Algorithmen und Datenstrukturen

Prof. Dr. Sándor P. Fekete Ramin Kosfeld Chek-Manh Loi

Präsenzblatt 0

Dieses Blatt dient lediglich der persönlichen Vorbereitung. Es wird nicht abgegeben und geht nicht in die Bewertung ein. Die Besprechung der Aufgaben und ihrer Lösungen erfolgt in den kleinen Übungen in der Woche vom 04.11.2024.

Präsenzaufgabe 1 (Begriffe der Graphentheorie):

Bestimme für den in Abbildung 1 dargestellten Graphen G = (V, E) das Folgende:

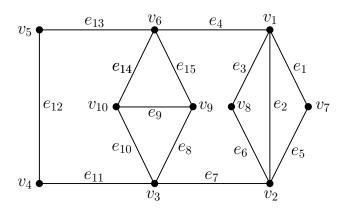


Abbildung 1: Der Graph G

- a) Alle zu v_1 adjazenten Knoten,
- b) alle zu v_1 inzidenten Kanten,
- c) eine Kantenfolge von v_1 nach v_4 , die kein Weg ist,
- d) einen Weg von v_1 nach v_4 , der kein Pfad ist,
- e) einen Pfad von v_1 nach v_4 ,
- f) einen Eulerweg (oder begründe, dass dieser nicht existiert),
- g) einen Hamiltonpfad (oder begründe, dass dieser nicht existiert),
- h) einen Hamiltonkreis (oder begründe, dass dieser nicht existiert).

Präsenzaufgabe 2 (Fibonacci-Zahlen):

Die Fibonacci-Zahlen sind rekursiv definiert. So berechnet sich eine bestimmte Fibonacci-Zahl aus der Summe der beiden vorherigen Fibonacci-Zahlen. Konkret: F(n) := F(n-1) + F(n-2), wobei F(0) = 0 und F(1) = 1. Wir wollen nun zwei Algorithmen (siehe Algorithmus 1) testen, die F(n) berechnen.

- a) Berechne F(5) mit FIBONACCIREK und gib dabei *alle* Aufrufe der Funktion an. Wie oft wird eine Summe berechnet? Hat FIBONACCIREK alle Eigenschaften eines Algorithmus?
- b) Berechne F(5) mit FIBONACCI und gib dabei die Werte aller f(i) aus. Wie viele Summen wurden berechnet? Hat FIBONACCI alle Eigenschaften eines Algorithmus?

```
1: function FIBONACCI(n)
1: function FibonacciRek(n)
                                                     f(0) := 0
                                              2:
      if n \le 1 then
2:
                                                     f(1) := 1
                                              3:
          return n
3:
                                                    for i in 2, \ldots, n do
                                              4:
      a := \text{FibonacciRek}(n-1)
4:
                                                        f(i) := f(i-1) + f(i-2)
                                              5:
      b := \text{FibonacciRek}(n-2)
      return a + b
                                                    return f(n)
                                              6:
```

Algorithmus 1: Zwei Algorithmen für F(n): Rekursiv (links) und "mit Gedächtnis" (rechts)

Präsenzaufgabe 3 (kürzeste Pfade):

Sei G = (V, E) ein einfacher Graph. Für einen Pfad $P = (v_1, \ldots, v_i)$ ist die Länge von P die Anzahl der Kanten auf diesem Pfad. Sei nun P ein kürzester Pfad von Knoten v_1 nach v_i .

Zeige oder widerlege: Jeder Teilpfad $P' = (v_k, \dots, v_\ell)$ von P mit $1 \le k \le \ell \le i$ ist ein kürzester Pfad zwischen v_k und v_ℓ .

Präsenzaufgabe 4 (Rundreise):

Abbildung 2 zeigt Städte der USA und eine Distanzmatrix. Die Zahlen geben die Entfernung pro 10 Meilen an. Beispielsweise ist die Distanz von Chicago nach Dallas 920 Meilen. Ein Handelsreisender möchte nun alle Städte ablaufen und dabei möglichst wenig Meilen zurücklegen.

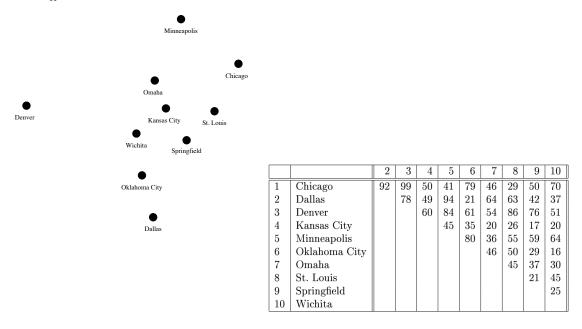


Abbildung 2: Städte der USA (links) und eine Distanzmatrix (rechts, je 10 Meilen)

- a) Wie viele Kanten braucht man für eine Tour? (Hinweis: Diese Frage bezieht sich nur auf die Anzahl, sie ist unabhängig von den zurückgelegten Distanzen.)
- b) Finde eine möglichst kurze Tour, d.h. eine für die die Summe der Entfernungen der ausgewählten Kanten möglichst klein ist.
- c) Wie gut ist Deine Tour? Gib eine Mindestdistanz für jede mögliche Städterundreise an und vergleiche diese mit der Länge der von Dir gefundenen Tour.