Mathematical Methods of Algorithms

Dr. Phillip Keldenich Dr. Ahmad Moradi Winter 2023/24

Due: 24.01.2024 Discussion: 24.01.2024

Homework 4

Solutions are to be left in the dedicated cupboard (see the pic) until 15:00 on the due date. Please put your name on all pages.

Exercise 1 (Dictionaries and Matrix Notation):	$1 \checkmark$
Consider the following linear programming problem:	

 $\max - 6x_1 + 40x_2 - 10x_3$ $- 2x_1 + 10x_2 - 2x_3 \le 10$ $+ 1x_1 + 9x_2 + 5x_3 \le 15$

$$x_1, x_2, x_3 \ge 0$$

Suppose that, in solving this problem, you have arrived at the following dictionary:

$$\frac{\zeta = 40 + 2x_1 - 4x_4 - 18x_3}{x_2 = 1 + \frac{1}{5}x_1 - \frac{1}{10}x_4 - \frac{1}{5}x_3}$$
$$x_5 = 6 - \frac{14}{5}x_1 + \frac{9}{10}x_4 - \frac{16}{5}x_3$$

- (a) Which variables are basic? Which are nonbasic?
- (b) Write down the vector, $x^*_{\mathcal{B}}$, of current primal basic solution values.
- (c) Write down the vector, $z_{\mathcal{N}}^*$, of current dual nonbasic solution values.
- (d) Write down $B^{-1}N$.
- (e) Is the primal solution associated with this dictionary feasible?
- (f) Is it optimal?
- (g) Is it degenerate?

Exercise 2 (Recovering Dictionaries): $1 \checkmark$

Consider the following linear programming problem:

 $\max + 1x_1 + 2x_2 + 4x_3 + 8x_4 + 16x_5$ $+ 1x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 \le 2$ $+ 7x_1 + 5x_2 - 3x_3 - 2x_4 \le 0$

$x_1, x_2, x_3, x_4, x_5 \ge 0$

Consider the situation in which x_3 and x_5 are basic and all other variables are nonbasic. Write down:

(a) B(b) N(c) b(d) $c_{\mathcal{B}}$ (e) $c_{\mathcal{N}}$ (f) $B^{-1}N$ (g) $x_{\mathcal{B}}^* = B^{-1}b$ (h) $\zeta^* = c_{\mathcal{B}}^T B^{-1}b$ (i) $z_{\mathcal{N}}^* = (B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}}$ (j) The dictionary correspondence of $C_{\mathcal{A}}$

(j) The dictionary corresponding to this basis.

Exercise 3 (Primal Simplex): $2\checkmark$

Solve the following LP using the matrix form of the primal simplex algorithm.

$$\max + 6x_1 + 8x_2 + 5x_3 + 9x_4 + 2x_1 + 1x_2 + 1x_3 + 3x_4 \le 5 + 1x_1 + 3x_2 + 1x_3 + 2x_4 \le 3 x_1, x_2, x_3, x_4 \ge 0$$

Exercise 4 (Dual in Matrix Form): $2 \checkmark$

Find the dual of the following linear program.

$$\begin{array}{cccc} \max & c^T x \\ a \leq & Ax & \leq & b \\ l \leq & x & \leq & u \end{array}$$