Linear Programming

[V. CH8]: Problems in General Form

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department TU Braunschweig

January 17, 2024

Problems in General Form

Linear Programming Problem in General Form

So far, we have mostly seen problems in standard form. What did we do when the problem did not have standard form?

Linear Programming Problem in General Form

So far, we have mostly seen problems in standard form. What did we do when the problem did not have standard form?

Very often, in practice, we have problems as follows (allowing for infinite bounds).

$$
\begin{gathered}
\max c^{T} x \text { s.t. } \\
a \leq A x \leq b \\
\ell \leq x \leq u
\end{gathered}
$$

Standard form translation introduces more variables or constraints. While that has no influence on O-notation running times, it does affect practical performance.

Linear Programming Problem in General Form

So far, we have mostly seen problems in standard form. What did we do when the problem did not have standard form?

Very often, in practice, we have problems as follows (allowing for infinite bounds).

$$
\begin{gathered}
\max c^{T} x \text { s.t. } \\
a \leq A x \leq b \\
\ell \leq x \leq u
\end{gathered}
$$

Standard form translation introduces more variables or constraints. While that has no influence on O-notation running times, it does affect practical performance.

Can we extend Simplex to handle such problems directly?

EXAMPLE

maximize		$3 x_{1}-$	x_{2}	
subject to	$1 \leq$	$-x_{1}+$	$x_{2} \leq$	5
	$2 \leq$	$-3 x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$2 x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}		\leq
	0		$x_{2} \leq$	6

Some notes:

EXAMPLE

maximize		$3 x_{1}-$	x_{2}	
subject to	$1 \leq$	$-x_{1}+$	$x_{2} \leq$	5
	$2 \leq$	$-3 x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$2 x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$0 \leq$		$x_{2} \leq$	6

Some notes:

- This is often the model professional LP-solvers handle; some parts of their interfaces refer to this type of model.

EXAMPLE

maximize		$3 x_{1}-$	x_{2}	
subject to	$1 \leq$	$-x_{1}+$	$x_{2} \leq$	5
	$2 \leq$	$-3 x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$2 x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$0 \leq$		$x_{2} \leq$	6

Some notes:

- This is often the model professional LP-solvers handle; some parts of their interfaces refer to this type of model.
- We do not have a general $x \geq 0$ constraint; 0 is no longer special. Instead of a fixed lower bound of zero, we have different lower and upper bounds.

ExAMPLE

maximize		$3 x_{1}-$	x_{2}	
subject to	$1 \leq$	$-x_{1}+$	$x_{2} \leq$	5
	$2 \leq$	$-3 x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$2 x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$0 \leq$		$x_{2} \leq$	6

Some notes:

- This is often the model professional LP-solvers handle; some parts of their interfaces refer to this type of model.
- We do not have a general $x \geq 0$ constraint; 0 is no longer special. Instead of a fixed lower bound of zero, we have different lower and upper bounds.
- In the general case, we will have infinities as some lower or upper bounds. We let $\infty \cdot x=\infty$ for $x>0, \infty \cdot x=0$ for $x=0$ and $\infty \cdot x=-\infty$ for $x<0$.

Slack Variables, Reinterpreted

How do we get to equalities now, without duplicating constraints?

Slack Variables, Reinterpreted

How do we get to equalities now, without duplicating constraints?
Hint: Our variables can now have upper and lower bounds!

Slack Variables, Reinterpreted

How do we get to equalities now, without duplicating constraints?
Hint: Our variables can now have upper and lower bounds!
The slack w_{1} for $1 \leq-x_{1}+x_{2} \leq 5$ is now simply $w_{1}=-x_{1}+x_{2}$ with bounds $1 \leq w_{1} \leq 5$.

Slack Variables, Reinterpreted

How do we get to equalities now, without duplicating constraints?
Hint: Our variables can now have upper and lower bounds!
The slack w_{1} for $1 \leq-x_{1}+x_{2} \leq 5$ is now simply $w_{1}=-x_{1}+x_{2}$ with bounds $1 \leq w_{1} \leq 5$.
Result has only equality constraints and variables with upper and lower bounds.

maximize		$3 x_{1}-$	x_{2}	
subject to	$w_{1}=$	$-x_{1}+$	x_{2}	
	$w_{2}=$	$-3 x_{1}+$	$2 x_{2}$	
	$w_{3}=$	$2 x_{1}-$	x_{2}	
	$-2 \leq$	x_{1}	\leq	∞
	$0 \leq$		$x_{2} \leq$	6
	$1 \leq$	w_{1}	\leq	5
	$-\infty \leq$	w_{2}	\leq	10
	$0 \leq$	w_{3}	\leq	0

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones. Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?

No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}	0^{*}		
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible?

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}	0^{*}		
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}	0^{*}		
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality?

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}	0^{*}		
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}	0^{*}		
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !
How far can we increase x_{1} ?

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}		0^{*}	
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !
How far can we increase $x_{1} ? w_{1} \geq 1 \Rightarrow x_{1} \leq-1$,

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ				-2^{*}		0^{*}	
	u			∞		6	
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !
How far can we increase $x_{1} ? w_{1} \geq 1 \Rightarrow x_{1} \leq-1, w_{2} \geq 2 \Rightarrow x_{1} \leq-\frac{2}{3}$,

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ		-2^{*}				0^{*}		
	u			∞		6		
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$	
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$	
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$	
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$	

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !
How far can we increase $x_{1} ? w_{1} \geq 1 \Rightarrow x_{1} \leq-1, w_{2} \geq 2 \Rightarrow x_{1} \leq-\frac{2}{3}, w_{3} \leq 0 \Rightarrow x_{1} \leq 0$.

General Dictionaries

General dictionaries look different because we need more information. The overall idea is still to describe basic variables and the objective in terms of non-basic ones.
Can we still simply set non-basic variables to zero to obtain a basic (dictionary) solution?
No we cannot - zero need not be a feasible value for variables! Non-basic variables will take on either their lower or their upper bound. Which of the two bounds they have is not implicit; our dictionary has to keep track of that (marked by *).

ℓ		-2^{*}				0^{*}		
	u			∞		6		
		ζ	$=$	$3 x_{1}$	-	x_{2}	$=-6$	
1	5	w_{1}	$=$	$-x_{1}$	+	x_{2}	$=2$	
2	10	w_{2}	$=$	$-3 x_{1}$	+	$2 x_{2}$	$=6$	
$-\infty$	0	w_{3}	$=$	$2 x_{1}$	-	x_{2}	$=-4$	

Is this dictionary feasible? Yes - all basic variables are within bounds!
How about optimality? No! We could increase x_{1} from its lower bound, increasing ζ !
How far can we increase $x_{1} ? w_{1} \geq 1 \Rightarrow x_{1} \leq-1, w_{2} \geq 2 \Rightarrow x_{1} \leq-\frac{2}{3}, w_{3} \leq 0 \Rightarrow x_{1} \leq 0$. When x_{1} is increased to -1 , w_{1} hits its lower bound (becomes non-basic); w_{1} is leaving variable!

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.
- We update the values in the basic solution (which is now a bit harder to see).

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.
- We update the values in the basic solution (which is now a bit harder to see).

ℓ		1^{*}					0^{*}		
	u			5		6			
		ζ	$=$	$-3 w_{1}$	+	$2 x_{2}$	$=-3$		
-2	∞	x_{1}	$=$	$-w_{1}$	+	x_{2}	$=-1$		
2	10	w_{2}	$=$	$3 w_{1}$	-	x_{2}	$=3$		
$-\infty$	0	w_{3}	$=$	$-2 w_{1}$	+	x_{2}	$=-2$		

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.
- We update the values in the basic solution (which is now a bit harder to see).

ℓ		1^{*}					0^{*}		
	u			5		6			
		ζ	$=$	$-3 w_{1}$	+	$2 x_{2}$	$=-3$		
-2	∞	x_{1}	$=$	$-w_{1}$	+	x_{2}	$=-1$		
2	10	w_{2}	$=$	$3 w_{1}$	-	x_{2}	$=3$		
$-\infty$	0	w_{3}	$=$	$-2 w_{1}$	+	x_{2}	$=-2$		

Is this now optimal?

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.
- We update the values in the basic solution (which is now a bit harder to see).

ℓ		1^{*}					0^{*}		
	u			5		6			
		ζ	$=$	$-3 w_{1}$	+	$2 x_{2}$	$=-3$		
-2	∞	x_{1}	$=$	$-w_{1}$	+	x_{2}	$=-1$		
2	10	w_{2}	$=$	$3 w_{1}$	-	x_{2}	$=3$		
$-\infty$	0	w_{3}	$=$	$-2 w_{1}$	+	x_{2}	$=-2$		

Is this now optimal? No! We could increase x_{2} to improve $\zeta!$ How far?

A General Pivot

A general pivot proceeds exactly like an ordinary pivot would:

- We rearrange the leaving row to isolate the entering variable on the left side.
- We substitute the resulting definition of the entering variable in all right hand sides.
- We swap the entries for bounds of the leaving and entering variable.
- We keep track of which bound is hit by the leaving variable and mark it.
- We update the values in the basic solution (which is now a bit harder to see).

ℓ		1^{*}					0^{*}		
	u			5		6			
		ζ	$=$	$-3 w_{1}$	+	$2 x_{2}$	$=-3$		
-2	∞	x_{1}	$=$	$-w_{1}$	+	x_{2}	$=-1$		
2	10	w_{2}	$=$	$3 w_{1}$	-	x_{2}	$=3$		
$-\infty$	0	w_{3}	$=$	$-2 w_{1}$	+	x_{2}	$=-2$		

Is this now optimal? No! We could increase x_{2} to improve ζ ! How far? x_{1} : no limit, $w_{2} \geq 2 \Rightarrow x_{2} \leq 1, w_{3} \leq 0 \Rightarrow x_{2} \leq 2 ; w_{2}$ is leaving variable!

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ		1^{*}					2^{*}
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ		1^{*}					2^{*}
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

A basic variable is 0 - is this now degenerate?

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ				1^{*}		2^{*}	
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

A basic variable is 0 - is this now degenerate?
No! 0 is not special anymore; degeneracy now means a basic variable is at one of its bounds.

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ				1^{*}		2^{*}	
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

A basic variable is 0 - is this now degenerate?
No! 0 is not special anymore; degeneracy now means a basic variable is at one of its bounds.
Is this now optimal?

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ				1^{*}		2^{*}	
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

A basic variable is 0 - is this now degenerate?
No! 0 is not special anymore; degeneracy now means a basic variable is at one of its bounds.
Is this now optimal? No! We can increase w_{1} from its lower bound! How far?

Another General Pivot

We say that w_{2} becomes non-basic at its lower bound.
Result of pivoting out w_{2} in favor of x_{2} :

ℓ				1^{*}		2^{*}	
	u			5		10	
		ζ	$=$	$3 w_{1}$	-	$2 w_{2}$	$=-1$
-2	∞	x_{1}	$=$	$2 w_{1}$	-	w_{2}	$=0$
0	6	x_{2}	$=$	$3 w_{1}$	-	w_{2}	$=1$
$-\infty$	0	w_{3}	$=$	w_{1}	-	w_{2}	$=-1$

A basic variable is 0 - is this now degenerate?
No! 0 is not special anymore; degeneracy now means a basic variable is at one of its bounds.
Is this now optimal? No! We can increase w_{1} from its lower bound! How far? The increase is limited to at most 1 unit due to w_{3} hitting its upper bound. w_{3} becomes non-basic at its upper bound.

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :

ℓ				$-\infty$ 0^{*}		2^{*}		
	u			10				
		ζ	$=$	$3 w_{3}$	+	w_{2}	$=2$	
-2	∞	x_{1}	$=$	$2 w_{3}$	+	w_{2}	$=2$	
0	6	x_{2}	$=$	$3 w_{3}$	+	$2 w_{2}$	$=4$	
1	5	w_{1}	$=$	w_{3}	+	w_{2}	$=2$	

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :
$\left.\begin{array}{ll|llrlrl}\ell & & & & -\infty \\ & & & & 2^{*} \\ & u & & & 0^{*}\end{array}\right]$

Is this now optimal?

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :
$\left.\begin{array}{ll|llrlrl}\ell & & & & -\infty & & 2^{*} \\ & u & & & 0^{*}\end{array}\right]$

Is this now optimal? No! We cannot increase w_{3}, but we can increase w_{2} from its lower bound!

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :

ℓ				$-\infty$		2^{*}	
	u			0^{*}		10	
		ζ	$=$	$3 w_{3}$	+	w_{2}	$=2$
-2	∞	x_{1}	$=$	$2 w_{3}$	+	w_{2}	$=2$
0	6	x_{2}	$=$	$3 w_{3}$	+	$2 w_{2}$	$=4$
1	5	w_{1}	$=$	w_{3}	+	w_{2}	$=2$

Is this now optimal? No! We cannot increase w_{3}, but we can increase w_{2} from its lower bound! Result of pivoting out x_{2} in favor of w_{2} :

ℓ				$-\infty$ 0^{*}		0	
	u			6^{*}			

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :

ℓ				$-\infty$		2^{*}	
	u			0^{*}		10	
		ζ	$=$	$3 w_{3}$	+	w_{2}	$=2$
-2	∞	x_{1}	$=$	$2 w_{3}$	+	w_{2}	$=2$
0	6	x_{2}	$=$	$3 w_{3}$	+	$2 w_{2}$	$=4$
1	5	w_{1}	$=$	w_{3}	+	w_{2}	$=2$

Is this now optimal? No! We cannot increase w_{3}, but we can increase w_{2} from its lower bound! Result of pivoting out x_{2} in favor of w_{2} :

ℓ							
	u			$-\infty$ 0^{*}		6^{*}	
		ζ	$=$	$1.5 w_{3}$	+	$0.5 x_{2}$	$=3$
-2	∞	x_{1}	$=$	$0.5 w_{3}$	+	$0.5 x_{2}$	$=3$
2	10	w_{2}	$=$	$-1.5 w_{3}$	+	$0.5 x_{2}$	$=3$
1	5	w_{1}	$=$	$-0.5 w_{3}$	+	$0.5 x_{2}$	$=3$

Is this now optimal?

Next General Pivot

Result of pivoting out w_{3} in favor of w_{1} :

Is this now optimal? No! We cannot increase w_{3}, but we can increase w_{2} from its lower bound! Result of pivoting out x_{2} in favor of w_{2} :

ℓ				$-\infty$ 0^{*}		6^{*}	
	u			0^{*}			
		ζ	$=$	$1.5 w_{3}$	+	$0.5 x_{2}$	$=3$
-2	∞	x_{1}	$=$	$0.5 w_{3}$	+	$0.5 x_{2}$	$=3$
2	10	w_{2}	$=$	$-1.5 w_{3}$	+	$0.5 x_{2}$	$=3$
1	5	w_{1}	$=$	$-0.5 w_{3}$	+	$0.5 x_{2}$	$=3$

Is this now optimal? Yes! Objective coefficients positive, both variables at their upper bound!

General Primal Simplex

The algorithm outlined on the example straightforwardly generalizes into primal Simplex for problems in general form.

General Primal Simplex

The algorithm outlined on the example straightforwardly generalizes into primal Simplex for problems in general form.

To find an entering variable, instead of checking for non-negative coefficients in the objective, one has to check whether there is a positive coefficient whose variable can be increased, i.e., is not at its upper bound, or a negative coefficient whose variable can be decreased, i.e., is not at its lower bound.

General Primal Simplex

The algorithm outlined on the example straightforwardly generalizes into primal Simplex for problems in general form.

To find an entering variable, instead of checking for non-negative coefficients in the objective, one has to check whether there is a positive coefficient whose variable can be increased, i.e., is not at its upper bound, or a negative coefficient whose variable can be decreased, i.e., is not at its lower bound.

To identify the leaving variable, one picks the first basic variable that hits its upper or lower bound. That variable then becomes non-basic at the bound we hit.

General Primal Simplex

The algorithm outlined on the example straightforwardly generalizes into primal Simplex for problems in general form.

To find an entering variable, instead of checking for non-negative coefficients in the objective, one has to check whether there is a positive coefficient whose variable can be increased, i.e., is not at its upper bound, or a negative coefficient whose variable can be decreased, i.e., is not at its lower bound.

To identify the leaving variable, one picks the first basic variable that hits its upper or lower bound. That variable then becomes non-basic at the bound we hit.

As stated before, from an interface standpoint, most professional solvers implement this type of interface, where any linear expression can be given a lower and upper bound simultaneously without needing two matrix rows.
If one can query which variables are basic, one will notice that basic variables need not be 0 , but can be at one of their bounds.

General Primal Simplex

The algorithm outlined on the example straightforwardly generalizes into primal Simplex for problems in general form.

To find an entering variable, instead of checking for non-negative coefficients in the objective, one has to check whether there is a positive coefficient whose variable can be increased, i.e., is not at its upper bound, or a negative coefficient whose variable can be decreased, i.e., is not at its lower bound.

To identify the leaving variable, one picks the first basic variable that hits its upper or lower bound. That variable then becomes non-basic at the bound we hit.

As stated before, from an interface standpoint, most professional solvers implement this type of interface, where any linear expression can be given a lower and upper bound simultaneously without needing two matrix rows.
If one can query which variables are basic, one will notice that basic variables need not be 0 , but can be at one of their bounds.

Furthermore, a basis usually consists of a mixture of variables and constraints (we now have a more direct correspondence between constraints and their "slack" variables).

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution). What is the dual of a problem in general form?

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{gathered}
$$

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0 .
\end{gathered}
$$

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\qquad \begin{array}{c}
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0
\end{gathered}
$$

Dual:
minimize $b^{T} v-a^{T} q+u^{T} s-\ell^{T} h$ subject to

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\qquad \begin{array}{c}
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0 .
\end{gathered}
$$

Dual:

$$
\underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to }
$$

$$
A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
$$

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\qquad \begin{array}{c}
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\begin{array}{c}
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0
\end{array}
\end{gathered}
$$

Dual:

$$
\underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to }
$$

$$
A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
$$

Complementarity: $f_{i} v_{i}=0, p_{i} q_{i}=0, t_{j} s_{j}=0, g_{j} h_{j}=0$ at optimality.

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\qquad \begin{array}{c}
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\begin{array}{c}
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0
\end{array}
\end{gathered}
$$

Dual:

$$
\underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to }
$$

$$
A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
$$

Complementarity: $f_{i} v_{i}=0, p_{i} q_{i}=0, t_{j} s_{j}=0, g_{j} h_{j}=0$ at optimality. W.l.o.g. also complementary: $v_{i} q_{i}=0, s_{j} h_{j}=0$!

What about Phase I/Dual Simplex?

We will present both at the same time (with a modified objective, dual feasibility is easy to obtain and we can use dual Simplex to find a feasible solution).
What is the dual of a problem in general form?
To find out, we rewrite the general form into standard form (without and with slacks):

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
\qquad \begin{array}{c}
A x \leq b \\
-A x \leq-a \\
x \leq u \\
-x \leq-l
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { maximize } c^{T} x \text { s.t. } \\
A x+f=b \\
-A x+p=-a \\
x+t=u \\
-x+g=-l \\
x \text { free, } f, g, p, t \geq 0 .
\end{gathered}
$$

Dual:

$$
\begin{aligned}
& \underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to } \\
& \qquad A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
\end{aligned}
$$

Complementarity: $f_{i} v_{i}=0, p_{i} q_{i}=0, t_{j} s_{j}=0, g_{j} h_{j}=0$ at optimality. W.l.o.g. also complementary: $v_{i} q_{i}=0, s_{j} h_{j}=0$!

Note: Very similar to making a free variable from two non-negative ones, but with different objective coefficients!

Preliminaries for Dual Simplex

minimize $b^{T} v-a^{T} q+u^{T} s-\ell^{T} h$ subject to
$A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0$

Preliminaries for Dual Simplex

minimize $b^{T} v-a^{T} q+u^{T} s-\ell^{T} h$ subject to
$A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0$
For some real variable ξ, let $\xi^{+}=\max \{\xi, 0\}, \xi^{-}=\max \{-\xi, 0\}$.
Then $\xi^{+} \xi^{-}=0$ and $\xi^{+}-\xi^{-}=\xi$.

Preliminaries for Dual Simplex

$$
\begin{aligned}
& \underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to } \\
& \qquad A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
\end{aligned}
$$

For some real variable ξ, let $\xi^{+}=\max \{\xi, 0\}, \xi^{-}=\max \{-\xi, 0\}$.
Then $\xi^{+} \xi^{-}=0$ and $\xi^{+}-\xi^{-}=\xi$.
Rewrite using complementarity $v=y^{+}, q=y^{-}, h=z^{+}, s=z^{-}$:

Preliminaries for Dual Simplex

$$
\begin{aligned}
& \underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to } \\
& \qquad A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
\end{aligned}
$$

For some real variable ξ, let $\xi^{+}=\max \{\xi, 0\}, \xi^{-}=\max \{-\xi, 0\}$.
Then $\xi^{+} \xi^{-}=0$ and $\xi^{+}-\xi^{-}=\xi$.
Rewrite using complementarity $v=y^{+}, q=y^{-}, h=z^{+}, s=z^{-}$:

$$
\begin{gathered}
\operatorname{minimize} b^{T} y^{+}-a^{T} y^{-}+u^{T} z^{-}-\ell^{T} z^{+} \text {subject to } \\
\qquad A^{T} y-z=c, \quad y, z \text { free }
\end{gathered}
$$

Preliminaries for Dual Simplex

$$
\begin{aligned}
& \underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to } \\
& \qquad A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
\end{aligned}
$$

For some real variable ξ, let $\xi^{+}=\max \{\xi, 0\}, \xi^{-}=\max \{-\xi, 0\}$.
Then $\xi^{+} \xi^{-}=0$ and $\xi^{+}-\xi^{-}=\xi$.
Rewrite using complementarity $v=y^{+}, q=y^{-}, h=z^{+}, s=z^{-}$:

$$
\begin{gathered}
\operatorname{minimize} b^{T} y^{+}-a^{T} y^{-}+u^{T} z^{-}-\ell^{T} z^{+} \text {subject to } \\
A^{T} y-z=c, \quad y, z \text { free }
\end{gathered}
$$

This is no longer linear, only (a special type of) piecewise linear!

Preliminaries for Dual Simplex

$$
\begin{aligned}
& \underset{\operatorname{minimize}}{ } b^{T} v-a^{T} q+u^{T} s-\ell^{T} h \text { subject to } \\
& \qquad A^{T}(v-q)-(h-s)=c, \quad v, q, h, s \geq 0
\end{aligned}
$$

For some real variable ξ, let $\xi^{+}=\max \{\xi, 0\}, \xi^{-}=\max \{-\xi, 0\}$.
Then $\xi^{+} \xi^{-}=0$ and $\xi^{+}-\xi^{-}=\xi$.
Rewrite using complementarity $v=y^{+}, q=y^{-}, h=z^{+}, s=z^{-}$:

$$
\begin{gathered}
\operatorname{minimize} b^{T} y^{+}-a^{T} y^{-}+u^{T} z^{-}-\ell^{T} z^{+} \text {subject to } \\
A^{T} y-z=c, \quad y, z \text { free }
\end{gathered}
$$

This is no longer linear, only (a special type of) piecewise linear! Our Dual Simplex for general problems will solve this type of problem.

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is
$\operatorname{minimize} \xi=6 y_{1}^{+}+10 y_{2}^{+}+2 z_{1}^{+}-z_{2}^{+}-2 y_{2}^{-}+\infty y_{3}^{-}+\infty z_{1}^{-}+5 z_{2}^{-}$s.t.

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is

$$
\begin{gathered}
\operatorname{minimize} \xi=6 y_{1}^{+}+10 y_{2}^{+}+2 z_{1}^{+}-z_{2}^{+}-2 y_{2}^{-}+\infty y_{3}^{-}+\infty z_{1}^{-}+5 z_{2}^{-} \text {s.t. } \\
y_{1}-y_{2}+y_{3}-z_{1}=2
\end{gathered}
$$

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is

$$
\begin{gathered}
\operatorname{minimize} \xi=6 y_{1}^{+}+10 y_{2}^{+}+2 z_{1}^{+}-z_{2}^{+}-2 y_{2}^{-}+\infty y_{3}^{-}+\infty z_{1}^{-}+5 z_{2}^{-} \text {s.t. } \\
y_{1}-y_{2}+y_{3}-z_{1}=2 \\
y_{1}+2 y_{2}-y_{3}-z_{2}=-1
\end{gathered}
$$

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is

$$
\begin{gathered}
\operatorname{minimize} \xi=6 y_{1}^{+}+10 y_{2}^{+}+2 z_{1}^{+}-z_{2}^{+}-2 y_{2}^{-}+\infty y_{3}^{-}+\infty z_{1}^{-}+5 z_{2}^{-} \text {s.t. } \\
y_{1}-y_{2}+y_{3}-z_{1}=2 \\
y_{1}+2 y_{2}-y_{3}-z_{2}=-1 .
\end{gathered}
$$

Note: Infinities in the objective! We use our conventions. $-\infty$ indicates infeasibility!

General Dual Simplex Example

maximize		$2 x_{1}-$	x_{2}	
subject to	$0 \leq$	$x_{1}+$	$x_{2} \leq$	6
	$2 \leq$	$-x_{1}+$	$2 x_{2} \leq$	10
	$-\infty \leq$	$x_{1}-$	$x_{2} \leq$	0
	$-2 \leq$	x_{1}	\leq	∞
	$1 \leq$		$x_{2} \leq$	5

The dual is

$$
\begin{gathered}
\operatorname{minimize} \xi=6 y_{1}^{+}+10 y_{2}^{+}+2 z_{1}^{+}-z_{2}^{+}-2 y_{2}^{-}+\infty y_{3}^{-}+\infty z_{1}^{-}+5 z_{2}^{-} \text {s.t. } \\
y_{1}-y_{2}+y_{3}-z_{1}=2 \\
y_{1}+2 y_{2}-y_{3}-z_{2}=-1 .
\end{gathered}
$$

Note: Infinities in the objective! We use our conventions. $-\infty$ indicates infeasibility! Also, we cannot use row operations on the objective. But we can use them on the constraints!

$$
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}^{+}+z_{2}^{+}+2 y_{2}^{-}-\infty y_{3}^{-}-\infty z_{1}^{-}-5 z_{2}^{-}
$$

We have the following dictionary (with no objective):

$$
\begin{array}{rrrr}
z_{1}= & -2+y_{1}- & y_{2}+ & y_{3} \\
z_{2}= & 1+ & y_{1}+ & 2 y_{2}- \\
y_{3}
\end{array}
$$

$$
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}^{+}+z_{2}^{+}+2 y_{2}^{-}-\infty y_{3}^{-}-\infty z_{1}^{-}-5 z_{2}^{-}
$$

We have the following dictionary (with no objective):

$$
\begin{array}{rrrr}
z_{1}= & -2+ & y_{1}- & y_{2}+ \\
z_{2}= & 1+ & y_{3} \\
y_{1}+ & 2 y_{2}- & y_{3}
\end{array}
$$

For a dictionary solution, we set non-basic variables to 0 again (where the objective changes slope). Therefore, we have $z_{1}=-2, z_{2}=1$, so $z_{1}^{+}=0, z_{1}^{-}=2, z_{2}^{+}=1, z_{2}^{-}=0$. Unfortunately, the objective is $-\infty$, because $z_{1}^{-}>0$; this dictionary is infeasible!

$$
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}^{+}+z_{2}^{+}+2 y_{2}^{-}-\infty y_{3}^{-}-\infty z_{1}^{-}-5 z_{2}^{-}
$$

We have the following dictionary (with no objective):

$$
\begin{array}{rrrrr}
z_{1}= & -2+ & y_{1}- & y_{2}+ & y_{3} \\
z_{2}= & 1+ & y_{1}+ & 2 y_{2}- & y_{3}
\end{array}
$$

For a dictionary solution, we set non-basic variables to 0 again (where the objective changes slope). Therefore, we have $z_{1}=-2, z_{2}=1$, so $z_{1}^{+}=0, z_{1}^{-}=2, z_{2}^{+}=1, z_{2}^{-}=0$. Unfortunately, the objective is $-\infty$, because $z_{1}^{-}>0$; this dictionary is infeasible!

If we change the primal objective to $\eta=-2 x_{1}-x_{2}$, this will not happen! We then start with $z_{1}=2, z_{2}=1$, which is feasible.

$$
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}^{+}+z_{2}^{+}+2 y_{2}^{-}-\infty y_{3}^{-}-\infty z_{1}^{-}-5 z_{2}^{-}
$$

We have the following dictionary (with no objective):

$$
\begin{array}{rrrr}
z_{1}= & -2+ & y_{1}- & y_{2}+ \\
z_{2}= & 1+ & y_{3} \\
y_{1}+ & 2 y_{2}- & y_{3}
\end{array}
$$

For a dictionary solution, we set non-basic variables to 0 again (where the objective changes slope). Therefore, we have $z_{1}=-2, z_{2}=1$, so $z_{1}^{+}=0, z_{1}^{-}=2, z_{2}^{+}=1, z_{2}^{-}=0$. Unfortunately, the objective is $-\infty$, because $z_{1}^{-}>0$; this dictionary is infeasible!

If we change the primal objective to $\eta=-2 x_{1}-x_{2}$, this will not happen! We then start with $z_{1}=2, z_{2}=1$, which is feasible.

We need to check whether we can improve the objective by increasing or decreasing one of y_{1}, y_{2}, y_{3}. To find out whether an increase or decrease improves the objective, we look locally (in the environment of our solution).

$$
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}^{+}+z_{2}^{+}+2 y_{2}^{-}-\infty y_{3}^{-}-\infty z_{1}^{-}-5 z_{2}^{-}
$$

We have the following dictionary (with no objective):

$$
\begin{array}{rrrr}
z_{1}= & -2+ & y_{1}- & y_{2}+ \\
z_{2}= & 1+ & y_{3} \\
y_{1}+ & 2 y_{2}- & y_{3}
\end{array}
$$

For a dictionary solution, we set non-basic variables to 0 again (where the objective changes slope). Therefore, we have $z_{1}=-2, z_{2}=1$, so $z_{1}^{+}=0, z_{1}^{-}=2, z_{2}^{+}=1, z_{2}^{-}=0$. Unfortunately, the objective is $-\infty$, because $z_{1}^{-}>0$; this dictionary is infeasible!

If we change the primal objective to $\eta=-2 x_{1}-x_{2}$, this will not happen! We then start with $z_{1}=2, z_{2}=1$, which is feasible.

We need to check whether we can improve the objective by increasing or decreasing one of y_{1}, y_{2}, y_{3}. To find out whether an increase or decrease improves the objective, we look locally (in the environment of our solution).

At the solution $z_{1}=2, z_{2}=1$, we have $-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-}$. We can take left and right partial derivatives of $-\xi$ to look for improvements; note that z_{1}, z_{2} are functions of y_{1}, y_{2}, y_{3} here!

Initial Primal Dictionary

$$
\begin{aligned}
& z_{1}=2+y_{1}-\quad y_{2}+\begin{array}{l}
y_{3} \\
z_{2}= \\
1+ \\
y_{1}+ \\
2 y_{2}-
\end{array} y_{3}
\end{aligned}
$$

How does our initial primal dictionary look?

- Original problem gives matrix and bounds.
- How do we know which non-basic variable is at its upper, and which at its lower bounds?

The last question is the only difficult part, but complementarity helps here, as well.
$z_{1}>0 \Rightarrow z_{1}^{+}>0 \Rightarrow h_{1}>0 \Rightarrow g_{1}=0 \Rightarrow x_{1}=\ell_{1}$ (at lower bound),
$z_{2}>0 \Rightarrow z_{2}^{+}>0 \Rightarrow h_{2}>0 \Rightarrow g_{2}=0 \Rightarrow x_{2}=\ell_{2}$ (at lower bound).

ℓ				-2^{*}		1^{*}	
	u			∞		5	
		η	$=$	$-2 x_{1}$	-	x_{2}	$=3$
1	5	w_{1}	$=$	x_{1}	+	x_{2}	$=-1$
2	10	w_{2}	$=$	$-x_{1}$	+	$2 x_{2}$	$=4$
$-\infty$	0	w_{3}	$=$	x_{1}	-	x_{2}	$=3$

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+y_{1}-y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing y_{1} :
Derivative for decreasing y_{1} :
Derivative for increasing y_{2} :
Derivative for decreasing y_{2} :
Derivative for increasing y_{3} :
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}= \\
1+
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing y_{1} :
Derivative for increasing y_{2} :
Derivative for decreasing y_{2} :
Derivative for increasing y_{3} :
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}= \\
z_{2}= \\
2+\quad y_{1}-\quad y_{2}+y_{3} \\
y_{1}+ \\
2 y_{2}-\quad y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective! Derivative for increasing y_{2} :
Derivative for decreasing y_{2} :
Derivative for increasing y_{3} :
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+\quad y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing y_{2} :
Derivative for increasing y_{3} :
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing y_{3} :
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing y_{3} :

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing $y_{3}:-\infty-(-2 \cdot 1+1 \cdot-1)=-\infty<0$

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing $y_{3}:-\infty-(-2 \cdot 1+1 \cdot-1)=-\infty<0$

Which variable hits 0 first?

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing $y_{3}:-\infty-(-2 \cdot 1+1 \cdot-1)=-\infty<0$

Which variable hits 0 first? Only z_{2} moves towards 0 , and hits 0 for $y_{1}=-1$.

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing $y_{3}:-\infty-(-2 \cdot 1+1 \cdot-1)=-\infty<0$

Which variable hits 0 first? Only z_{2} moves towards 0 , and hits 0 for $y_{1}=-1$.

$$
\begin{array}{rrrrr}
z_{1}= & 1+z_{2}-3 y_{2}+ & 2 y_{3} \\
y_{1}= & -1+ & z_{2}- & 2 y_{2}- & y_{3}
\end{array}
$$

Dual Pivot

$$
\begin{gathered}
-\xi=-6 y_{1}^{+}-10 y_{2}^{+}-2 z_{1}+z_{2}+2 y_{2}^{-}-\infty y_{3}^{-} \\
z_{1}=2+\quad y_{1}-\quad y_{2}+y_{3} \\
z_{2}=1+y_{1}+2 y_{2}-y_{3}
\end{gathered}
$$

Derivative for increasing $y_{1}:-6-2 \cdot 1+1 \cdot 1=-7<0$.
Derivative for decreasing $y_{1}:-(-2 \cdot 1+1 \cdot 1)=1>0 \Rightarrow$ Decreasing y_{1} improves our objective!
Derivative for increasing $y_{2}:-10-2 \cdot(-1)+1 \cdot 2=-6<0$
Derivative for decreasing $y_{2}: 2-(-2 \cdot(-1)+1 \cdot 2)=-2<0$
Derivative for increasing $y_{3}: 0+-2 \cdot 1+1 \cdot-1=-3<0$
Derivative for decreasing $y_{3}:-\infty-(-2 \cdot 1+1 \cdot-1)=-\infty<0$

Which variable hits 0 first? Only z_{2} moves towards 0 , and hits 0 for $y_{1}=-1$.

$$
\begin{array}{rrrrr}
z_{1}= & 1+ & z_{2}- & 3 y_{2}+ & 2 y_{3} \\
y_{1}= & -1+ & z_{2}- & 2 y_{2}- & y_{3}
\end{array}
$$

Analyzing derivatives shows that this is actually optimal. The primal dictionary is updated as follows: w_{1} leaves, x_{2} enters. $y_{1}^{-}>0 \Rightarrow q_{1}>0 \Rightarrow p_{1}=0 \Rightarrow w_{1}=a_{1}$.

