



# Mathematical Methods of Algorithmics Tutorial 0 — Examples, Modeling & Solving in Practice

# Board: Example Simplex with Dictionaries

$$\max 6x_1 + 8x_2 + 5x_3 + 9x_4$$
s.t.  $2x_1 + x_2 + x_3 + 3x_4 \le 5$ 

$$x_1 + 3x_2 + x_3 + 2x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

# Modeling Problems as Linear Programs & Solving

# Idea of Modeling

- We can solve LPs, so if we can model problem A as LP, we can solve A
- Model: Efficiently turn concrete problem instance into concrete LP
- The solution of that LP should give us the solution to A
- Similar to reductions from complexity theory

# **Solving LPs**

How can we solve LPs in practice?

### Maximum Network Flow

Given: directed graph G=(V,E) with edges with capacities  $c(e)\in\mathbb{R}_{\geq 0}$ 

- See board for an example
- For example, think about pipelines, or cars on roads or ships on rivers

#### Desired:

- Flow f(e) from source  $s \in V$  to sink  $t \in V$ ,  $0 \le f(e) \le c(e)$  for all edges
- Except for source & sink: Flow conservation what comes in must go out
- Maximize the flow value, i.e., the value flowing into the sink

# Model (encode this problem) as LP!

### Maximum Network Flow

#### Variables:

•  $x_{vw}$ , flow value on edge  $vw \in E$ 

Objective: 
$$\max \sum_{vt \in E} x_{vt} - \sum_{tv \in E} x_{tv}$$

#### **Constraints:**

Flow value on each edge:  $\forall vw \in E : 0 \le x_{vw} \le c(vw)$ 

Flow conservation:  $\forall v \in V \setminus \{s, t\}$  :  $\sum_{vw \in E} x_{vw} = \sum_{wv \in E} x_{wv}$ 

## Possible Additional Constraints

# **Vertex Capacities:**

• At most c(v) incoming flow into  $v \in V \setminus \{s, t\}$ 

#### **Minimum Flow:**

Some edges with 'minimal' capacity

#### **Minimum Cost Maximum Flow:**

- It costs w(e)f(e) units to ship f(e) units along edge e
- Two-staged process: Find maximum flow first, minimize costs later!

Enables us to adapt our algorithm to new constraints quickly!

#### LP Solvers in Practice

Different solvers exist; differences in quality (performance) are quite drastic.

#### **Commercial solvers:**

- CPLEX
- Gurobi

Both are good, Gurobi tends to be a bit faster and is more actively developed.

Both have free academic licenses for students/researchers.

#### Open source toolkits:

- SCIP (tends to be the fastest open-source toolkit)
- COIN-OR (CLP, CBC)
- GLPK (GNU Linear Programming Kit)

All these toolkits can also handle Mixed Integer Linear Programs (Integrality Constraints).

**Note:** Those restrictions make the problem NP-hard and can make solving much slower.