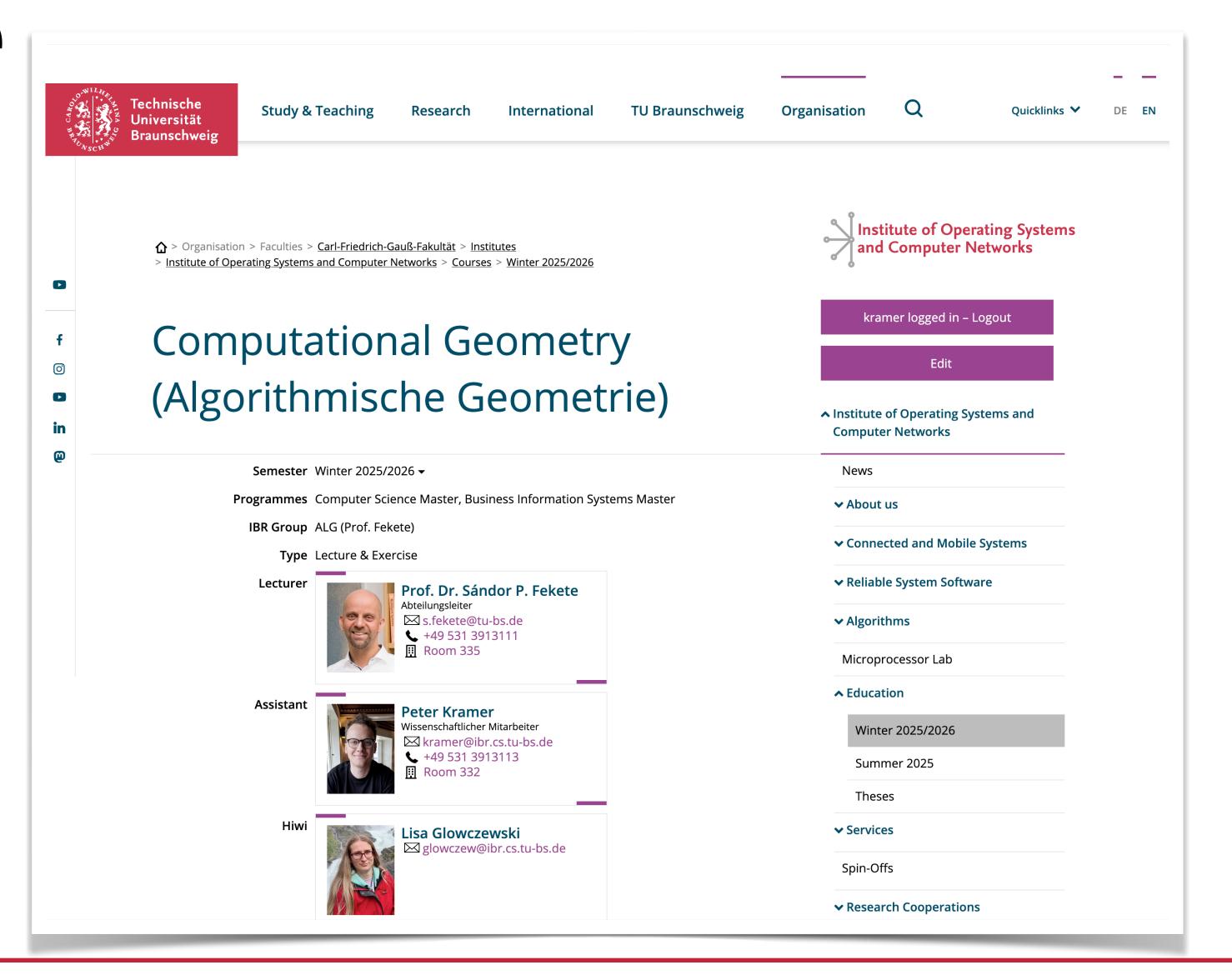
Computational Geometry

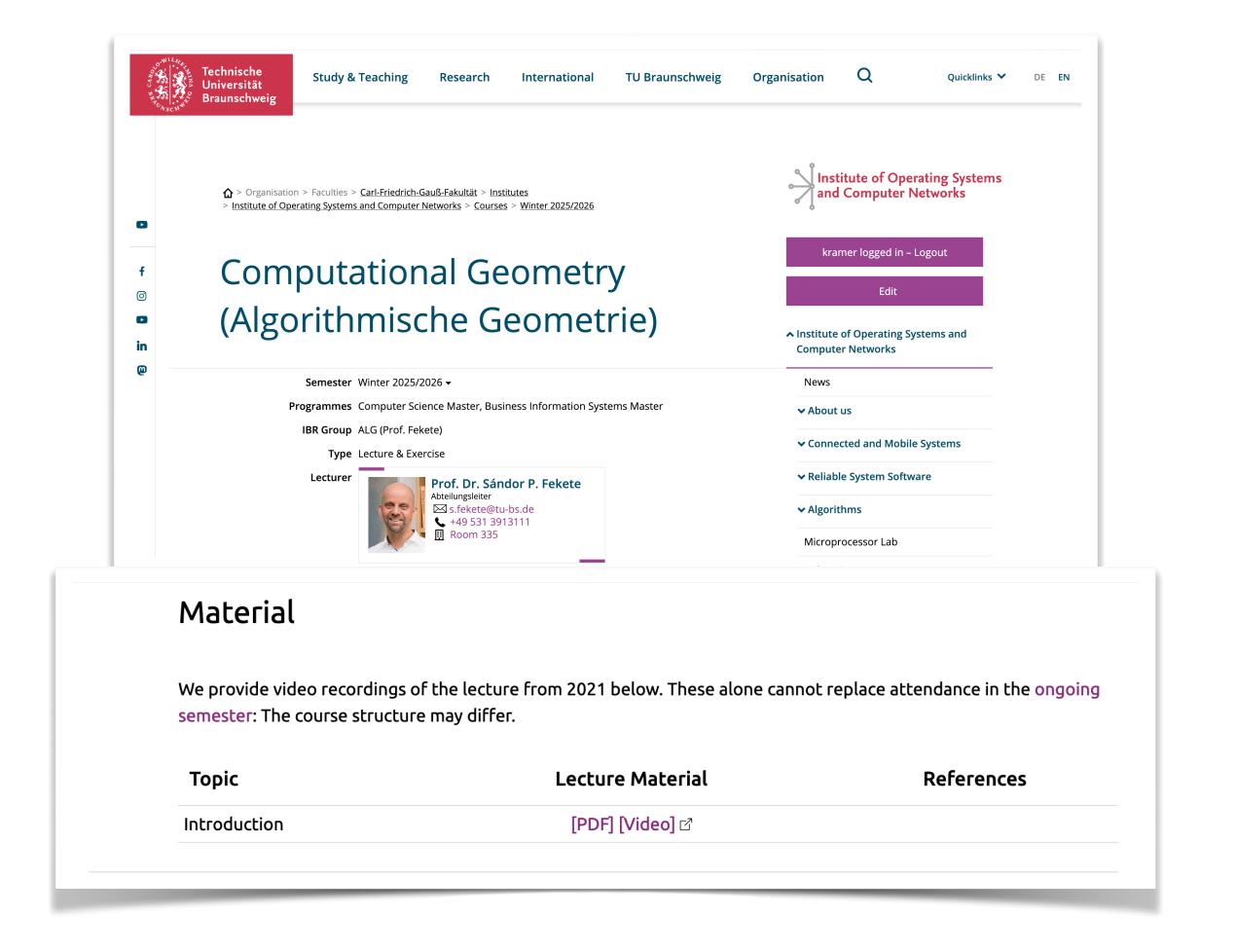
Tutorial #1 — Organisation and Convex Hulls

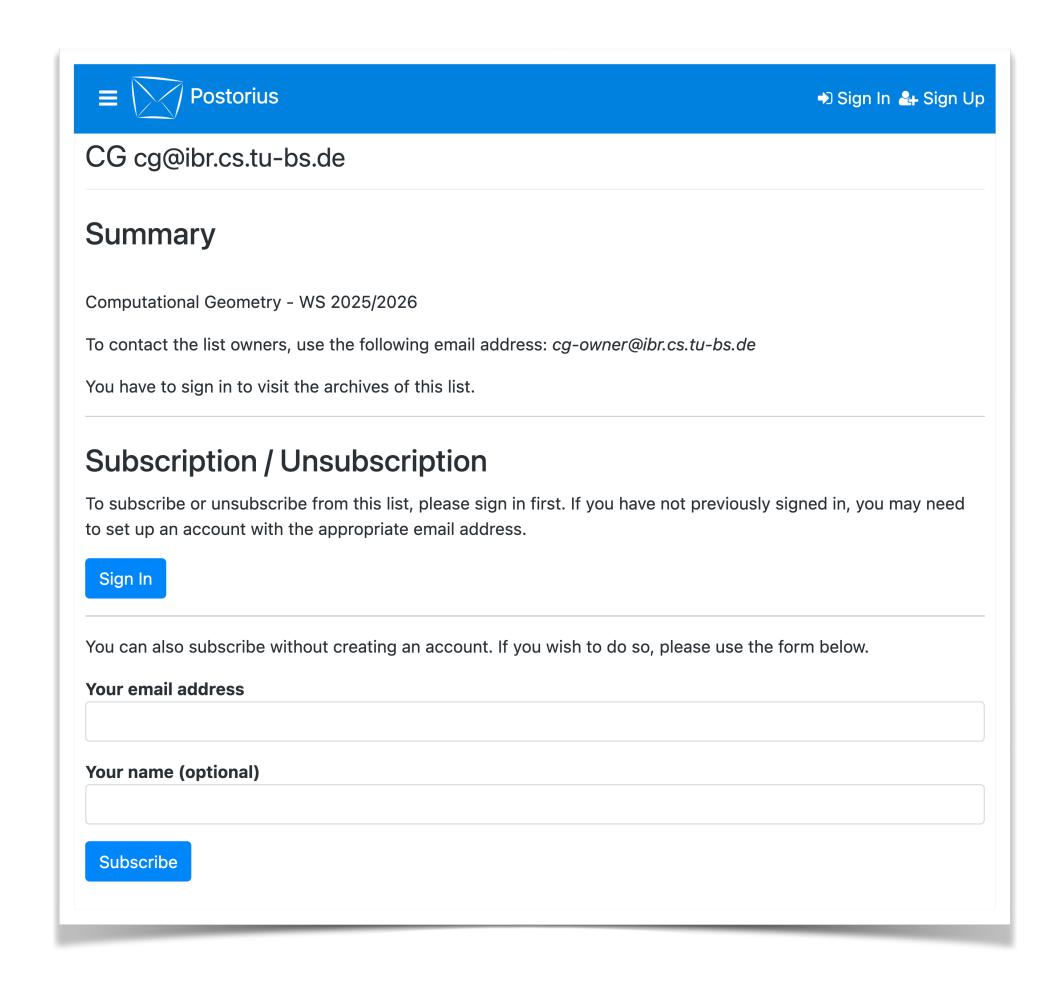
Organisation

Website



Website





Tutorial

- Every Thursday at 3pm in this room, either a big or a small tutorial.
 - Depending on attendance, we might switch rooms.
- Apply and expand upon concepts from the lecture. Big tutorial:
- Small tutorial: Homework discussion.

October						
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

November							
					1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

13	Lectures
----	----------

December							
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31					

January								
			1	2	3	4		
5	6	7	8	9	10	11		
12	13	14	15	16	17	18		
19	20	21	20	23	24	25		
26	27	28	29	30	31			

February							
						1	
2	3	4	29	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28		

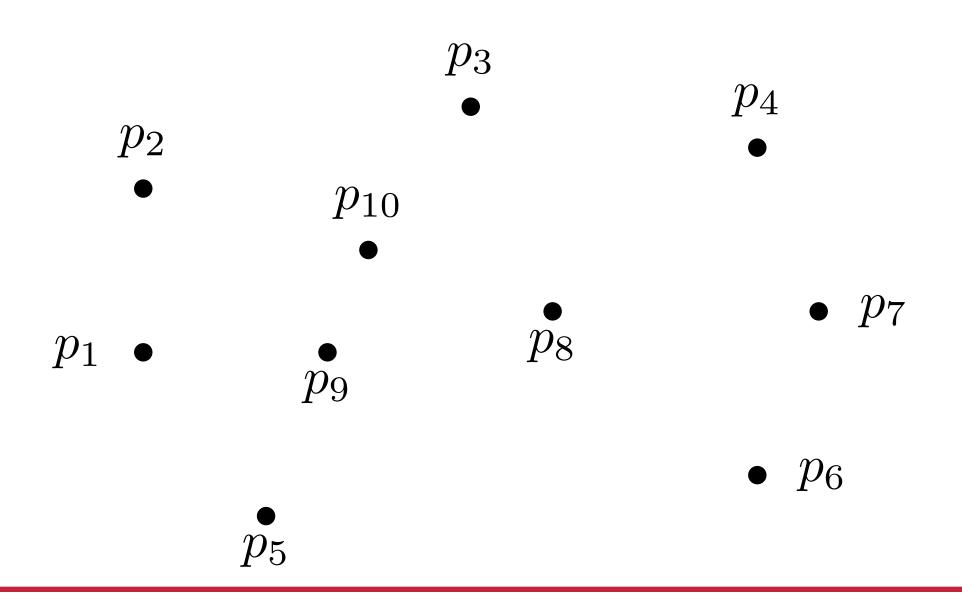
Tutorial

- Every Thursday at 3pm in this room, either a big or a small tutorial.
 - Depending on attendance, we might switch rooms.
- Big tutorial: Expand upon and put concepts from the lecture to use.
- Small tutorial: Homework discussion.
- Studienleistung: Four homework sheets.
 - Biweekly assignments to solve in groups of two or three.
 - Requires 50% of total possible points on the sheets; roughly 75 points.

Convex Hulls

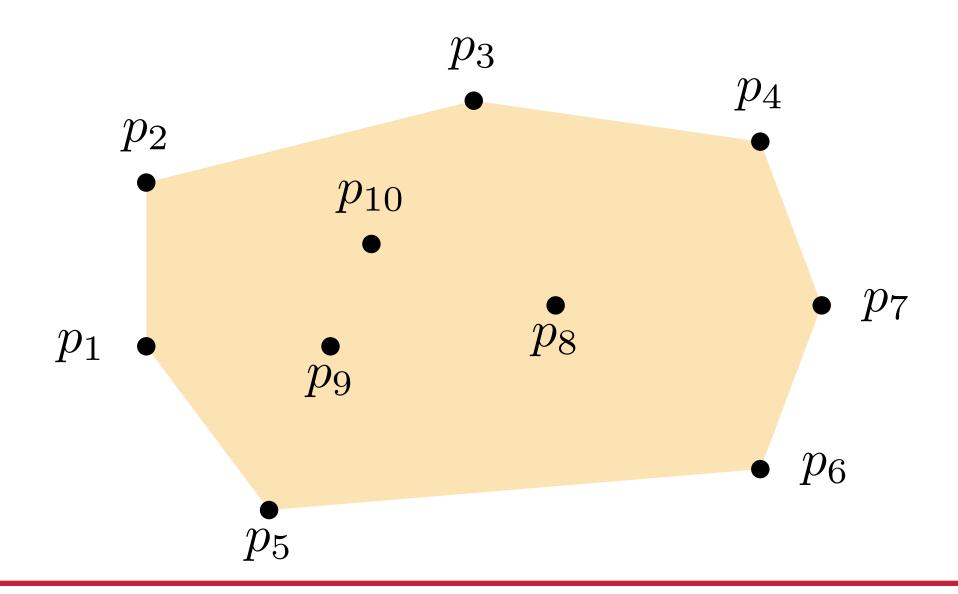
... is a point set? A convex polygon? A subset?

• For a finite point set $\mathscr{P} := \{p_1, p_2, ..., p_n\} \subset \mathbb{R}^2$, $\operatorname{conv}(\mathscr{P}) = ...$?



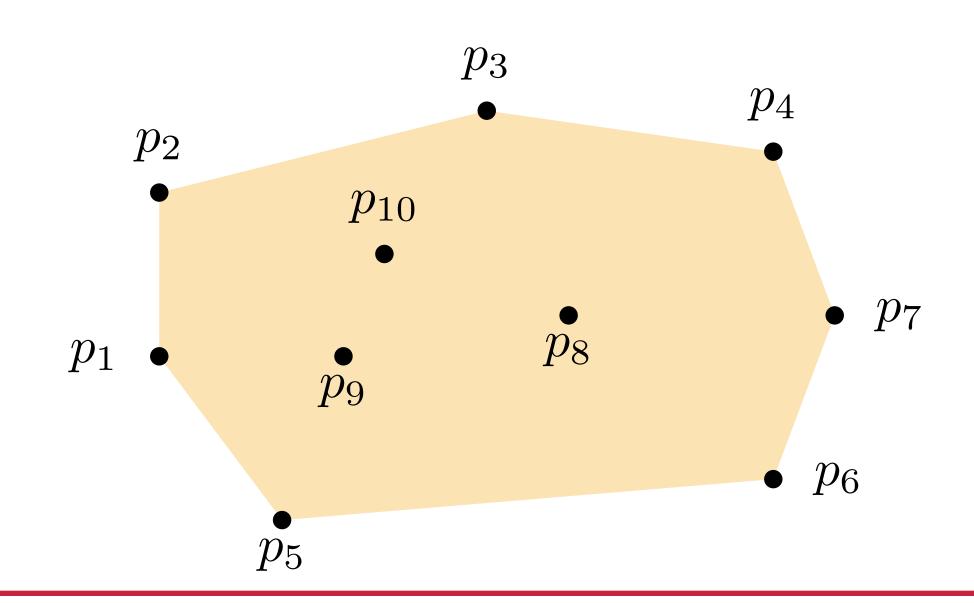
... is a point set? A convex polygon? A subset?

• For a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2,\operatorname{conv}(\mathscr{P})=\ldots$?



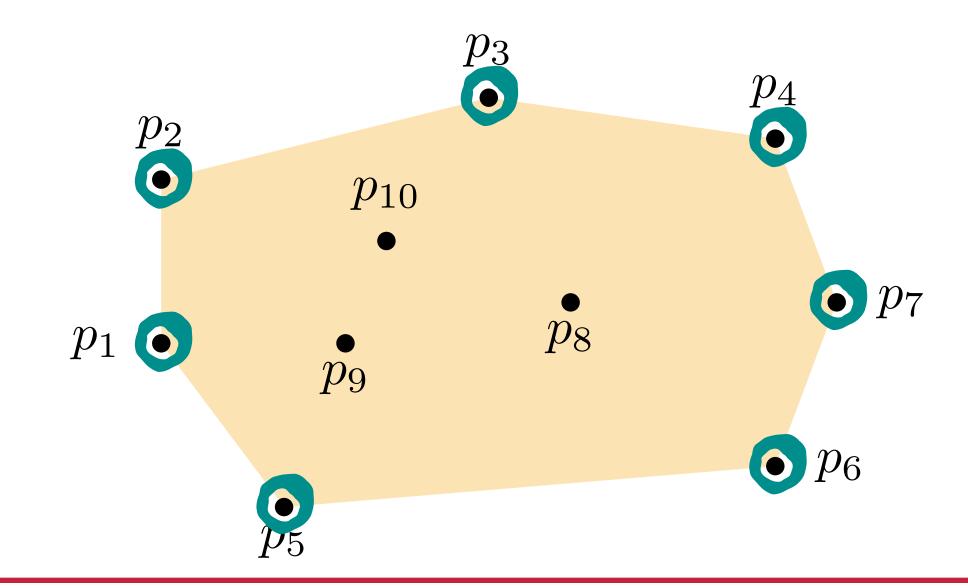
... is a point set? A convex polygon? A subset?

- For a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2$, $\operatorname{conv}(\mathscr{P})=\ldots$?
- Definition 2.3: $conv(\mathcal{P}) = \{x \in \mathbb{R}^2 \mid x \text{ is a convex combination of } \mathcal{P}\}.$



... is a point set? A convex polygon? A subset?

- For a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2$, $\operatorname{conv}(\mathscr{P})=\ldots$?
- Definition 2.3: $conv(\mathcal{P}) = \{x \in \mathbb{R}^2 \mid x \text{ is a convex combination of } \mathcal{P}\}.$
- This is an infinite set, but our algorithm(s) only give us points from \mathscr{P} !?



... is a point set? A convex polygon? A subset?

- For a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2$, $\operatorname{conv}(\mathscr{P})=\ldots$?
- Definition 2.3: $conv(\mathcal{P}) = \{x \in \mathbb{R}^2 \mid x \text{ is a convex combination of } \mathcal{P}\}.$
- This is an infinite set, but our algorithm(s) only give us points from \mathscr{P} !?

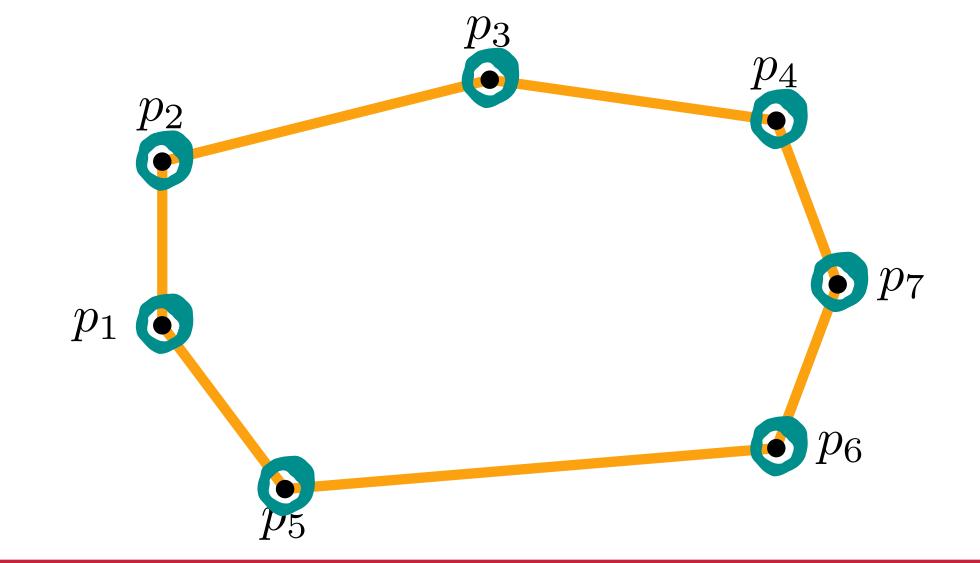
•
$$conv(\mathcal{P}) = \mathcal{P}$$
???

Point sets like this one are referred to as being in "convex position".

... is a point set? A convex polygon? A subset?

- For a finite point set $\mathscr{P}:=\{p_1,p_2,\ ...,p_n\}\subset\mathbb{R}^2$, $\mathrm{conv}(\mathscr{P})=\ldots$?
- Definition 2.3: $conv(\mathcal{P}) = \{x \in \mathbb{R}^2 \mid x \text{ is a convex combination of } \mathcal{P}\}.$
- This is an infinite set, but our algorithm(s) only give us points from \mathscr{P} !?

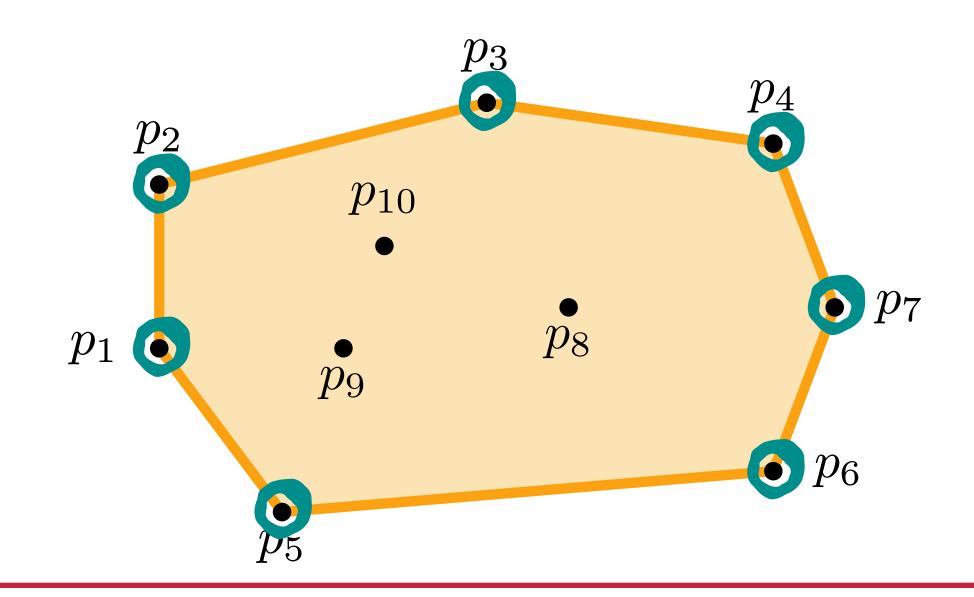
• $conv(\mathcal{P}) \neq \mathcal{P}$???



... is a (usually infinite) point set, described by a convex polygon.

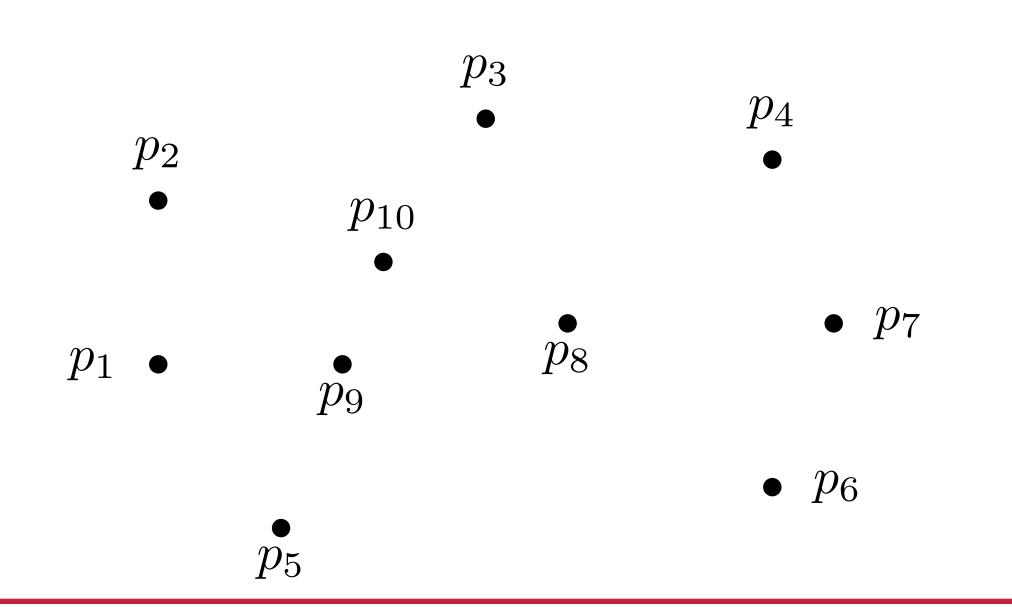
• Given a finite point set
$$\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2.$$

- Definition 2.3: $conv(\mathcal{P}) = \{x \in \mathbb{R}^2 \mid x \text{ is a convex combination of } \mathcal{P}\}$
- Our algorithms compute the boundary set $\partial \operatorname{conv}(\mathscr{P})$ as a convex polygon!

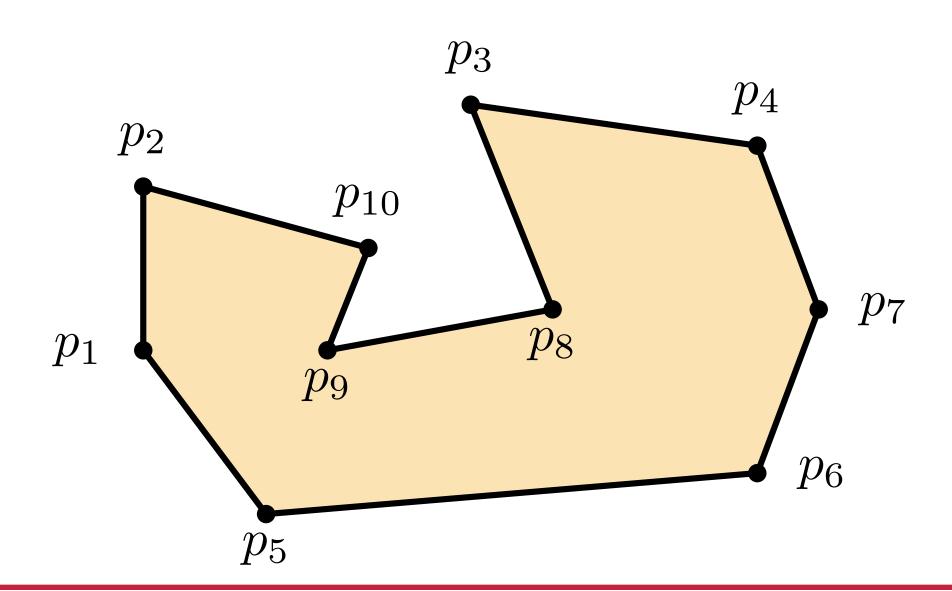


Detour: Point sets & Polygons

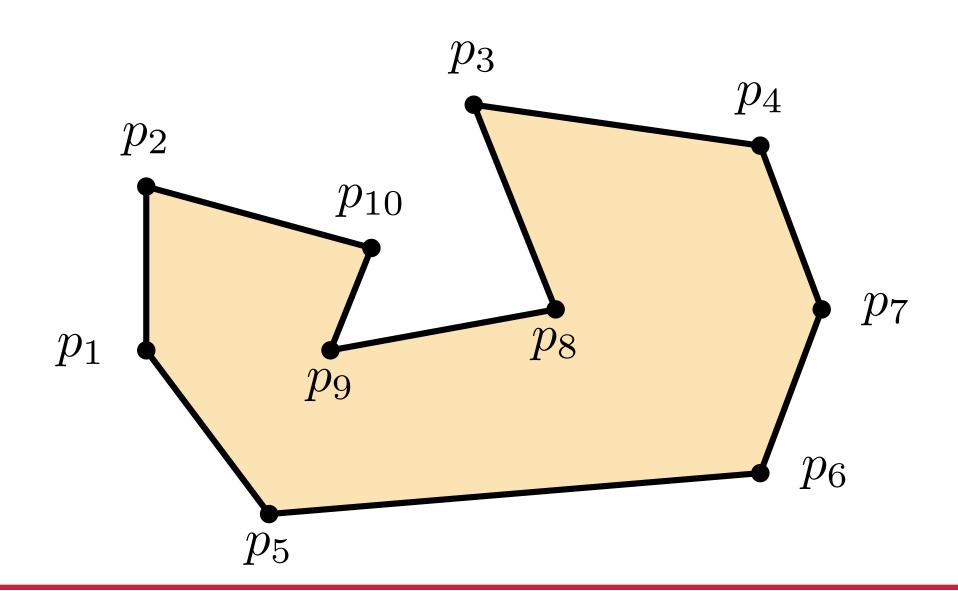
- Consider a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2.$
- ullet What's a polygon P using these points?



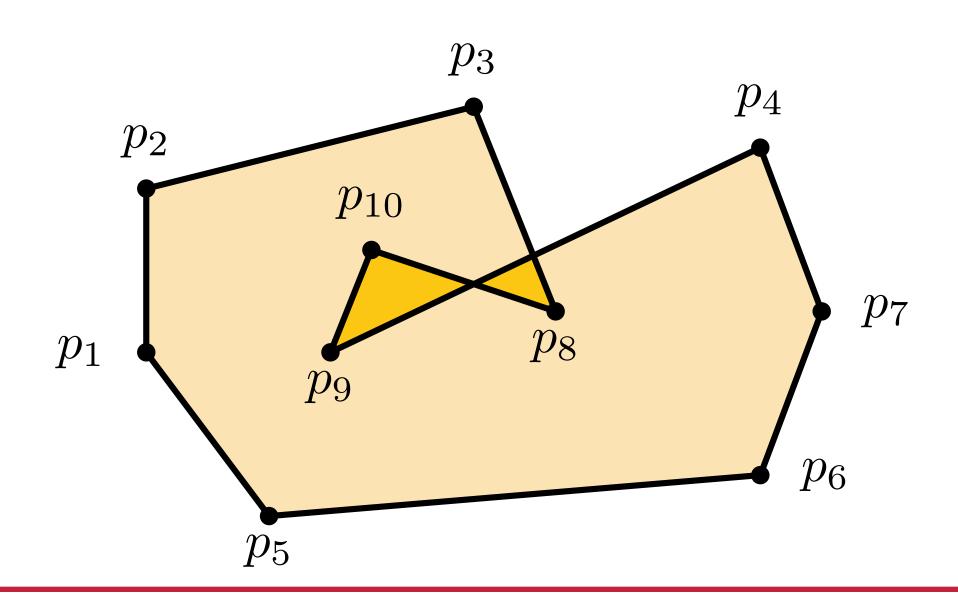
- Consider a finite point set $\mathscr{P}:=\{p_1,p_2,\ ...,p_n\}\subset\mathbb{R}^2$.
- ullet What's a polygon P using these points?



- Consider a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2.$
- An ordered sequence $P:=(p_{\pi(1)}, \ldots, p_{\pi(n)}) \in \mathbb{R}^{2 \times n}$ describes a polygon.



- Consider a finite point set $\mathscr{P}:=\{p_1,p_2,\ldots,p_n\}\subset\mathbb{R}^2.$
- An ordered sequence $P:=(p_{\pi(1)}, \ldots, p_{\pi(n)}) \in \mathbb{R}^{2 \times n}$ describes a polygon.



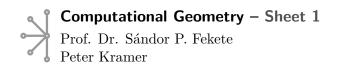
What's the difference?

- Consider a finite point set $\mathscr{P}:=\{p_1,p_2,\ ...,p_n\}\subset\mathbb{R}^2.$
- ullet A simple polygon P does not self-intersect.

Note: We will encounter further types of polygons later on:)

Typically, we describe polygons in CCW order: $(p_1, p_5, p_6, p_7, p_4, p_3, p_8, p_9, p_1 0, p_2)$ p_1 p_9 p_8 p_7

Homework Sheet #1



Winter 2025/2026

Due 20.11.2025
Discussion 27.11.2025

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338© before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1. (5 points)

Refer to *Definitions 2.2 and 2.3* from the lecture. Prove or disprove: The intersection of two convex hulls according to *Definition 2.3* is itself convex for all finite sets $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$, i.e.,

$$\operatorname{conv}(\operatorname{conv}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{Q})) = \operatorname{conv}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{Q}).$$

(Hint: Review the properties of convex hulls and combinations carefully.)

Definition E1 (General position). When investigating a problem, we often assume that the input data obeys *general position*, which excludes specific edges cases and simplifies analysis. For this sheet, a point set obeys general position if and only if no three points in it are collinear.

Exercise 2 (Point in Convex Polygon Problem).

15 points

Using only the known predicates, design an $\mathcal{O}(\log n)$ algorithm for the following problem. Given a convex polygon $P = (p_1, p_2, \dots, p_n) \in (\mathbb{R} \times \mathbb{R})^n$ and a point $q \in \mathbb{R}^2$, does P contain q? You may assume that the point set $\{p_1, p_2, \dots, p_n, q\}$ obeys general position.

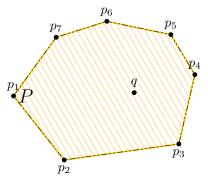


Figure 1: Example: the point q is located inside the convex polygon P.

Exercise 3 (Farthest Point Pairs).

(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p, q \in \mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P}: |p-q| \ge |u-v|.$$

The Euclidean distance between p and q is then also called the *diameter* of \mathcal{P} .

- a) Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull $\operatorname{conv}(\mathcal{P})$.
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Briefly explain approximation factor and runtime!

Computational Geometry – Sheet 1

Prof. Dr. Sándor P. Fekete Peter Kramer

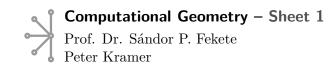
Please submit your handwritten answers in groups of two or three, using the box in front of IZ338 before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

These sheets are about logical deduction, so LLMs will most likely just generate plausible-sounding garbage.

Please save us the headache:)

Translation services such as DeepL are allowed, of course. If you so prefer, you may write your solutions in german.



Winter 2025/2026

Due 20.11.2025 Discussion 27.11.2025

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338© before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1. (5 points)

Refer to *Definitions 2.2 and 2.3* from the lecture. Prove or disprove: The intersection of two convex hulls according to *Definition 2.3* is itself convex for all finite sets $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$, i.e.,

$$\operatorname{conv}(\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}))=\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}).$$

(Hint: Review the properties of convex hulls and combinations carefully.)

Definition E1 (General position). When investigating a problem, we often assume that the input data obeys *general position*, which excludes specific edges cases and simplifies analysis. For this sheet, a point set obeys general position if and only if no three points in it are collinear.

15 points

Using only the known predicates, design an $\mathcal{O}(\log n)$ algorithm for the following problem. Given a convex polygon $P = (p_1, p_2, \dots, p_n) \in (\mathbb{R} \times \mathbb{R})^n$ and a point $q \in \mathbb{R}^2$, does P contain q? You may assume that the point set $\{p_1, p_2, \dots, p_n, q\}$ obeys general position.

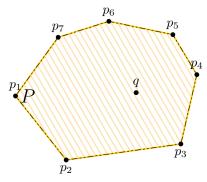


Figure 1: Example: the point q is located inside the convex polygon P.

Exercise 3 (Farthest Point Pairs).

(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p,q\in\mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P} : |p - q| \ge |u - v|.$$

The Euclidean distance between p and q is then also called the *diameter* of \mathcal{P} .

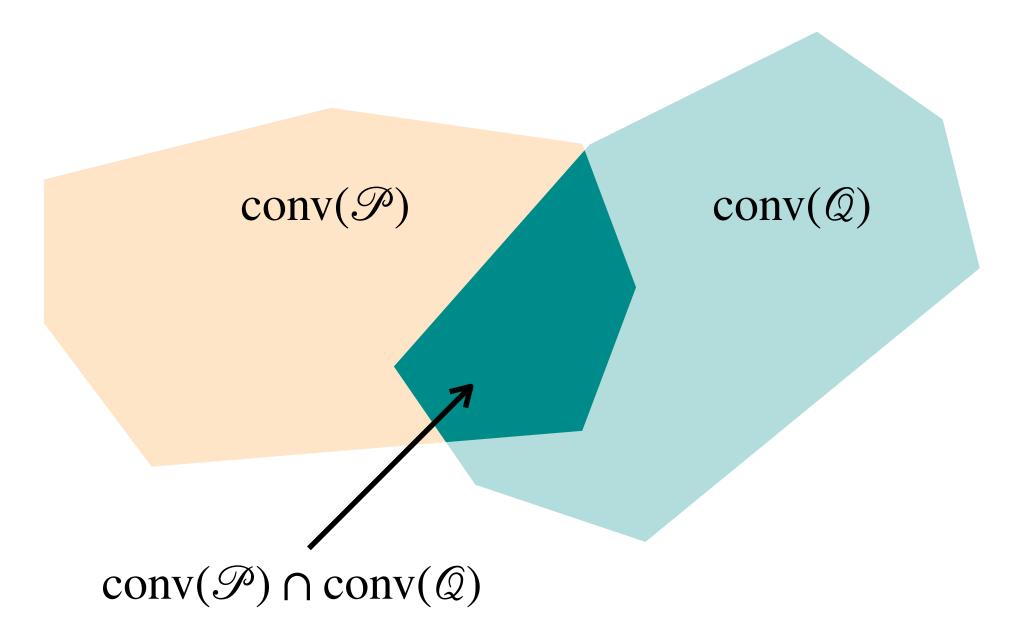
- a) Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull $\operatorname{conv}(\mathcal{P})$.
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Briefly explain approximation factor and runtime!

Exercise 1. (5 points)

Refer to Definitions 2.2 and 2.3 from the lecture. Prove or disprove: The intersection of two convex hulls according to Definition 2.3 is itself convex for all finite sets $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$, i.e.,

$$\operatorname{conv}(\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}))=\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}).$$

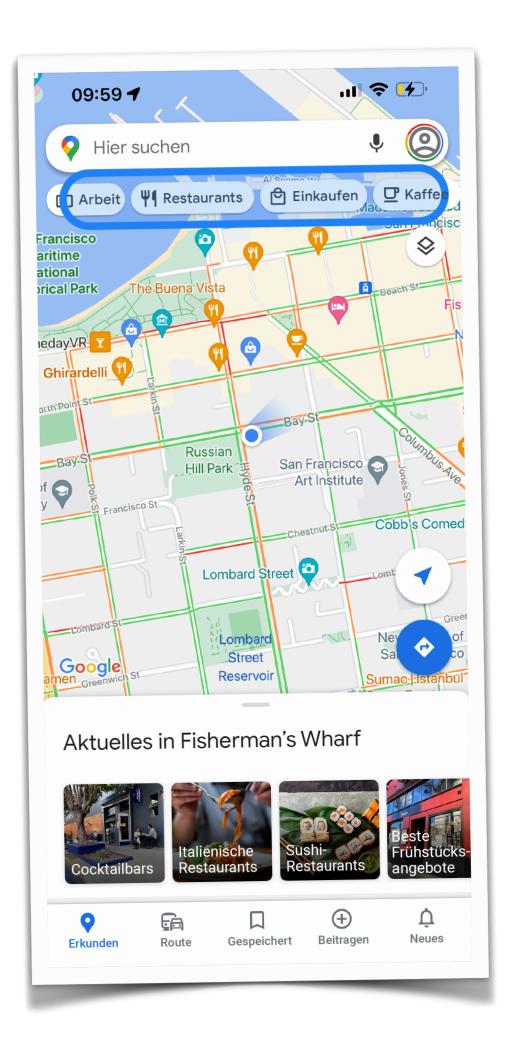
(Hint: Review the properties of convex hulls and combinations carefully.)



Point Location Problems

"Where am I?"

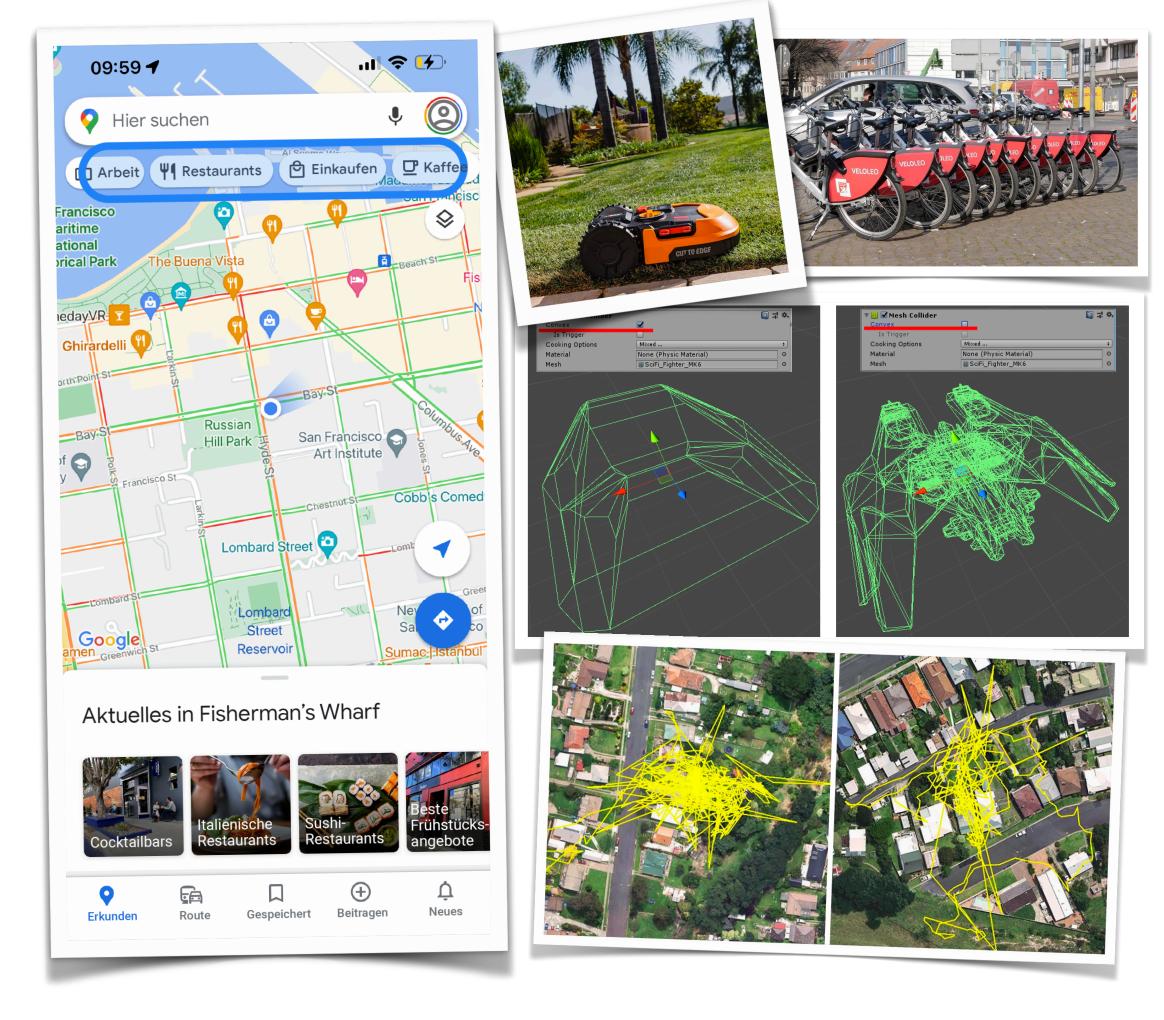
 Given geometric information such as a map in the plane, how can we decide where we are?



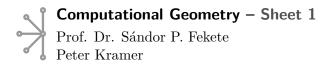
Point Location Problems

"Where am I?"

- Given geometric information such as a map in the plane, how can we decide where we are?
- "In which country am I right now?" "Can I leave this rental bike here?" "Do these virtual objects collide?"
- "Is point p inside of region P?"



Applications: Geofencing, Navigation, Simulation Software, Outlier Detection, ...



Winter 2025/2026

Due 20.11.2025 Discussion 27.11.2025

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338th before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1. (5 points)

Refer to *Definitions 2.2 and 2.3* from the lecture. Prove or disprove: The intersection of two convex hulls according to *Definition 2.3* is itself convex for all finite sets $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$, i.e.,

$$\operatorname{conv}(\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}))=\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}).$$

(Hint: Review the properties of convex hulls and combinations carefully.)

Definition E1 (General position). When investigating a problem, we often assume that the input data obeys *general position*, which excludes specific edges cases and simplifies analysis. For this sheet, a point set obeys general position if and only if no three points in it are collinear.

Exercise 2 (Point in Convex Polygon Problem).

15 point

Using only the known predicates, design an $\mathcal{O}(\log n)$ algorithm for the following problem. Given a convex polygon $P = (p_1, p_2, \dots, p_n) \in (\mathbb{R} \times \mathbb{R})^n$ and a point $q \in \mathbb{R}^2$, does P contain q? You may assume that the point set $\{p_1, p_2, \dots, p_n, q\}$ obeys general position.

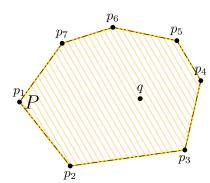


Figure 1: Example: the point q is located inside the convex polygon P.

Exercise 3 (Farthest Point Pairs).

(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p,q\in\mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P} : |p - q| \ge |u - v|.$$

The Euclidean distance between p and q is then also called the *diameter* of \mathcal{P} .

- a) Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull $\operatorname{conv}(\mathcal{P})$.
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Briefly explain approximation factor and runtime!

Definition E1 (General position). When investigating a problem, we often assume that the input data obeys *general position*, which excludes specific edges cases and simplifies analysis. For this sheet, a point set obeys general position if and only if no three points in it are collinear.

Exercise 2 (Point in Convex Polygon Problem).

(15 points)

Using only the known predicates, design an $\mathcal{O}(\log n)$ algorithm for the following problem. Given a convex polygon $P = (p_1, p_2, \dots, p_n) \in (\mathbb{R} \times \mathbb{R})^n$ and a point $q \in \mathbb{R}^2$, does P contain q? You may assume that the point set $\{p_1, p_2, \dots, p_n, q\}$ obeys general position.

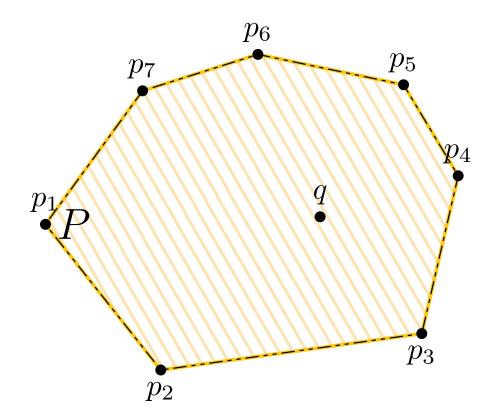


Figure 1: Example: the point q is located inside the convex polygon P.

Computational Geometry – Sheet 1 Prof. Dr. Sándor P. Fekete Peter Kramer

Winter 2025/2026

Due 20.11.2025 Discussion 27.11.2025

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338th before the exercise timeslot on the due date above. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is not permitted.

Exercise 1. (5 points)

Refer to *Definitions 2.2 and 2.3* from the lecture. Prove or disprove: The intersection of two convex hulls according to *Definition 2.3* is itself convex for all finite sets $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$, i.e.,

$$\operatorname{conv}(\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}))=\operatorname{conv}(\mathcal{P})\cap\operatorname{conv}(\mathcal{Q}).$$

(Hint: Review the properties of convex hulls and combinations carefully.)

Definition E1 (General position). When investigating a problem, we often assume that the input data obeys *general position*, which excludes specific edges cases and simplifies analysis. For this sheet, a point set obeys general position if and only if no three points in it are collinear.

Exercise 2 (Point in Convex Polygon Problem).

(15 point

Using only the known predicates, design an $\mathcal{O}(\log n)$ algorithm for the following problem. Given a convex polygon $P = (p_1, p_2, \dots, p_n) \in (\mathbb{R} \times \mathbb{R})^n$ and a point $q \in \mathbb{R}^2$, does P contain q? You may assume that the point set $\{p_1, p_2, \dots, p_n, q\}$ obeys general position.

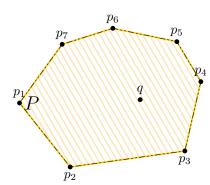


Figure 1: Example: the point q is located inside the convex polygon P.

Exercise 3 (Farthest Point Pairs).

(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p,q\in\mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P}: |p-q| \ge |u-v|.$$

The Euclidean distance between p and q is then also called the *diameter* of \mathcal{P} .

- a) Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull $\operatorname{conv}(\mathcal{P})$.
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Briefly explain approximation factor and runtime!

_

Exercise 3 (Farthest Point Pairs).

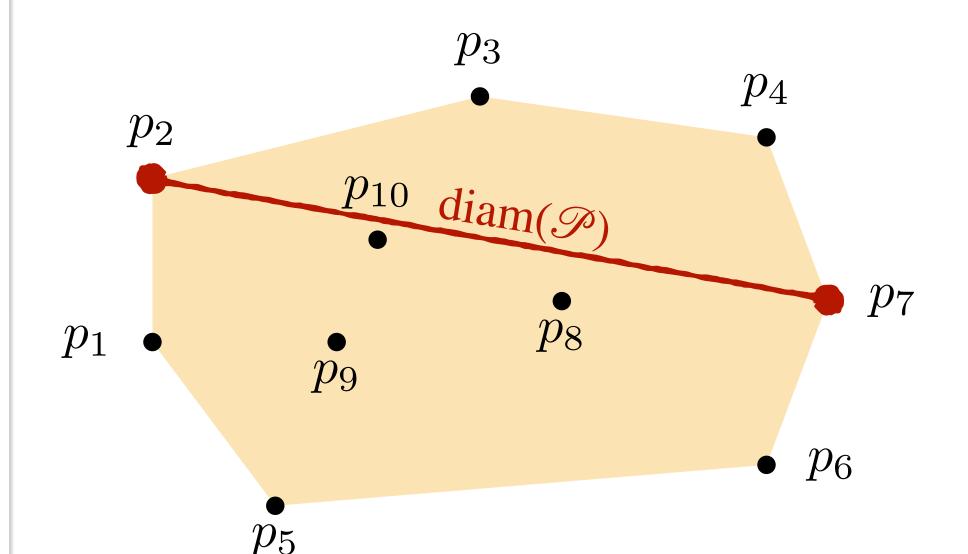
(5+10 points)

Given a set \mathcal{P} of n points in the Euclidean plane, two points $p, q \in \mathcal{P}$ are a farthest pair in \mathcal{P} if

$$\forall u, v \in \mathcal{P} : |p - q| \ge |u - v|.$$

The Euclidean distance between p and q is then also called the *diameter* of \mathcal{P} .

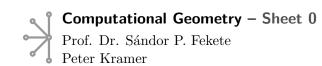
- a) Prove that all farthest pairs in \mathcal{P} are vertices of the convex hull $conv(\mathcal{P})$.
- **b)** Design an $\mathcal{O}(n)$ algorithm that approximates the diameter of \mathcal{P} up to a constant factor. Briefly explain approximation factor and runtime!



For a *c*-approximation, argue that your algorithm's output is

- at most $c \cdot \operatorname{diam}(\mathcal{P})$, and
- at least $\frac{1}{c}$ · diam(\mathscr{P}).

Homework Sheet #0



Winter 2025/2026

These are tasks for the first small tutorial on 13.11.2025, which will be a live exercise. Although they do not need to be handed it, you are encouraged to study the tasks ahead of time!

Optional Exercise 1 (Big-O Notation).

- a) Consider the functions $f_1, f_2, g_1, g_2 : \mathbb{N} \to \mathbb{R}^+$. Prove that the following is true:
 - (i) $f_1 \in \mathcal{O}(g_1), f_2 \in \mathcal{O}(g_2) \Rightarrow f_1 + f_2 \in \mathcal{O}(g_1 + g_2).$
 - (ii) $f_1 \in \mathcal{O}(g_1), f_2 \in \mathcal{O}(g_2) \Rightarrow f_1 + f_2 \in \mathcal{O}(\max\{g_1 + g_2\}).$
- **b)** Order the following complexity classes by inclusion (\subseteq). Mark equality where appropriate.

$$\mathcal{O}(15), \quad \mathcal{O}(n\log n), \quad \mathcal{O}\left(\frac{n}{5}\right), \quad \mathcal{O}(\log n), \quad \mathcal{O}(2^n), \quad \mathcal{O}(n^2), \quad \mathcal{O}(n-\log n), \quad \mathcal{O}(3^n)$$

Optional Exercise 2 (Convex Combinations).

Describe the set of all convex combinations of the points $(0,1)^T$ and $(1,0)^T$ in your own words. In other words, find

$$\Big\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ 1 \end{pmatrix} + (1 - \lambda) \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ where } 0 \leq \lambda \leq 1 \Big\}.$$

Find another two points that determine the same set or determine that this is impossible.

Optional Exercise 3 (Convex Hull of Line Segments).

Let S be a set of n line segments in the plane. Prove that the convex hull of S is exactly the same as the convex hull of the 2n endpoints of the segments.

Optional Exercise 4 (Signed Area of a Triangle).

For the convex hull algorithms we have seen, we test whether a point r lies left or right of the directed line \overline{pq} through two points p and q. Let $p = (p_x, p_y)^T$, $q = (q_x, q_y)^T$, $r = (r_x, r_y)^T$. Show that the sign of the determinant

$$D = \begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix}$$

determines whether r lies to the left or right of the line \overline{pq} .

1/1

Computational Geometry – Sheet 0

Prof. Dr. Sándor P. Fekete

Peter Kramer

These are tasks for the first small tutorial on 13.11.2025, which will be a live exercise. Although they do not need to be handed it, you are encouraged to study the tasks ahead of time!

Exercises for the first small tutorial:

Next Thursday, this room.

(Not to be handed in)

Winter 2025/2026

Big O Notation

Catching up, if necessary.

• If you speak German: There is plenty of material on the course website of "Algorithmen und Datenstrukturen"

• If you don't: There is plenty of other courseware (e.g., from MIT) available!

 There also exist a variety of shortform explanation videos, such as:

TL;DL

The important parts

- Sign up for the mailing list!
- One tutorial a week (except holidays).
- Biweekly homework: Find groups!
- First **sheet is out now**, due in 2 weeks.
- Live exercise next week.
- Material can be found on the website.
 - Slides, videos, and homework sheets.
- Any questions?
 - Ask Peter <u>kramer@ibr.cs.tu-bs.de</u> or or Lisa <u>glowczew@ibr.cs.tu-bs.de</u>

