

Algorithmen und Datenstrukturen Übung 1

Ramin Kosfeld und Chek-Manh Loi 07.11.2024

Heute: Beweisführung

Mathematische Aussagen

Mathematische Aussagen sind entweder wahr oder falsch.

- 13 ist eine gerade Zahl.
- Die Summe der ersten n natürlichen Zahlen ist n(n+1)/2.
- Die größte Primzahl ist $2^{82589933} 1$
- Besitzt ein zusammenhängender Graph nur Knoten geraden Grades, besitzt er eine Eulertour.

Mathematische Aussagen

Mathematische Aussagen sind entweder wahr oder falsch.

- 13 ist eine gerade Zahl.
- Es gibt eine Zahl $k \in \mathbb{N}$, sodass 2k = 13
- Die Summe der ersten n natürlichen Zahlen ist n(n+1)/2.
- Für jedes $n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Die größte Primzahl ist 2^{82 589 933} − 1
- Für jede Primzahl p gilt: $p \le 2^{82589933} 1$

• Für jeden zusammenhängenden Graphen G, deren Knotengrade alle gerade sind, gilt: *G* besitzt eine Eulertour

Mathematische Aussagen

Mathematische Aussagen sind entweder wahr oder falsch.

- Es gibt eine Zahl $k \in \mathbb{N}$, sodass 2k = 13
- Für jedes $n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Für jede Primzahl p gilt: $p \le 2^{82589933} 1$
- Für jeden zusammenhängenden Graphen G, deren Knotengrade alle gerade sind, gilt: *G* besitzt eine Eulertour

Welche Aussagen sind wahr?

Logische Verknüpfungen

Negation ("Nicht",¬)

Konjunktion ("Und",∧)

Disjunktion ("Oder",∨)

Implikation ("wenn…dann", ⇒) Äquivalenz ("genau dann wenn", ⇔)

Mathematische Aussagen –

1: Aussage ist wahr

0: Aussage ist falsch

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Implikation & Äquivalenz

Implikation und Äquivalenzen sind transitiv:

$$A \Rightarrow B, B \Rightarrow C$$

$$A \Rightarrow C$$

$$A \Leftrightarrow B, B \Leftrightarrow C$$

$$A \Leftrightarrow C$$

Eine solche Verkettung von Aussagen ist oft die wesentliche Struktur eines Beweises.

Es existiert ein blaues Auto.

Es existiert **KEIN** ein blaues Auto. Alle Autos sind **nicht** blau.

	Existenzaussage	Allaussage
Zeigen	Beispiel reicht als Beweis	Beweis
Widerlegen	Beweis	Beispiel reicht als Beweis

Negation einer Existenzaussage wird zu einer Allaussage. **Negation** einer Allaussage wird zu einer Existenzaussage.

Fragepause

Beweistechniken - Teil 1

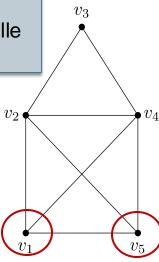
Aus der Vorlesung

Satz 2.4:

- (1) Ein Graph G = (V, E) kann nur dann einen Eulerweg besitzen, wenn es höchstens zwei Knoten mit ungeradem Grad gibt.
- (2) Ein Graph G = (V, E) kann nur dann eine Eulertour besitzen, wenn alle Knoten geraden Grad besitzen.

Beweis: Gibt es in der Vorlesung.

Gibt es Graphen mit genau einem ungeraden Knoten?



"Handshake-Lemma"

Satz 2.5: Für jeden beliebigen einfachen Graphen ist die Zahl der Knoten mit ungeradem Grad gerade.

Beweis:

Betrachte Summe der Knotengrade

$$\sum_{i=1}^{n} \delta(v_i)$$

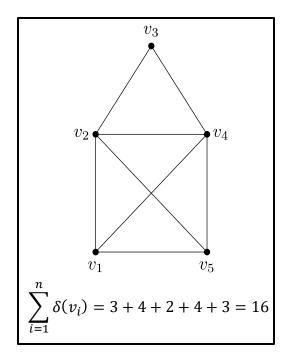
Jede Kante wird doppelt betrachtet, also

$$\sum_{i=1}^{n} \delta(v_i) = 2m$$

Das ist eine gerade Zahl!

Es kann also nur gerade viele Knoten ungeraden Grades geben.

(Gäbe es ungerade viele ungerade Grade, wäre auch die Gradsumme ungerade)



Arten von Beweisen

- Direkter Beweis
- Kontraposition
- Widerspruchsbeweis

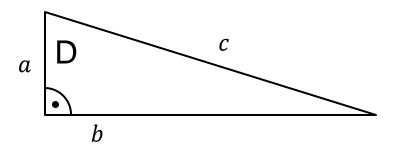
Direkter Beweis

Satz des Pytra
$$a^2 + b^2 = c^2$$

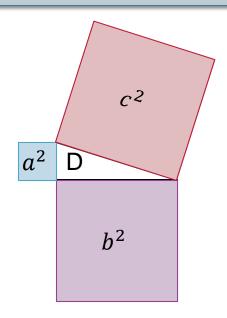
Beweis:

Geht es hier überhaupt um Dreiecke?

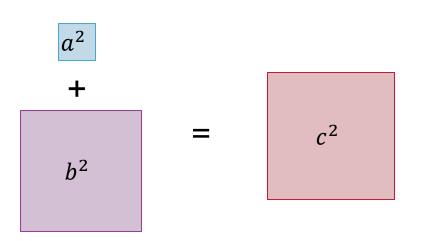
Satz des Pythagoras: Für ein rechtwinkliges Dreieck D mit Kathetenlängen a und b und Hypothenusenlänge c gilt $a^2 + b^2 = c^2$.

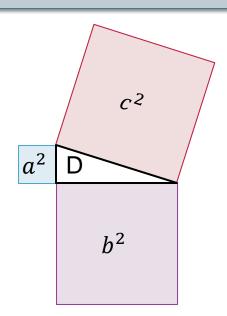


Satz des Pythagoras: Für ein rechtwinkliges Dreieck D mit Kathetenlängen a und b und Hypothenusenlänge c gilt $a^2 + b^2 = c^2$.



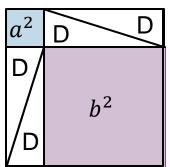
Satz des Pythagoras: Für ein rechtwinkliges Dreieck D mit Kathetenlängen a und b und Hypothenusenlänge c gilt $a^2 + b^2 = c^2$.

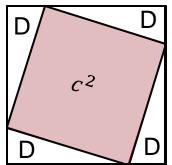




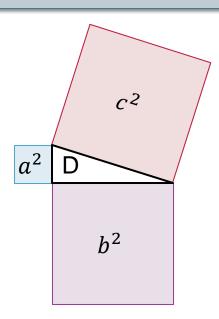
Satz des Pythagoras: Für ein rechtwinkliges Dreieck D mit Kathetenlängen a und b und Hypothenusenlänge c gilt $a^2 + b^2 = c^2$.

Beweis: Betrachte folgende Konstrukte:





Beides sind Quadrate mit Seitenlänge a + bAlso gilt $a^2 + b^2 + 4 \cdot Area(D) = c^2 + 4 \cdot Area(D)$ $\Rightarrow a^2 + b^2 = c^2$



Kontrapostition

Beweise – Kontraposition

Ein direkter Beweis kann schwierig sein, sodass sich die Kontraposition anbietet.

Es gilt

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Wir können also annehmen, dass B nicht gilt und folgern daraus, dass auch A nicht gelten kann.

Beispiel: Sei $n \in \mathbb{Z}$. "Wenn n^2 ungerade ist, ist n ungerade" wird zu "Wenn n gerade ist, ist n^2 gerade."

Beweis: n gerade \Rightarrow es ex. $k \in \mathbb{Z}$ mit 2k = n

$$\Rightarrow n^2 = 4k^2 = 2 \cdot 2k^2$$
, also eine gerade Zahl.

Widerspruchsbeweis

Beweise – Widerspruch

Mathematische Aussagen sind entweder wahr oder falsch. Um eine wahre Aussage zu beweisen, können wir zeigen, dass die Negation nicht gilt.

Diese Beweistechnik nennt man Widerspruchsbeweis.

Widerspruchsbeweis für Aussage A:

- Wir nehmen an: ¬A gilt.
- Führe ¬A zu einem Widerspruch ³
- Die Annahme ¬A muss falsch sein, denn sie ist widersprüchlich
- ⇒ A muss wahr sein.

- Haben kein ganz genaues Ziel
- Nur: Wir wollen irgendwie zeigen, dass unter dieser Annahme was richtig böse kaputt ist

Widerspruchsbeweis - Beispiel

Beispiel: Besitzt ein zusammenhängender Graph G eine **Brücke** e, so besitzt G Knoten mit ungeradem Grad.

Beweis: Wir nehmen an, diese Aussage gilt nicht.

Also: Ein zusammenhängender Graph *G* besitzt eine Brücke *und* nur Knoten mit geradem Grad.

Dann existiert in G eine Eulertour.

Da *e* auf der Eulertour liegt und sein Entfernen *G* in zwei Komponenten teilt, können wir eine Komponente verlassen, aber nicht dorthin zurückkehren.

Wir können also keine Eulertour in G konstruieren.

Widerspruchsbeweis - Beispiel

Beispiel: Besitzt ein zusammenhängender Graph G eine **Brücke** e,

so besitzt *G* Knoten mit ungeradem Grad.

Beweis: Wir nehmen an, diese Aussage gilt nicht.

Also: Ein zusammenhängender Graph G besitzt eine Brüchen Grand

nur Knoten mit geradem Grad.

Dann existiert in G eine Eulertour.

Da e auf der Eulertour liegt und sein Entfernen G in zwei Komponenten teilt, können wir eine Komponente verlass nicht dorthin zurückkehren.

Wir können also keine Eulertour in *G* konstruieren.

Die Annahme ist widersprüchlich, also muss die ursprüngliche Aussage gelten.

Äquivalenzen

Beweise – Äquivalenzen

Aussagen der Form $A \Leftrightarrow B$ können bewiesen werden, indem sowohl $A \Rightarrow B$ und $B \Rightarrow A$ gezeigt werden.

Bsp: Ein zusammenhängender Graph besitzt genau dann eine Eulertour, wenn jeder Knotengrad gerade ist.

Beweis $A \Leftrightarrow B$:
Beweis $A \Rightarrow B$

Beweis $B \Rightarrow A$

Aus beiden vorangegangenen Beweisen folgt $A \Leftrightarrow B$.

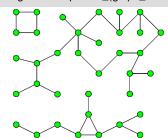
Um eine solche Aussage zu *widerlegen*, reicht es $A \Rightarrow B$ **oder** $B \Rightarrow A$ zu widerlegen.

Bsp: Ein Graph ist genau dann zusammenhängend, wenn jeder Knotengrad mindestens zwei ist.

Mehr Beispiele

Zusammenhang von Graphen

Satz: Wenn ein Graph G zusammenhängend ist, enthält er mindestens n-1 Kanten.



Beweis:

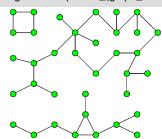
Fügt man eine Kante in einen Graphen ein, so kann sich die Anzahl an Komponenten nur um eins verringern.

Ein Graph ohne Kanten besitzt n Komponenten, ein zusammenhängender Graph nur eine Komponente.

Also müssen mindestens n-1 Kanten eingefügt werden, um Zusammenhang zu gewährleisten.

Kreise in Graphen

Satz: Wenn jeder Knoten eines Graphen *G* einen Grad von mindestens zwei besitzt, enthält *G* einen Kreis.



Beweis:

Betrachte einen längsten Pfad $P := v_1, v_2, ..., v_i$ in G und einen Knoten v_j , der adjazent zu v_1 ist.

 v_j muss auf P liegen, anderfalls könnte P erweitert werden.

Dann ist $K := v_1, v_2, ..., v_j, v_1$ ein Kreis in G.

Kreisfreie Graphen

Satz: Ist ein Graph G kreisfrei und zusammenhängend, dann enthält er exakt n-1 Kanten.

Beweis:

Um zusammenhängend zu sein, brauchen wir mind. n-1 Kanten.

Bleibt zu zeigen: Um kreisfrei zu sein, dürfen wir maximal n-1 Kanten besitzen. Annahme: Wir besitzen mindestens n Kanten. Wir folgern, dass G dann auch einen Kreis besitzt.

Entferne zunächst nach und nach alle Knoten mit Grad 1 samt Kante. Da wir das höchstens n-k mal machen können (mit 0 < k), bleiben k Knoten und $k \ge k$ Kanten übrig.

Weiter bleibt ein Graph übrig, in dem jeder Knoten einen Grad von mindestens zwei besitzt. Er kann also nicht kreisfrei sein. Daraus folgt, dass auch *G* nie kreisfrei war.

Merkzettel:

https://www.ibr.cs.tu-bs.de/alg/Merkzettel/proof-booklet.pdf

Beweise – Teil 2 (Teaser)

