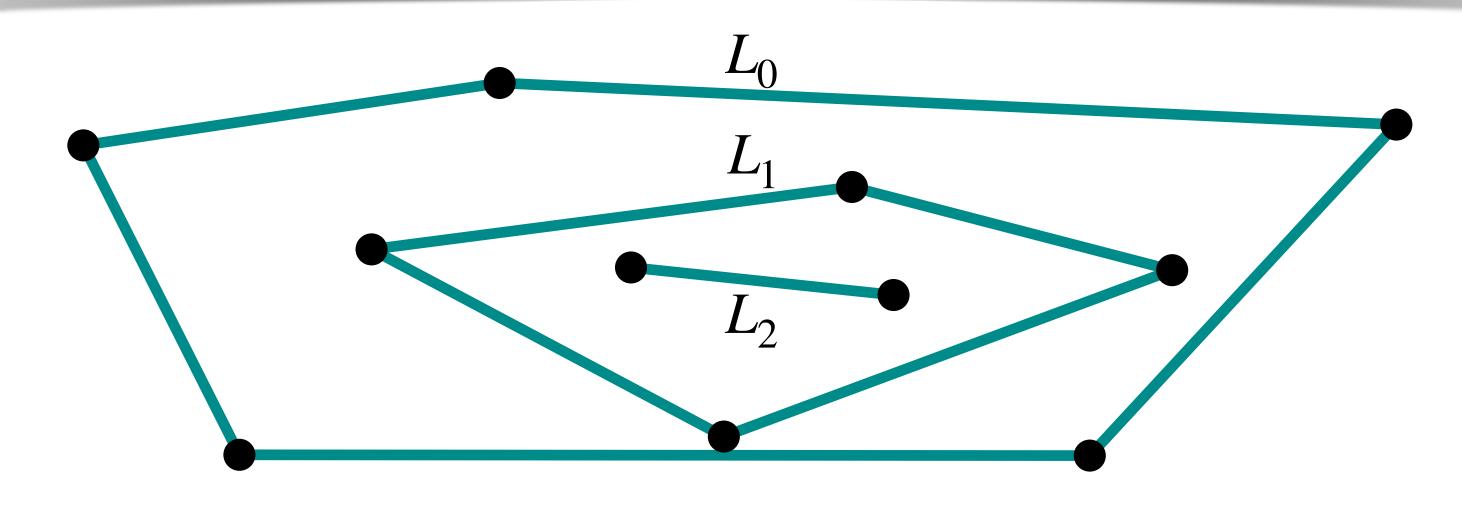
(10 points)

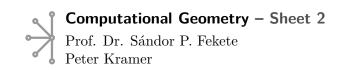
The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining $conv(P \setminus L_0)$, meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right).$$



Design an algorithm which computes the convex layers of n points in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.





Due 04.12.2024 Discussion 11.12.2024

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338© before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1 (Geometric Predicates).

(5 points)

Using only the leftTurn and rightTurn predicates from Lecture 1, design a geometric predicate for the Euclidean plane that decides whether a line segment \overline{pq} intersects a triangle $\triangle(u, v, w)$:

$$\operatorname{conv}(p,q) \cap \operatorname{conv}(u,v,w) = \varnothing ?$$

You may assume that (u, v, w) are in counterclockwise order and that no three points are collinear. Please explain your solution and briefly argue its correctness.

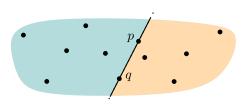
Exercise 2 (Partitioning Points).

(15 points)

Consider a set \mathcal{P} in the Euclidean plane \mathbb{R}^2 in general position according to Definition E1.

a) Prove that there exist points $p, q \in \mathcal{P}$ that divide \mathcal{P} evenly based on left-/rightTurn:

$$|\{\,r\in\mathcal{P}\quad |\quad \mathrm{leftTurn}(p,q,r)=\mathtt{true}\,\}|=|\mathcal{P}|/2\pm1.$$



b) Design an algorithm that finds p and q in $\mathcal{O}(n)$ time for $n = |\mathcal{P}|$.

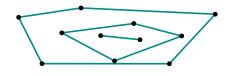
(Hint: Start with \mathbf{b}), a good correctness proof can also give you a constructive proof of existence.)

Exercise 3 (Convex layers).

(10 poin

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right)$$



Design an algorithm which computes the convex layers of n points in the Euclidean plane, in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.

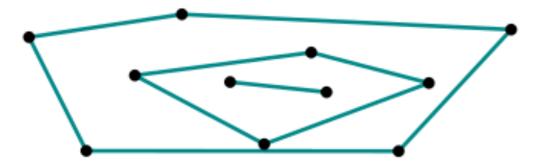
1/

Exercise 3 (Convex layers).

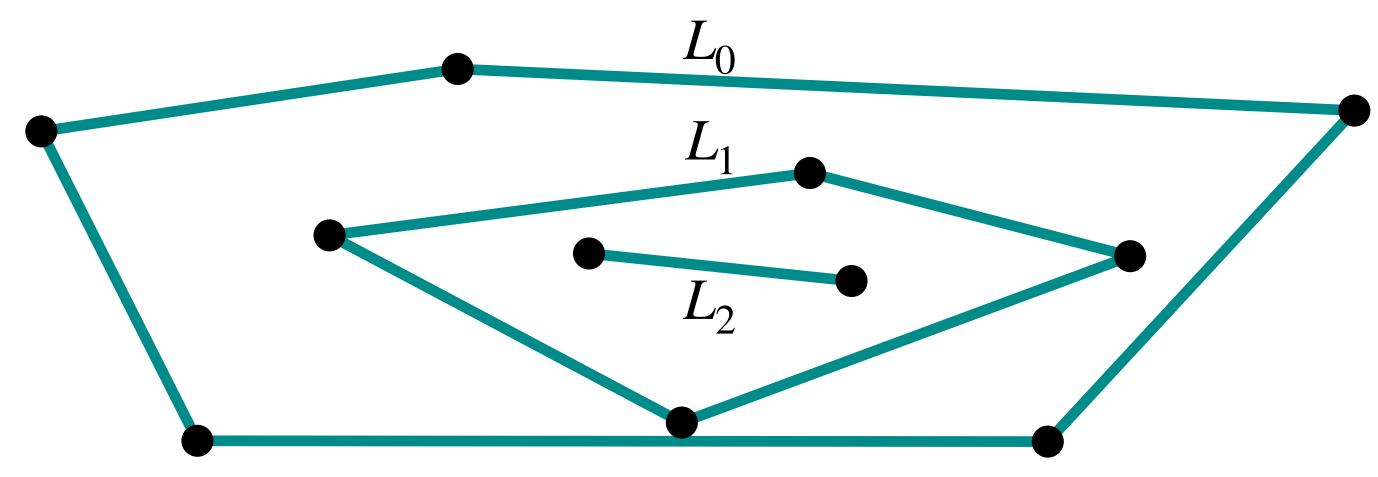
(10 points)

The convex layers of a finite point set \mathcal{P} in the plane correspond to a decomposition of \mathcal{P} into nested, convex polygons (layers). The outermost layer L_0 consists exactly of the extremal points defining conv(P). The next layer is recursively defined as points defining conv($P \setminus L_0$), meaning

$$L_i = \mathcal{P} \cap \delta \operatorname{conv} \left(\mathcal{P} \setminus \bigcup_{j \in [0,i]} L_j \right).$$



Design an algorithm which computes the convex layers of n points in $\mathcal{O}(n^2)$ time. Briefly argue its runtime and correctness.



Thank you for today:)