

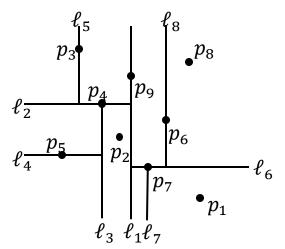
Algorithmen und Datenstrukturen – Übung #6

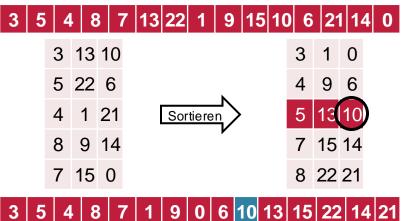
Quicksort, Mediane, kd-Bäume

Ramin Kosfeld & Chek-Manh Loi 23.01.2025

Heute

- Quicksort
- Mediane
- kd-Trees





Mastertheorem

(Wir kennen es ja mittlerweile)

Satz 5.9 (Mastertheorem). Sei $T: \mathbb{N} \to \mathbb{R}$ mit

$$T(n) = \sum_{i=1}^{m} T(\alpha_i \cdot n) + \Theta(n^k), \tag{5.30}$$

wobei $\alpha_i \in \mathbb{R}$ mit $0 < \alpha_i < 1$, $m \in \mathbb{N}$ und $k \in \mathbb{R}$. Dann gilt

$$T(n) \in \begin{cases} \Theta(n^k) & \text{für } \sum_{i=1}^m \alpha_i^k < 1\\ \Theta\left(n^k \log(n)\right) & \text{für } \sum_{i=1}^m \alpha_i^k = 1\\ \Theta(n^c) & \text{mit } \sum_{i=1}^m \alpha_i^c = 1 \text{ für } \sum_{i=1}^m \alpha_i^k > 1 \end{cases}$$

$$(5.31)$$

Bisherige Sortierverfahren

Algorithmus

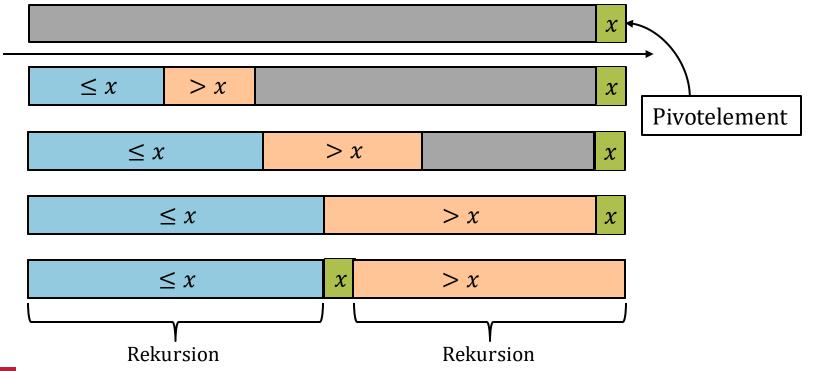
Laufzeit

Idee

Bisherige Sortierverfahren

Algorithmus	Laufzeit	Idee				
Mergesort	$O(n \log n)$	Sortiere Teilarrays und merge sie. Beginne mit kleinstem Teilarray (z.B. der Größe 1)				
Bubblesort (P-Blatt 4)	$O(n^2)$	Iteriere <i>n</i> -mal über das Array und vertausche falsch-stehende benachbarte Objekte.				
Heapsort (5. Große Übung)	$O(n \log n)$	Betrachte Array als Heap, entferne iterativ das größte Element und stelle die Heap-Eigenschaft wieder her.				
Quicksort	$O(n^2)$	Pivotisiere und sortiere rekursiv auf beiden Teilarrays weiter.				
Radixsort $O(d(n + k))$		Sortiere Zahlen iterativ nach d Ziffern mit Werten 1 bis k .				
Selectionsort $O(n^2)$		Setze das i -t kleinste Element in der i -ten Iteration an die i -te Stelle				
Insertionsort	$O(n^2)$	Setze das i -te Element des Arrays in $A[1] \dots A[i]$ an die richtige Stelle.				

Quicksort - Prinzip



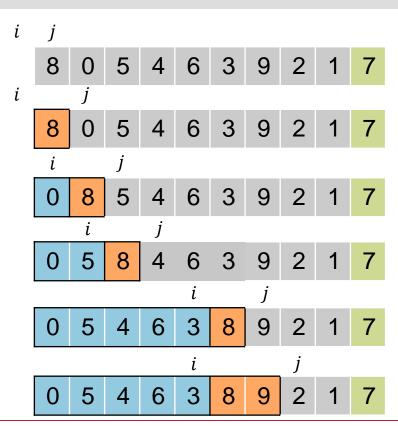
Quicksort - Partition

Pivotelement *x*

Letztes Element im Array

Zwei Zeiger

- *i*: Letzte Position mit Zahlen $\leq x$
- *j*: Erste Position mit nicht verglichenen Elementen



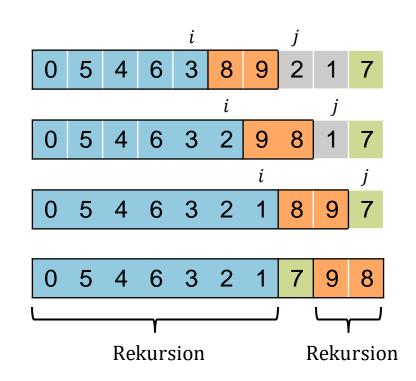
Quicksort - Partition

Pivotelement *x*

Letztes Element im Array

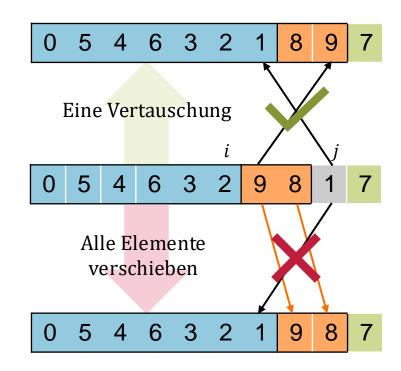
Zwei Zeiger

- i: Letzte Position mit Zahlen < x
- *j*: Erste Position mit nicht verglichenen Elementen



Quicksort - Details

- Innerhalb der rot und blau markierten Bereiche gibt es keine Sortierung! Und auch keine Garantie, dass die Elemente während des Partition-Aufrufs diese Reihenfolge behalten.
- Wir "verschieben" nicht den ganzen roten Bereich, sondern tauschen einzelne Paare, um lineare Laufzeit zu erreichen!
- → Pro Iteration reicht eine Vertauschung aus!
- Es gibt verschiedene Varianten zu pivotisieren, und daher verschiedene Versionen von Quicksort.
- → In dieser VL wird stets die hier gezeigte Variante genutzt.



Quicksort - Laufzeit

	Best-Case	Average-Case	Worst-Case
Quicksort			

Rekursionsgleichung Worst-Case:

$$T(n) =$$

Rekursionsgleichung Best-Case:

$$T(n) =$$

Quicksort - Laufzeit

	Best-Case	Average-Case	Worst-Case
Quicksort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

Rekursionsgleichung Worst-Case:

$$T(n) = T(n-1) + \Theta(n) \Rightarrow T(n) \in \Theta\left(\sum_{i=1}^{n} i\right) = \Theta(n^2)$$

Rekursionsgleichung Best-Case:

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \Rightarrow T(n) \in \Theta(n \log n)$$

Fragen?

Mediane

Mediane - Definition

Rang-*k* Element *m* in *X*:

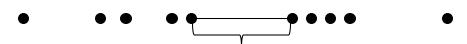
$$|\{x \in X : x \le m\}| \ge k$$

und $|\{x \in X : x \ge m\}| \ge n - k + 1$

Für einen **Median** *m* in *X* gilt:

$$|\{x \in X : x < m\}| \le \left\lfloor \frac{n}{2} \right\rfloor$$

und $|\{x \in X : x > m\}| \le \left\lfloor \frac{n}{2} \right\rfloor$



Jeder Punkt in diesem Bereich ist ein Median!

Bei $X = \{1,2,3,4,5,6,7,8\}$ sind sowohl 4 als auch 5 ein Median.

Median vs Durchschnitt

Rang-*k* Element *m* in *X*:

$$|\{x \in X : x \le m\}| \ge k$$

und
$$|\{x \in X : x \ge m\}| \ge n - k + 1$$

Für einen **Median** *m* in *X* gilt:

$$|\{x \in X : x < m\}| \le \left|\frac{n}{2}\right|$$

und
$$|\{x \in X : x > m\}| \le \left\lfloor \frac{n}{2} \right\rfloor$$

Bei $X = \{1,3,5,7,9\}$ ist die 5 der Median und 5 der Durchschnitt.

Bei $X = \{1,3,5,7,984\}$ ist die 5 der Median und 200 der Durchschnitt.

Der Median *m* minimiert

$$\sum_{x \in X} |x - m|$$

Der Durchschnitt *D* minimiert

$$\sum_{x \in X} (x - D)^2$$

Mediane - Algorithmus (I)

Naive Idee

Sortieren und das Element an der k-ten Stelle ausgeben

Laufzeit: $\Theta(n \log n)$

Geht das besser?

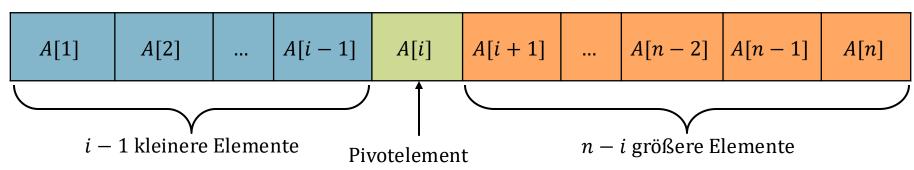
Nutze das Prinzip von Quicksort Pivotisiere und arbeite rekursiv auf einem Teil weiter

Dazu stellen sich die Fragen:

- 1. Auf welchem Teilarray geht es weiter?
- 2. Ist das schneller als $\Theta(n \log n)$?

Mediane - Algorithmus (II)

1. Auf welchem Teilarray geht es weiter? Nach Pivotisierung:

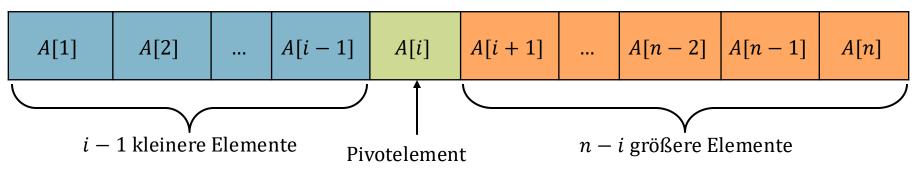


3 Fälle:

- 1. Falls k < i,
- 2. Falls k = i,
- 3. Falls k > i,

Mediane - Algorithmus (II)

1. Auf welchem Teilarray geht es weiter? Nach Pivotisierung:



3 Fälle:

- 1. Falls k < i, such e im linken Teilarray nach dem k-ten Element.
- 2. Falls k = i, dann haben wir das k-te Element gefunden!
- 3. Falls k > i, such eim rechten Teilarray nach dem (k i)-ten Element.

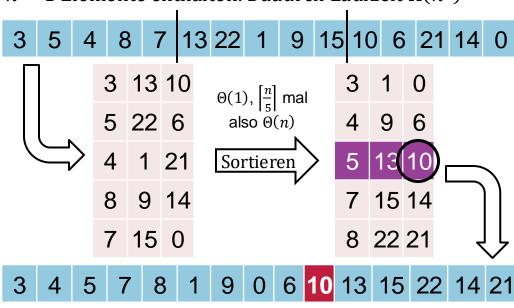
Mediane - Algorithmus (III)

2. Ist das schneller als $\Theta(n \log n)$?

Wie bei Quicksort kann größeres Teilarray n-1 Elemente enthalten. Dadurch Laufzeit $\Omega(n^2)$

Idee: Wähle besseres Pivotelement

- 1. Teile Array in 5er Gruppen
- 2. Bestimme Median in jeder Gruppe
- 3. Bestimme Median der Mediane *m*
- 4. Benutze *m* als Pivotelement



Mediane - Analyse

Wie viele Zahlen gibt es, die größer/kleiner als m sind?

Sortiere die t 5er Gruppen **gedanklich** nach deren Median

$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Mediane - Analyse

Wie viele Zahlen gibt es, die größer/kleiner als m sind?

Sortiere die t 5er Gruppen **gedanklich** nach deren Median

$\leq m$									
$\leq m$									
$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Der rote Bereich enthält nur Elemente, die höchstens *m* sind.

Mediane - Analyse

Jeweils aufsteigend sortiert

$\leq m$									
$\leq m$									
$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Der rote Bereich enthält nur Elemente, die höchstens *m* sind. Wie viele sind das?

Bei t Gruppen ist der Median m in der $\left[\frac{t}{2}\right]$ -ten Gruppe.

Bei 5er Gruppen sind pro Gruppe mindestens 3 Elemente $\leq m$. (wenn der Median $\leq m$)

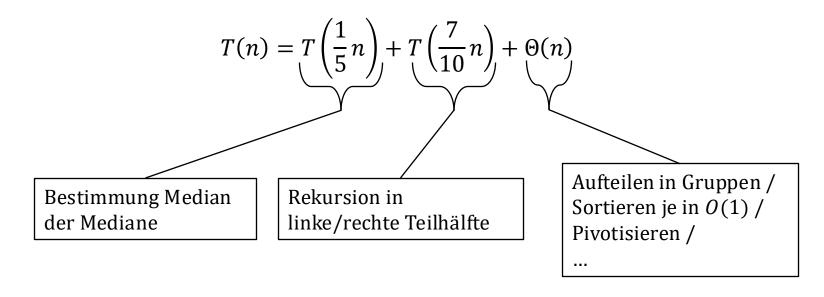
Entsprechend gibt es mindestens $3 \cdot \left[\frac{t}{2}\right]$ viele Elemente $\leq m$.

Damit gibt es maximal $n-3 \cdot \left[\frac{t}{2}\right] \le n-\frac{3}{2}t \le n-\frac{3}{2} \cdot \frac{n}{5} = \frac{7}{10}n$ Elemente größer als m.

Analog: Maximal $\frac{7}{10}n$ Elemente kleiner als m.

Mediane - Laufzeit

Wir haben also als Laufzeit:



Mediane - Laufzeit

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + \Theta(n)$$

Mastertheorem

$$m = 2$$
, $k = 1$, $\alpha_1 = \frac{1}{5}$, $\alpha_2 = \frac{7}{10}$

$$\sum_{i=1}^{2} \alpha_i^1 = \left(\frac{1}{5}\right)^1 + \left(\frac{7}{10}\right)^1$$

Mediane - Laufzeit

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + \Theta(n)$$

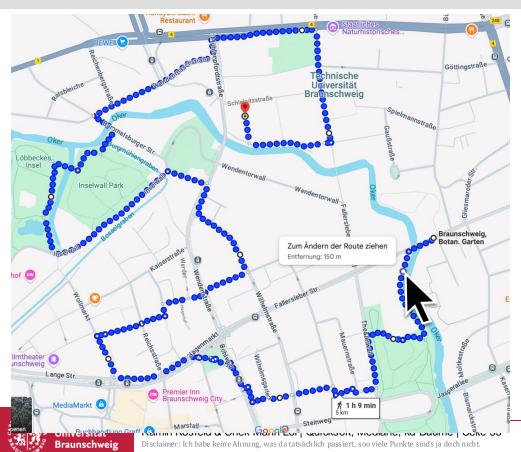
Mastertheorem

$$m = 2$$
, $k = 1$, $\alpha_1 = \frac{1}{5}$, $\alpha_2 = \frac{7}{10}$

$$\sum_{i=1}^{2} \alpha_i^1 = \left(\frac{1}{5}\right)^1 + \left(\frac{7}{10}\right)^1 = \frac{2}{10} + \frac{7}{10} = \frac{9}{10} < 1 \rightarrow \text{Fall } 1 \qquad \Longrightarrow T(n) \in \Theta(n)$$

Fragen?

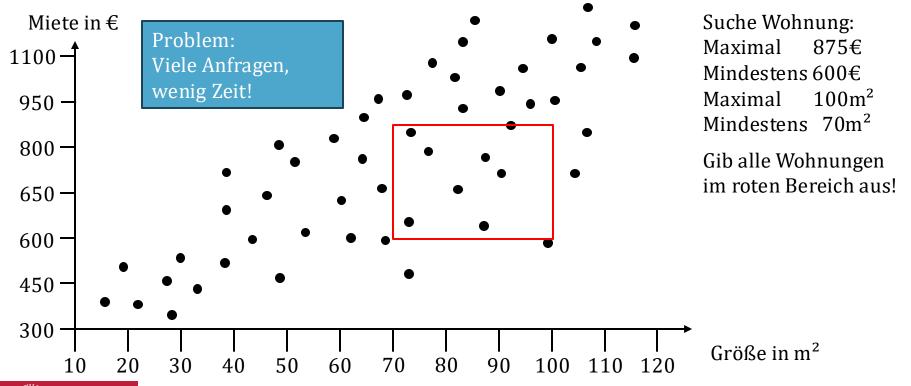
kd-Bäume



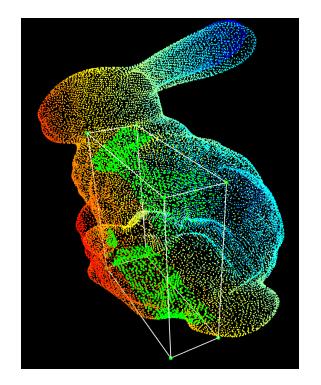
Das sind ja ganz schön viele Punkte ...

Wie genau finden die den nächsten Punkt zum Cursor?

Iterieren die wirklich einfach über die Punktmenge, oder machen die was Schlaueres?

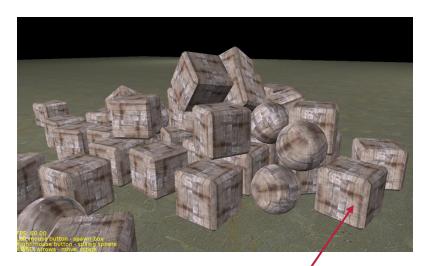


Ramin Kosfeld & Chek-Manh Loi | Quicksort, Mediane, kd-Bäume | Seite 34 $\,$



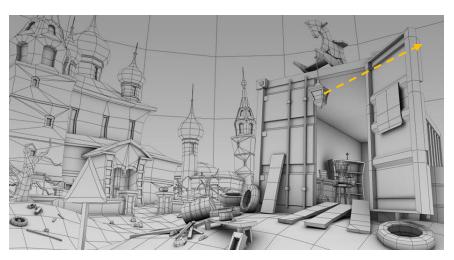
Arbeit mit Punktwolken, z.B. für Laserscans etc.

Aufbauend auf solchen Grundideen kommt man dann zu Problemen wie ...



Kollisionserkennung

z.B.: Muss ich *wirklich* prüfen, ob diese Kiste mit allen Kisten ganz hinten links kollidiert?



Ray Tracing

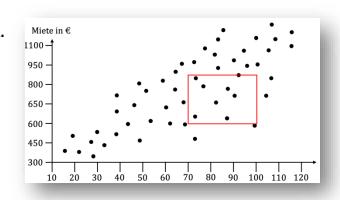
z.B.: Wenn ein Lichtstrahl hier nach vorne verläuft, muss ich dann echt für alle Dreiecke im hinteren Teil der Szene prüfen, ob wir den Strahl schneiden?

...und mehr!

Wir stolpern immer wieder über Probleme der Art ...

- Beantworte schnell Anfragen auf einer großen Menge von Punkten im Raum (2D, 3D, ...)
 - Welcher Punkt in der Menge ist am nächsten zu einem gegebenen Punkt?
 - Finde *alle* Punkte in einem rechteckigen Bereich im Raum!

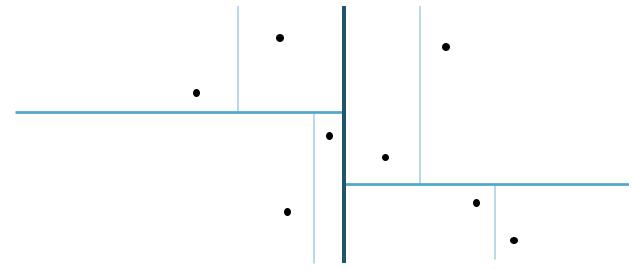
Für beide Probleme bietet sich die Nutzung von kd-Bäumen an. Wir kümmern uns hier um die zweite Fragestellung.



Ideen?

Idee

- Teile den Raum immer wieder entlang einer Achse auf
- Konstruiere somit einen binären Suchbaum
- Wechsele die Achse nach jeder Unterteilung
- Teile den Raum entlang des Medians aller enthaltenen Punkte für gute Aufteilung



kd-Bäume - Konstruktion/Preprocessing

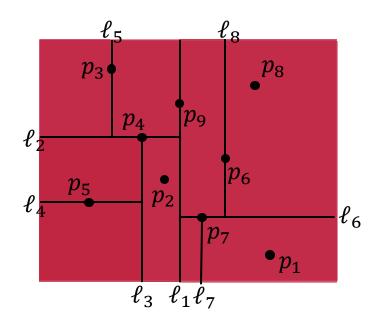
Algorithmus BuildKDTREE

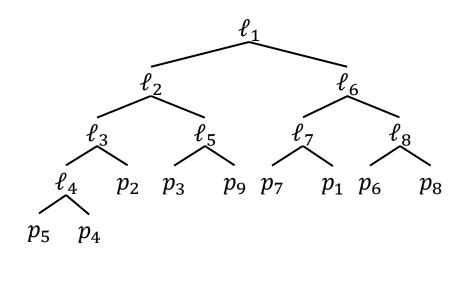
Eingabe: Punktmenge *P*, Rekursionstiefe *depth*

Ausgabe: Wurzel eines k-d-Baums

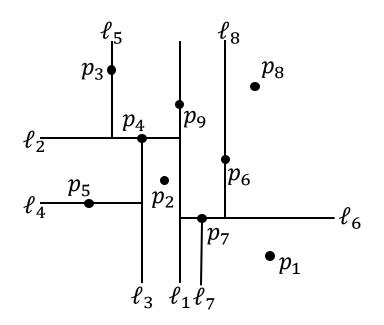
- 1. **if** (|P| = 1)
- 2. **return** Blatt mit diesem Punkt
- 3. **else if** (*depth* ist gerade)
- 4. Teile in zwei Teilmengen P_1 ($\leq \ell$) und P_2 ($> \ell$) an vertikaler Median-Linie ℓ
- 5. **else**
- 6. Teile in zwei Teilmengen P_1 ($\leq \ell$) und P_2 ($> \ell$) an horizontaler Median-Linie ℓ
- 7. Setze $v_{left} := BUILDKDTREE(P_1, depth+1)$
- 8. Setze $v_{right} := BUILDKDTREE(P_2, depth+1)$
- 9. Erzeuge Knoten v für ℓ mit v_{left} und v_{right} als Kinderknoten
- 10. return v

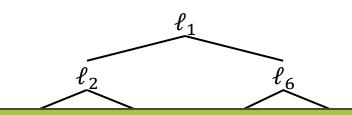
kd-Bäume – Beispiel





kd-Bäume - Beispiel





Laufzeit des Algorithmus ist $O(n \log n)$

Beweis

- (1) Median-Linien können in O(n) Zeit gefunden werden.
- (2) Rekursionsgleichung für die Laufzeit ist also

$$T(n) = O(n) + 2T\left(\left\lceil \frac{n}{2} \right\rceil\right)$$

Nach Mastertheorem ist das $O(n \log n)$.

kd-Bäume – Search Query

Algorithmus SearchKDTree

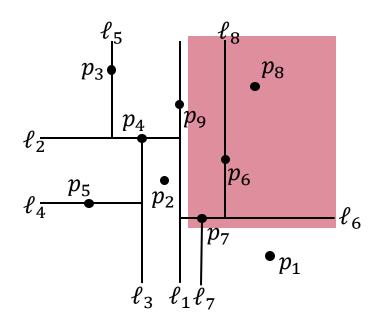
Eingabe: Wurzel *v* eines (Teil-)baums, Rechteck *R*

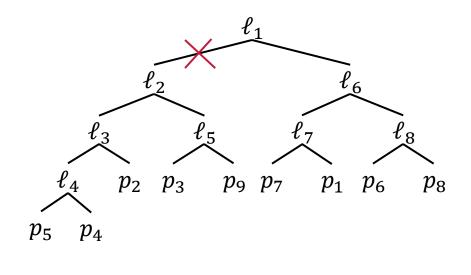
Ausgabe: Knoten unterhalb v, die in R liegen

- 1. **if** (v ist ein Blatt)
- 2. Gib v aus, falls v in R
- 3. **else**
- 4. **if** (Region(l(v)) ganz in R)
- 5. REPORTSUBTREE(l(v))
- 6. **else if** (Region(l(v)) schneidet R)
- 7. SEARCHKDTREE(l(v), R)
- 8. **if** (Region(r(v)) ganz in R)
- 9. REPORTSUBTREE(r(v))
- 10. **else if** (Region(r(v)) schneidet R)
- 11. SEARCHKDTREE(r(v), R)

ReportSubtree(v) gibt alle Punkte im gegebenen v Teilbaum aus

kd-Bäume – Beispiel





Welche Punkte liegen im Rechteck?

Antwort: p_7 p_6 p_8

kd-Bäume – Search Query

Laufzeit ist $O(\sqrt{n} + x)$, wobei x die Anzahl an ausgegebenen Elementen ist.

Das nennt sich *output-sensitiv*, d.h. die Laufzeit ist von der Größe des Outputs abhängig.

Beweisidee:

Wie viele *geschnittene* Regionen müssen betrachtet werden? Man kann die Rekursionsgleichung aufstellen:

$$Q(n) = 2 + 2Q\left(\frac{n}{4}\right).$$

Also $Q(n) \in O(\sqrt{n})$. So viele Elemente können geprüft werden, die nicht in R liegen. Die O(x) sind die Elemente in R.

Algorithmus SearchKDTree

Eingabe: Wurzel *v* eines (Teil-)baums, Rechteck *R*

Ausgabe: Knoten unterhalb v, die in R liegen

- 1. **if** (v ist ein Blatt)
- 2. Gib v aus, falls v in R
- 3. **else**
- 4. **if** (Region(l(v)) ganz in R)
- 5. REPORTSUBTREE(l(v))
- 6. **else if** (Region(l(v)) schneidet R)
- 7. SEARCHKDTREE(l(v), R)
- 8. **if** (Region(r(v)) ganz in R)
- 9. REPORTSUBTREE(r(v))
- 10. **else if** (Region(r(v)) schneidet R)
- 11. SEARCHKDTREE(r(v), R)

kd-Bäume – Höhere Dimensionen

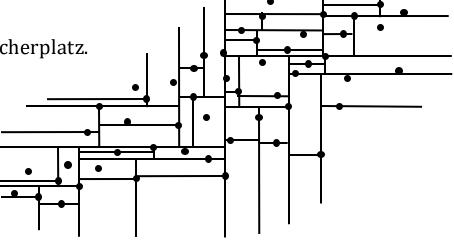
Bisher nur 1D und 2D betrachtet. Laufzeiten für $k \ge 2$ Dimensionen:

• BuildKDTree: $O(n \log n)$

SearchKDTree: $O(n^{1-\frac{1}{k}} + x)$, um x Elemente auszugeben

• FindNearestNeighbor: $O(\log n)$ im Durchschnitt

Weiterer Vorteil: Sie benötigen nur O(n) Speicherplatz.



Fragen?

Klausur

Klausur

Eckdaten

- 12.02.2025 von 8:00 Uhr bis 10:00
- Raumaufteilung wird kurz vorher bekanntgegeben (Mailingliste & Webseite)

Vorbereitung

- Alte Klausuren
- Hausaufgaben
- Tutorien (Tutoren fragen)
- Skript

... detailliertere Infos & Fragestunde rund um die Klausur:

GÜ nächste Woche:)

Gleich hier vorne zum Mitnehmen:

🛠 Originale Altklausuren aus den letzten Jahren 🛠

Nächstes Mal

Wiederholung und Fragestunde

... schon nächste Woche!

