

Kapitel 4.6: AVL-Bäume

Algorithmen und Datenstrukturen WS 2024/25

Prof. Dr. Sándor Fekete

4.5 Binäre Suchbäume

Schnell:

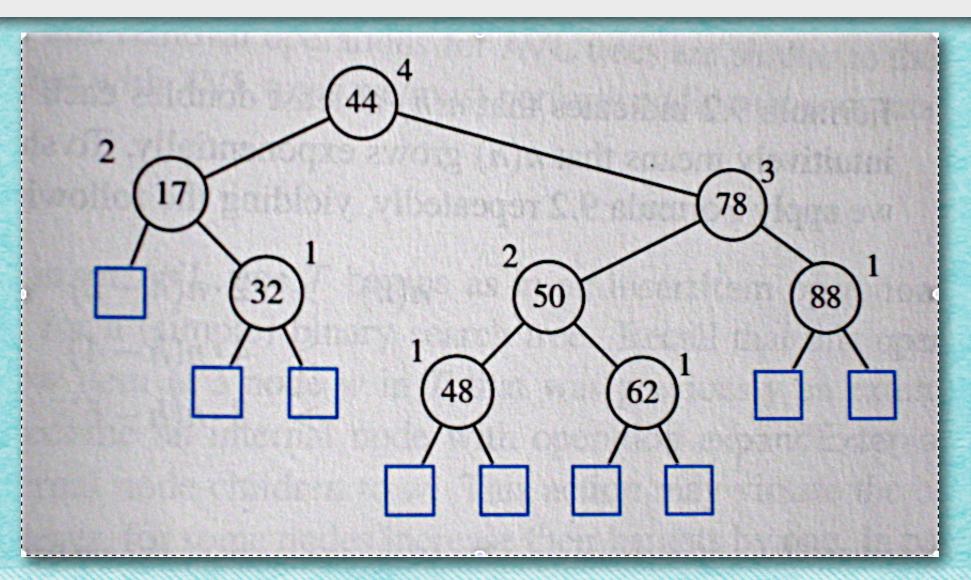
- O(log n): logarithmische Zeit
- O(h): Tiefe des Baumes

Also: Wie können wir die Tiefe des Baumes auf O(log n) beschränken?

4.6 AV L-Bäume

Definition 4.7 (Nach Adel'son-Vel'skiĭ und Landis, 1962)

- (1) Ein binärer Suchbaum ist <u>höhenbalanciert</u>, wenn sich für jeden inneren Konten v die Höhe der beiden Kinder von v um höchstens 1 unterscheidet.
- (2) Ein höhenbalancierter Suchbaum heißt auch AVL-Baum.



Ab an die Tafel!

s.fekete@tu-bs.de

4.6 AV L-Bäume

Satz 4.8

Ein AVL-Baum mit n Knoten hat höchstens Höhe O(log n).

Beweis:

Wie gesehen!

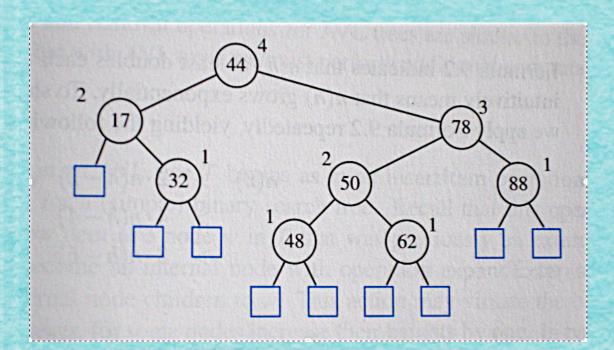
Damit noch offen:

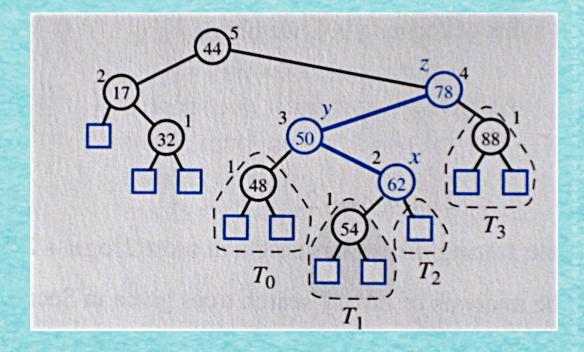
Wie erhält man Höhenbalanciertheit in dynamischen Situationen?

Einfügen ("INSERT")

Aufgabe:

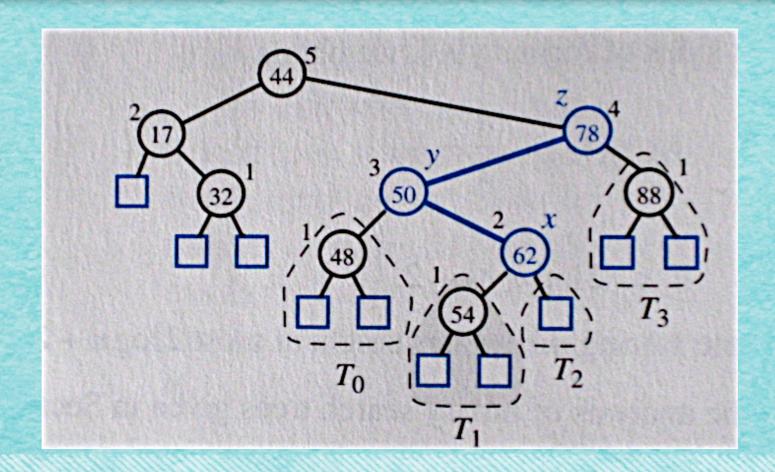
• Füge 54 ein!

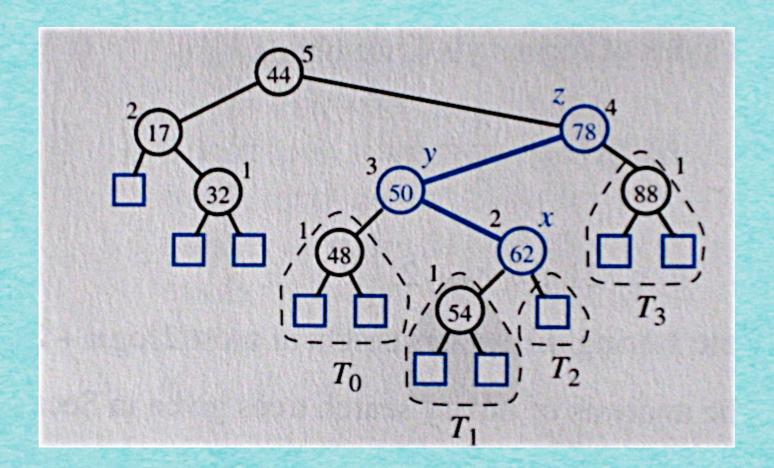




Idee:

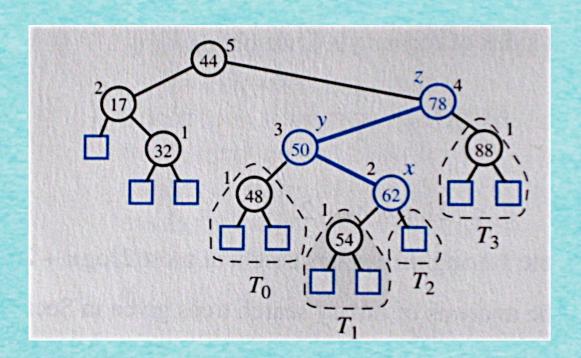
• Höhenbalanciertheit ändert sich beim Einfügen einzelner Elemente nur wenig - und lokal!

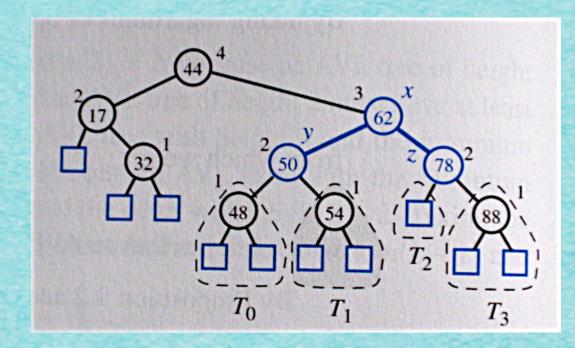




Was tun?

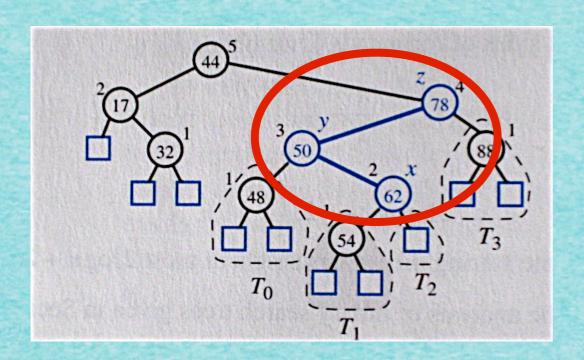
- Teilbaum der 78 ist nicht höhenbalanciert.
- Die Höhe sollte höchstens 3 sein, damit auch der ganze Baum unter der 44 höhenbalanciert ist.
- Betrachte Knoten 78, Kind 50, Enkel 62!

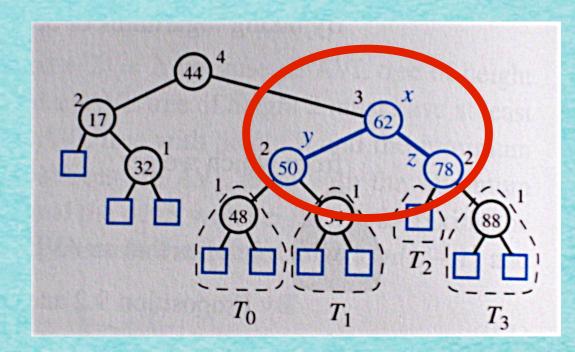




Neuer Baum!

- Höhenbalanciert
- Nur lokale Umsetzung der Knoten 78, 50, 62
- Vorher drei Knoten untereinander, jetzt der mittlere über zwei anderen.
- "Rotation"





Neuer Baum!

- Höhenbalanciert
- Nur lokale Umsetzung der Knoten 78, 50, 62
- Vorher drei Knoten untereinander, jetzt der mittlere über zwei anderen.
- "Rotation"

Algorithmus 4.9

INPUT: Knoten x eines binären Suchbaumes T, Vaterknoten y, Großvaterknoten z

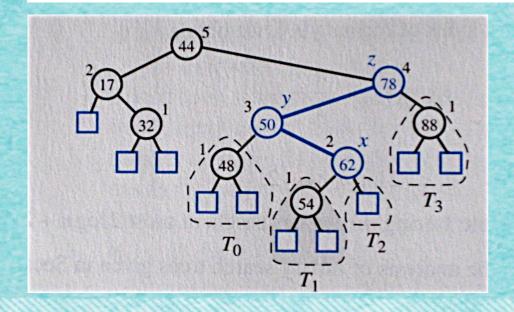
OUTPUT: Binärer Suchbaum T nach Umstrukturierung mit x, y, z

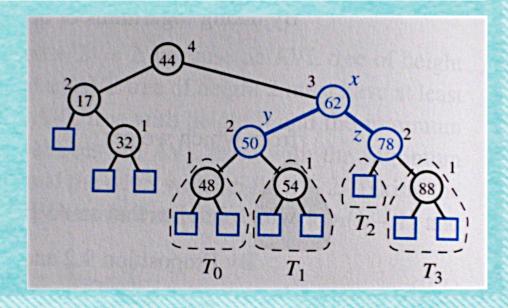
RESTRUCTURE(x)

1. Sei (a, b, c) die Größensortierung der Knoten x, y, z; seien (T₀ , T₁ , T₂ , T₃) die Größensortierung der vier Teilbäume unter x, y, z, die nicht Wurzeln x, y, z haben

- 2. Ersetze den Teilbaum mit Wurzel z durch einen neuen Teilbaum mit Wurzel b.
- 3. Setze a als linkes Kind von b, mit T_0 und T_1 als linken und rechten Teilbaum unter a; setze c als rechtes Kind von b, mit T_2 und T_3 als linken und rechten Teilbaum unter c.

4. RETURN





Satz 4.10

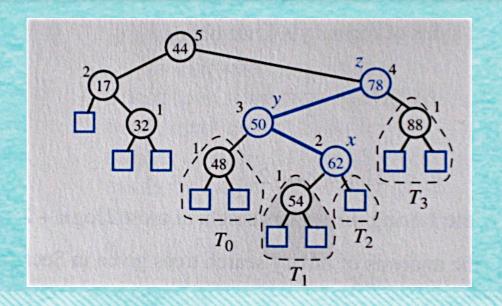
Mithilfe von RESTRUCTURE kann man einen AVL-Baum auch nach einer Einfüge-Operation höhenbalanciert halten. Die Zeit dafür ist O(1).

Beweis:

Angenommen, durch Hinzufügen eines Knotens v ist der Baum unbalanciert geworden.

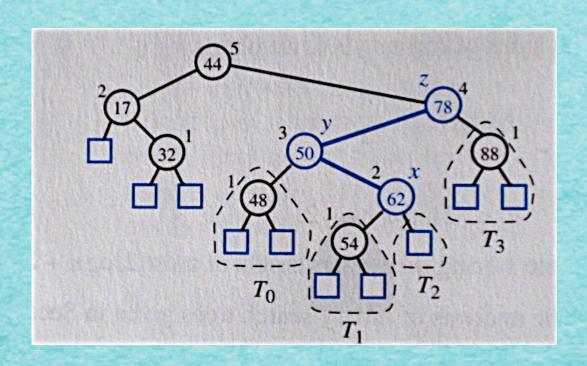
Sei z der nach dem Einfügen niedrigste unbalancierte Vorfahre von v. Sei y das Kind von z, das Vorfahre von v ist; y muss zwei höher sein als das andere Kind von z.

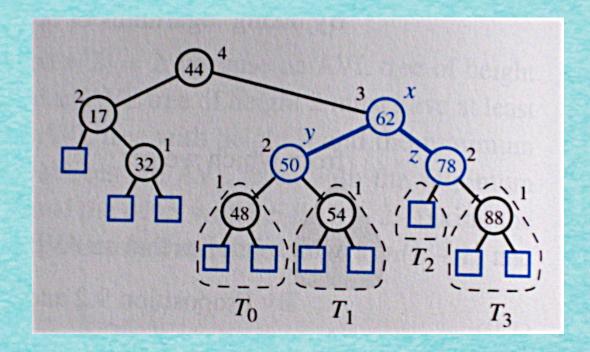
Sei x das Kind von y, das im selben Teilbaum wie v liegt.



Beweis von Satz 4.10 (Forts.):

Jetzt ersetzen wir die Teilstruktur z, y, x (3 Knoten untereinander) durch eine Teilstruktur mit 2 Knoten unter einem. Z.z.: Danach ist der Baum ein AVL-Baum!



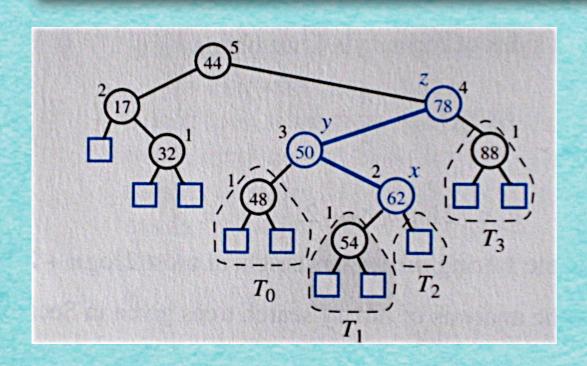


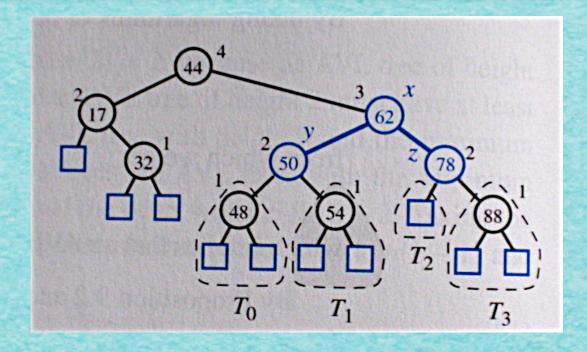
Betrachte jetzt die möglichen Anordnungen von x, y, z!

Beweis von Satz 4.10 (Forts.):

Welche Anordnungen gibt es?

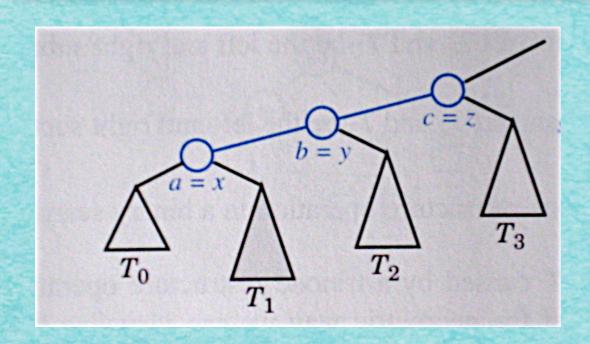
- $(1) \quad x \le y \le z$
- $(2) \quad x \le z \le y$
- $(3) \quad y \le x \le z$
- $(4) \quad y \le z \le x$
- $(5) \quad z \le x \le y$
- $(6) \quad z \le y \le x$

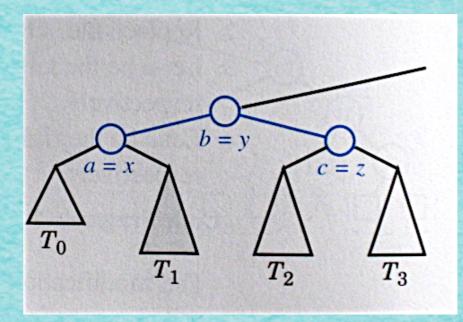




Beweis von Satz 4.10 (Forts.):

 $(1) \quad x \le y \le z$

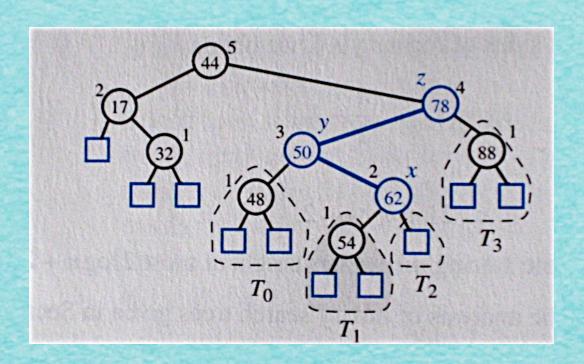




Der Baum ist wieder höhenbalanciert!

Beweis von Satz 4.10 (Forts.):

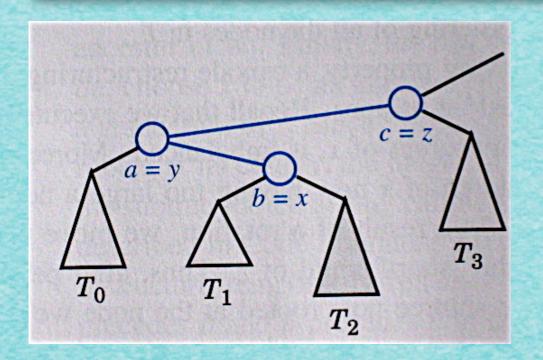
 $(2) \quad x \le z \le y$

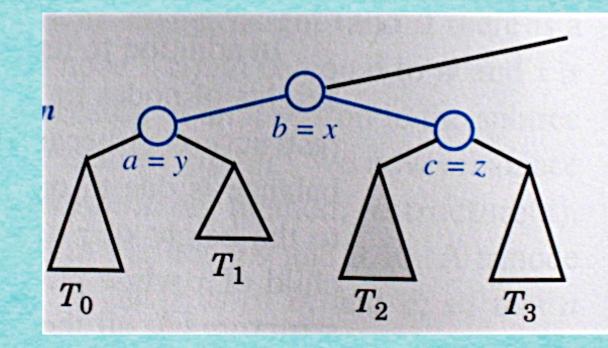


Der Fall kann nicht auftreten!

Beweis von Satz 4.10 (Forts.):

 $(3) \quad y \le x \le z$

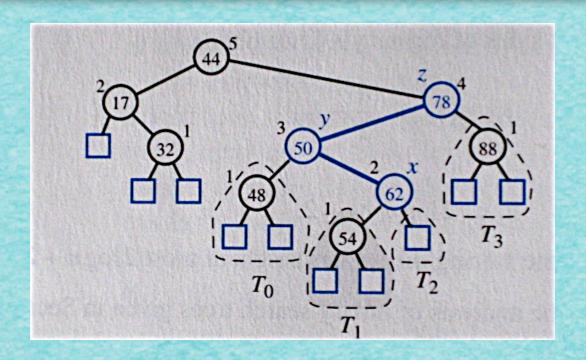




Der Baum ist wieder höhenbalanciert!

Beweis von Satz 4.10 (Forts.):

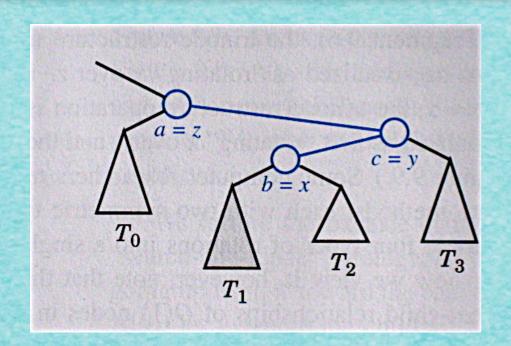
 $(4) \quad y \le z \le x$

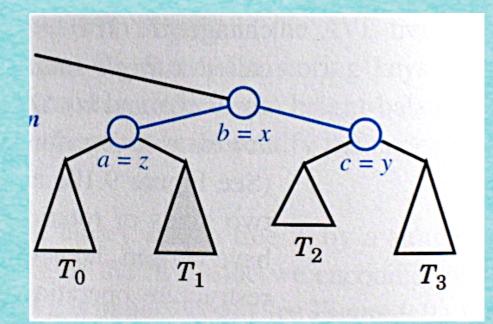


Der Fall kann nicht auftreten!

Beweis von Satz 4.10 (Forts.):

 $(5) \quad z \le x \le y$

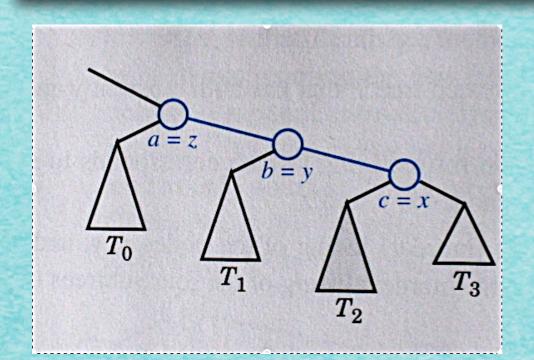


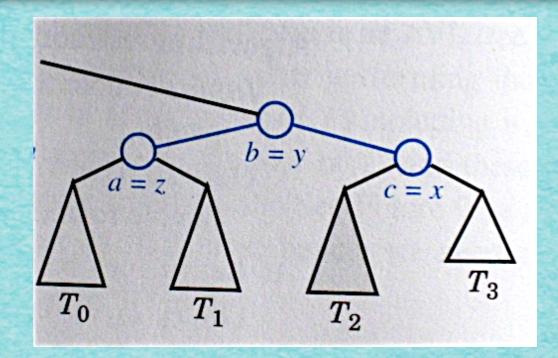


Der Baum ist wieder höhenbalanciert!

Beweis von Satz 4.10 (Forts.):

(6) z≤y≤x





Der Baum ist wieder höhenbalanciert!

Alle Schritte erfordern nur konstant viele Rechenoperationen.

Mehr demnächst!

s.fekete@tu-bs.de