Homework 4

Solutions are to be left in the dedicated cupboard (see the pic) until 15:00 on the due date. Please put your name on all pages.

Exercise 1 (Dictionaries and Matrix Notation): $1 \checkmark$
Consider the following linear programming problem:

$$
\begin{array}{ccc}
\max -6 x_{1}+40 x_{2}-10 x_{3} & \\
-2 x_{1}+10 x_{2}-2 x_{3} & \leq 10 \\
+1 x_{1} \quad+9 x_{2}+5 x_{3} & \leq 15 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Suppose that, in solving this problem, you have arrived at the following dictionary:

$$
\begin{aligned}
\zeta= & 40+\frac{2 x_{1}-}{} 4 x_{4}-\frac{18 x_{3}}{} \\
\hline x_{2}= & 1+\frac{1}{5} x_{1}-\frac{1}{10} x_{4}-\frac{1}{5} x_{3} \\
x_{5} & =6-\frac{14}{5} x_{1}+\frac{9}{10} x_{4}-\frac{16}{5} x_{3}
\end{aligned}
$$

(a) Which variables are basic? Which are nonbasic?
(b) Write down the vector, $x_{\mathcal{B}}^{*}$, of current primal basic solution values.
(c) Write down the vector, $z_{\mathcal{N}}^{*}$, of current dual nonbasic solution values.
(d) Write down $B^{-1} N$.
(e) Is the primal solution associated with this dictionary feasible?
(f) Is it optimal?
(g) Is it degenerate?

Exercise 2 (Recovering Dictionaries): $1 \checkmark$

Consider the following linear programming problem:

$$
\begin{array}{rlll}
\max & +1 x_{1}+2 x_{2}+4 x_{3}+8 x_{4}+16 x_{5} & \\
& +1 x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} & \leq 2 \\
& +7 x_{1}+5 x_{2}-3 x_{3}-2 x_{4} & \leq 0
\end{array}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
$$

Consider the situation in which x_{3} and x_{5} are basic and all other variables are nonbasic. Write down:
(a) B
(b) N
(c) b
(d) $c_{\mathcal{B}}$
(e) $c_{\mathcal{N}}$
(f) $B^{-1} N$
(g) $x_{\mathcal{B}}^{*}=B^{-1} b$
(h) $\zeta^{*}=c_{\mathcal{B}}^{T} B^{-1} b$
(i) $z_{\mathcal{N}}^{*}=\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}$
(j) The dictionary corresponding to this basis.

Exercise 3 (Primal Simplex): $2 \checkmark$

Solve the following LP using the matrix form of the primal simplex algorithm.

$$
\begin{gathered}
\max \quad+6 x_{1} \quad+8 x_{2}+5 x_{3} \quad+9 x_{4} \\
+2 x_{1} \quad+1 x_{2}+1 x_{3} \quad+3 x_{4} \leq 5 \\
+1 x_{1} \quad+3 x_{2}+1 x_{3} \quad+2 x_{4} \leq 3 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

Exercise 4 (Dual in Matrix Form): $2 \checkmark$
Find the dual of the following linear program.

$$
\begin{aligned}
\max & c^{T} x \\
a \leq \quad A x & \leq b \\
l \leq \quad x & \leq u
\end{aligned}
$$

