

Computational Geometry – Sheet 4

Prof. Dr. Sándor P. Fekete
Peter Kramer

Winter 2025/2026

Due 22.01.2026
Discussion 29.01.2026

Please submit your handwritten answers in groups of two or three, using the box in front of IZ338 before 15:00 on the due date. Make sure to include your full names, matriculation numbers, and the programmes that you are enrolled in.

*In accordance with the guidelines of the TU Braunschweig, using AI tools such as LLMs to solve any part of the exercises is **not permitted**.*

A sum of 75 points (roughly 50%) across all sheets suffice to pass the coursework.

You may assume general position for all tasks on this sheet, i.e., that no three vertices of the polygons are collinear.

Exercise 1 (Convex vertices). (7 points)

Let P be a simple polygon of $n \geq 3$ vertices. Prove that P has at least three convex vertices.

Exercise 2 (Reflex vertices). (5 points)

Let P be a simple polygon with k reflex vertices. What is the *minimum* number of subpolygons into which P must be divided by cutting along diagonals such that each subpolygon is convex?

Exercise 3 (Triangulations of polygons with holes). (3+5 points)

Let P be a simple polygon with h holes, and let n be the total number of its vertices (including vertices of the holes). Find a formula for the number of triangles in a triangulation of P and prove its correctness.

Exercise 4 (Dual graphs of triangulations). (5 points)

The *weak dual graph* of a triangulation contains one vertex per triangle, and an edge between a pair of vertices exactly if the corresponding triangles share an edge.

Let P be a convex polygon. Prove or disprove: There exists a triangulation of P such that the weak dual graph is a path, i.e., every vertex has degree at most two.

Exercise 5 (Algorithmic paradigms). (2+2+2 points)

We have seen the algorithmic paradigms *divide and conquer*, *randomized incremental construction*, and *sweep line*. Give examples and briefly explain each paradigm in your own words.

Exercise 6 (Bonus: Colorful triangulations). (8+4 points)

Let P be a convex polygon with n vertices p_1, \dots, p_n . We assign each vertex p_i one of two colors such that $c(p_i) \in \{\text{red, blue}\}$. A triangulation of P is then *colorful* exactly if every triangle contains at least one vertex of each color.

- a) Prove that there exists a colorful triangulation for any coloring of P that uses both colors.
- b) Show that this does not extend to general (simple) polygons.